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Research Highlights 

• A realistic Multi-Objective Mobile Social Network Search (MO-MSNS) optimization problem 
is investigated. 

• A decompositional MOEA hybridized with a Meta-Lamarckian approach, coined MOEA/D-
ML, which learns from the problem’s properties and objective functions, is proposed. 

• MOEA/D-ML is evaluated on mobility and social behaviour patterns derived from the real 
data of GeoLife and DBLP datasets and a trace-driven experimental methodology. 

• The generalizability of MOEA/D-ML is also evaluated on the well-known multi-objective 
combinatorial optimization problem Permutation Flowshop Scheduling Problem. 

• The proposed MOEA/D-ML approach successfully learns the behaviour of individual local 
search heuristics during the evolution and adaptively follows the pattern of the best 
performing heuristics at different areas of the objective space of different benchmark test 
instances and for different problems. 

*Highlights (for review)
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Meta-Lamarckian Learning in Multi-Objective
Optimization for Mobile Social Network Search

Andreas Konstantinidis, Savvas Pericleous and Christoforos Charalambous

Department of Computer Science and Engineering, FrederickUniversity, Nicosia, Cyprus

Abstract

Mobile Social Networks (MSNs)have recently brought a revolution in socially-
oriented applications and services for mobile phones. In this paper, we con-
sider the search problem in a MSN that aims at simultaneouslymaximizing the
user’s search outcome (recall) and mobile phone performance (battery usage).
Because of the conflicting nature of these two objectives, the problem is dealt
within the context ofMulti-Objective Optimization (MOO). Our proposed ap-
proach hybridizes a Multi-objective Evolutionary Algorithm based on Decom-
position (MOEA/D) with a Meta-Lamarckian (ML) learningstrategy that learns
from the problem’s properties and objective functions. TheML strategy is de-
vised for adaptively select the best performing local search heuristic for each case,
from a pool of general-purpose heuristics, so as to locally optimize the solutions
during the evolution. We evaluated our propositions on a realistic multi-objective
MSN search problem using trace-driven experiments with real mobility and social
patterns. Extensive experimental studies reveal that the proposed method success-
fully learns the behaviour of individual local search heuristics during the evolu-
tion, adaptively follows the pattern of the best performingheuristics at different
areas of the objective space and offers better performance in terms of both con-
vergence and diversity than its competitors.

The proposed Meta-Lamarckian based MOEA does not utilize any problem-
specific heuristics, as most cases in the literature do, facilitating its applicabil-
ity to other combinatorial MOO problems. To test its generalizability the pro-
posed method is also evaluated on various test instances of the well-studied multi-
objective Permutation Flow Shop Scheduling Problem.

Keywords: multi-objective optimization, evolutionary algorithms,local search,
decomposition, meta-lamarckian learning, smartphones, social networks
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1. Introduction

The widespread deployment of mobile smartphone devices andthe advent of
social networks have brought a revolution in social-oriented applications and ser-
vices for smartphones [1] and the emergence of the so-calledMobile Social Net-
works (MSNs), mainly composed of mobile users carrying smartphones thatare
used for sharing and collaboration [2, 3]. For example, Google Latitude and Face-
book Places enable users to share their location, rank places and events, check-in
to favorite places, provide their location history and query for real-timedata (e.g.,
content, interests, comments, ideas and places). Currently, the bulk of social net-
working services designed for smartphone communities, rely on centralized or
cloud-like architectures. Smartphone clients upload their captured objects (e.g.,
images uploaded to Instagram, video traces uploaded to Youtube, etc.,) to a central
entity that subsequently takes care of the content organization and dissemination.
Smartphones have asymmetric communication mediums with a slow up-link, thus
continuously transferring massive amounts of data to a central authority through
WiFi/3G/4G connections, can drain smartphone battery faster, increase query re-
sponse times and quickly degrade the network health. A majorgoal while devel-
oping such a mobile-social network service is often (1) to maximize the outcome
(i.e., the query response orrecall) without (2) deteriorating the resources of the
smartphone devices (i.e.,minimize energy consumption) satisfying, at the same
time, several constraints. These two objectives are conflicting and the respective
problem is treated within the context ofMulti-Objective Optimization(MOO).

A Multi-objective Optimization Problem (MOP)[4, 5] can be mathematically
formulated as

minimize F (X) = (f1(X), . . . , fk(X)), subject toX ∈ Ω, (1)

whereΩ is the decision space andX ∈ Ω is a decision vector.F (X) consists of
k objective functionsfi : Ω → ℜ, i = 1, . . . , k, whereℜk is the objective space.
The objectives often conflict with each other and improving on one objective may
lead to deterioration of another. Thus, no single solution exists that can optimize
all objectives simultaneously. In that case, the best trade-off solutions, called the
set of Pareto optimal (or non-dominated) solutions, is often required by a decision
maker. The Pareto optimality concept is formally defined as

Definition 1. A vectoru = (u1, . . . , uk) is said to dominate another vectorv =
(v1, . . . , vk), denoted asu ≺ v, iff ∀i ∈ {1, . . . , k}, ui ≤ vi andu 6= v.

Definition 2. A feasible solutionX∗ ∈ Ω of problem (1) is calledPareto optimal
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solution, iff ∄Y ∈ Ω such thatF (Y ) ≺ F (X∗). The set of all Pareto optimal
solutions is called the Pareto Set (PS), denoted as,

PS = {X ∈ Ω| 6 ∃Y ∈ Ω, F (Y ) ≺ F (X)}.

The image of the PS in the objective space is called the ParetoFront (PF)

PF = {F (X)|X ∈ PS}.

Multi-objective Evolutionary Algorithms (MOEAs)can obtain an approximate
PF in a single run by accommodating different forms of operators to iteratively
generate a population of such solutions. A major goal of MOEAs when dealing
with a MOP is to produce (i) a diverse set of non-dominated solutions that is (ii) as
close as possible to the real PF. Several techniques were proposed for improving
the performance of MOEAs along those directions. For example, MOEAs are
combined with niching mechanisms such as crowding distanceestimation [6] to
improve diversity, and/or local search methods [7] to improve convergence. The
hybridization of MOEAs with local search heuristics, also known as Memetic
Algorithms (MAs) [8], has been proven efficient in the past, giving rise to new
challenges such as how to select the appropriate local search method within a
pool of local search methods in order to identify, in an effective manner, the best
local solution within a neighbourhood.

In Single Objective Optimization (SOO), an Evolutionary Algorithm (EA) is
often hybridized with a Local Search (LS) method either randomly or determin-
istically. In the former case, either a LS method is randomlyselected a priori and
used for the whole evolution or a LS method is randomly selected from a pool of
LS methods at each generation. In the latter case, problem-specific LS methods
are designed and deterministically combined with an EA based on the character-
istics of the objective function. However, the choice of thecorrect LS method
and/or the design of a problem-specific LS method for each single objective that
needs to be optimized can be a difficult and tedious process [9]. This is mainly
due to the fact that different search algorithms, other thanuniform random search,
might introduce some kind of different bias into its search that makes a method
good for some classes of problems but not for others. Ong and Keane in [10] pro-
pose a Meta-Lamarckian learning (or adaptive search) strategy that intelligently
selects the most suitable LS method from a pool of LSs during the evolution.

In MOO, however, things are even more complicated for the following rea-
sons: (i) in most cases there is no (or limited) knowledge of the problem domain
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and MOEAs are often used as a black box [11], and (ii) in addition to the is-
sues that are commonly considered when selecting a LS for SOO(e.g., different
LSs having different bias on different classes of problems as well as on different
instances of the same problem domain), in MOO, due to the multiple often con-
flicting objectives involved, there are also different biases on the same instance of
the same problem domain but for different objectives.

In this paper, we combineMeta-Lamarckian (ML) learningwith MOEA to
study a realistic combinatorial Multi-objective Optimization Mobile Social Net-
work Search (MO-MSNS) problem initially defined in [12]. We propose a new
algorithm named MOEA/D-ML, which follows the general framework of MOEA
based on Decomposition (MOEA/D) [13], combined with a pool of generalized
Local Search (LS) methods and a Meta-Lamarckian Learning strategy to adap-
tively learn the effectiveness of each LS, and select the best performing LS for
each objective function of each problem instance of each class of problems, on-
line during the evolution. Here it is important to notice that no problem-specific
heuristics are used in the design of the proposed approach, in contrast to other
research studies that incorporate Meta-Lamarckian learning strategies (e.g., [14]),
so as to facilitate its generalizability to other multi-objective combinatorial op-
timization problems. MOEA/D-ML is first evaluated using mobility and social
behaviour patterns derived from the real data of GeoLife [15] and DBLP [16]
datasets and a trace-driven experimental methodology. It is then also applied to
various benchmark test instances of the well-known multi-objective Permutation
Flow Shop Scheduling Problem (PFSSP) [7, 14, 17].

The rest of the paper is organized as follows: Section 2 provides related work
on Mobile Social Networks, Multi-Objective Optimization and MOEAs, as well
as Meta-Lamarckian learning and adaptive search. Section 3introduces the sys-
tem model as well as the problem definition and formulation. Section 4 presents
our MOEA/D-ML approach, its internal structures and procedures. MOEA/D-
ML is evaluated in Section 5 on realistic scenarios (by combining real datasets)
and experimental parameters on the proposed MO-MSNS problem, as well as on
various instances of the PFSSP. Finally, Section 6 concludes this paper.

2. Related Work

In this section, we provide related research work that lie atthe foundation of
our propositions.

4
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2.1. Mobile Social Networks
Searching a smartphone social network to share objects of interest (e.g., pho-

tos, videos, text etc.,) can be roughly classified into: (i)Blind Search [18, 19, 20],
where smartphone users propagate the query using an unsophisticated (e.g., ran-
dom, TTL property) approach to as many nodes in the network aspossible, and
(ii) InformedSearch [21, 22], where smartphone users utilize semantic orlocation
information to forward queries to specific nodes in the network.

In this paper, we adopt the search approach presented in [12], that belongs
class (ii) with the difference that a centralized approach is utilized where smart-
phone devices subscribe to a centralized registry. Similarto [22], a content sum-
mary mechanism (i.e., profile) is used for discovering mobile users that will par-
ticipate in a queryQ by the centralized node. In our adopted setting, the content
summary of each mobile user is stored at the centralized nodeupon its registration
and it features continuous sharing of data that can be utilized to create a number
of collaborative scenarios (e.g., BikeNet [23]).

A central component to realize such scenarios is the availability of some high-
level communication structure, such asQuery Routing Trees (QRTs). In [24],
the authors present a technique that profiles the activitiesof the user in order to
minimize the number of communication packets transmitted in the smartphone
network. In [25], the authors form QRTs using flooding in order to continuously
track mobile events and relay data to the query user. However, this approach
suffers from significant energy waste as all nodes continuously and actively par-
ticipate in the smartphone network.

Moreover, trying to optimize only a single objective (e.g.,minimize energy)
individually by ignoring and/or constraining the others (e.g., minimize network
resources consumption, maximize recall etc.), often results in losing “better” so-
lutions, since in a smartphone social network, minimizing the energy and maxi-
mizing the recall (i.e., quantity and quality of related objects of interest retrieved)
are conflicting objectives and a set of trade-off candidate solutions is required.

2.2. Multi-Objective Evolutionary Algorithms
Multi-Objective Evolutionary Algorithms (MOEAs) are proven efficient and

effective in dealing with MOPs. This is due to their population-based nature that
allows them to approximate the whole PS (PF) in a single run. MOEAs general
frameworks are often classified into three main categories:(i) the MOEAs based
on Pareto Dominance [4] such as MOGA [26], NSGA-II [6], SPEA-II [27], which
are mainly characterized by a selection operator based on Pareto-domination and
a reproduction operator used iteratively; (ii) the decompositional MOEAs [28]
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such as MOEA/D [13], MOGLS [29, 30], which are based on conventional aggre-
gation approaches and usually decompose a MOP into a number of scalar SOO
sub-problems, which are weighted aggregations of the individual objectives; and
(iii) the indicator-based MOEAs such as the Basic Indicator-Based Evolutionary
Algorithm (B-IBEA) and the Adaptive IBEA (A-IBEA) [31, 32],which allow to
adapt the search according to arbitrary performance measures. For recent surveys
on the state of the art of MOEAs please refer to [33, 34].

The combination of a MOEA withLocal Search (LS)is known asHybrid
(Memetic) MOEAs. The first hybrid MOEA was implemented by Ishibuchi et
al. [29] as a Multi-Objective Genetic Local Search (MOGLS) approach, in which
the multiple objectives were aggregated into a scalar fitness function using ran-
dom weights for parent selection and LS. Jaszkiewicz [30] has further improved
MOGLS performance by improving the parent selection. Following this direction,
several researchers have designed hybrid MOEAs by applyingLS to all individ-
uals [35] either at the end of each generation [29, 30], or just at the last genera-
tion [36]. In particular, the general MOEA/D framework proposed by Zhang and
Li in [13] considers the hybridization of MOEA/D with LS as anoptional step.

Even though there is a variety of hybrid MOEAs available in the literature,
their applications on Multi-Objective Mobile Social Network Search optimization
problems are still rare. For example, Liu et al. in [37] and Maet al. in [38]
focus on topology-related MOPs utilizing MOEAs for optimizing the commu-
nity structure of social networks without considering any user-related objectives
such as user satisfaction or the performance of users’ smartphone devices. Our
work is more related to the work in [12] in which the authors have applied the
conventional MOEA/D on a tri-objective search optimization problem in a social
community of smartphone users providing better results than the state-of-the-art
Pareto-dominance based approach NSGA-II. Their major aim was the design of a
principled framework composed of an optimizer (MOEA/D), a posterior decision
maker and a Peer-to-Peer search approach. A real prototype system was developed
for the ubiquitous Android Operating System and was utilized in real conditions.

The work presented in this paper focuses on the algorithmic aspects of solving
a real-life bi-objective MSN search optimization problem and in general, on the
application of adaptive learning strategies on a hybrid decompositional MOEA
for addressing multi-objective combinatorial optimization problems. We propose
MOEA/D-ML, a hybrid MOEA/D combined with Meta-Lamarckian learning to
adaptively select the most appropriate LS method from a poolof generalized LS
heuristics. To the best of our knowledge, there is no similarhybridization of a
decompositional MOEA and Meta-Lamarckian learning in the literature.

6
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2.3. Meta-Lamarckian Learning and Adaptive Search

Even though the hybridization of EAs with LS methods, individualistically
and/or randomly, is easy and is proven efficient to achieve both good exploration
and exploitation simultaneously, it still raises several issues. From a SOO point
of view, Reeves has observed in [39] that different LS operators provide different
number of local optima and induce considerably different landscapes [40]. Fur-
thermore, Davis [9] has effectually argued that hybridizing GAs with the most
successful LS method for a particular problem should work noworse than either
GA or LS alone. On the other hand, if one does not know which LS method best
suits a problem in hand, there is a great chance for the hybridEA to perform worse
than GA alone. The major impact of LS methods on the performance of MAs can
be found in [41, 42].

Moreover in [10], Ong and Keane further expand the aforemention statements
by arguing that with so many LS methods available in the literature, it is almost
impossible to know which is the most relevant to the problem,especially in the
absence of any knowledge on its cost surface a priori. They goon to propose an
adaptive search approach, coined Meta-Lamarckian learning MA, which injects
some intelligent means on the correct selection of a LS approach from a pool of
LSs for a particular problem while the search is progressing.

Meta-Lamarckian (or adaptive) strategies can be characterized as coopera-
tive and/or competitive or individualistic. Competition is when LS methods with
higher fitness improvements are rewarded with higher chanceto be selected for
subsequent optimizations. Cooperation is when LSs and their improvement re-
wards act together for the selection of a LS for a subsequent optimization, and
individualistic is when a single LS is used on the problem. A common reward
measureη of the improvements contributed by a LS to a solution that hasbeen
searched is defined in [10] as

η = β
|pf − cf |

µ
, (2)

wherepf is the initial function fitness of a parent solution1 before local search,
cf is the final function fitness of the child solution after applying local search and
µ is the number of LS function evaluation calls made to reach from pf to cf .
The term|pf − cf |/µ is the absolute reward measure andβ signifies the relative

1in EAs terminology a solution, a chromosome and a decision vector terms are used inter-
changeably

7
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reward that scales the absolute reward in proportion to the ability to produce high
quality solutions compared to the best known solution obtained so far during the
evolution. Oftenβ is set asσ/cf for minimization andcf/σ for maximization
problems, whereσ is the fitness of the best solution encountered so far.

The approach of Ong and Keane in [10], cannot be directly usedin MOO and
cannot be combined with a MOEA based on Pareto dominance. Thereason is
that MOEAs based on Pareto dominance tackle a MOP as a whole and the im-
provement towards the direction of one objective often results in the deterioration
of others. The MOEA/D approach, on the other hand, alleviates this difficulty by
decomposing the MOP into a set of SOO subproblems, which are solved using
SOO techniques and neighbourhood information. To do that, each sub-problem
is usually associated with a weight vector, which can be usedas a measure of
its solution’s objective preference and its position in theobjective space. Meta-
Lamarckian learning can therefore be used to learn the effect of each LS during
the evolution and choose the most appropriate LS to locally optimize a solution
along the direction of the preferred objective of each subproblem.

The authors in [43] tackled a continuous MOP by using a multi-objective
evolutionary algorithm hybridized with a Lamarckian learning strategy, coined
Multi-Objective Lamarckian Immune Algorithm (MLIA) for improving the Non-
dominated Neighbor Immune Algorithm (NNIA). The Lamarckian learning per-
forms a greedy search so as to generate improved decision vectors around non-
dominated individuals in less crowded regions of the current Pareto Front (PF).
The Powell’s conjugate direction method is then adopted forlocally searching the
continuous objective space of the considered MOPs. Here it is important to note
that although the focus of this study is on discrete MOPs, theproposed approach
could also be applied on continuous MOPs [44], such as the well-known ZDT and
DLZT, by adopting a pool of LS heuristics suitable for searching a continuous
objective space. This, however, is out of the scope of this paper.

A hybrid Multi-Objective Particle Swarm Optimization (MOPSO) with Simu-
lated Annealing is proposed in [14] for tackling a multi-objective permutation flow
shop scheduling problem. A ranked-order value (ROV) rule based on a random
key technique is employed to convert the continuous position values of particles
to job permutations. A problem-specific LS based on the NEH-heuristic is first
applied to good solutions with a specified probabilitypls = 0.1 to enhance the
exploitation ability. To enrich the searching behavior andto avoid premature con-
vergence, a LS based on Simulated Annealing, with multiple different possible
neighborhoods (SWAP, INSERT, and INVERSE) is then applied with a specified
probabilitypSA = 0.05. An adaptive Meta-Lamarckian learning strategy is em-

8
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ployed in order to decide which neighborhood will be used each time. MOPSO is
evaluated on various instances of the permutation flow shop scheduling problem
and compares favourably against MOGLS [7, 30].

We remark that the main differences between our research work and the work
in [14] are: (i) for the construction of the MOPSO, problem-specific knowledge is
considered that may affect its generalizability in other multi-objective combinato-
rial optimization problems; (ii) the actual effect of the Meta-Lamarckian learning
strategy is not shown in any of their experimental series (e.g., comparison of the
proposed algorithm with and without Meta-Lamarckian learning and/or replacing
the ML strategy with random selection strategy) and (iii) our decompositional-
based MOEA is able to adaptively learn the effectiveness of each LS and select
the best performing LS at different areas of the objective space, during the evolu-
tion.

3. Problem Definition

In this section, we outline the adopted system model from [12] and then formu-
late the MO-MSNS problem. A table of respective symbols is shown in Table 1.

3.1. System Model

Overview
Let C, denote a social networking service that maintains centrally a list of its

M subscribed usersU and their corresponding profilesP that record basic user
details, authentication credentials, interests and friendship relations which can be
used to define the conceptual social network graphG among theM users. In our
setting, a userua uses a smartphone device to capture objectsoak of interest at
arbitrary moments.

Energy and Data Rate Model
We assume that whenui is connected toC, thenC is aware ofui’s absolute and

relative location. Eachui features different Internet connection modalities that
provide intermittent connectivity toC (e.g., WiFi, 2G/3G/4G), as well as peer-to-
peer connection modalities that provide connectivity to nodes in spatial proximity
(e.g., Bluetooth, Portable WiFi or NFC) [45]. Note that, each of the connection
modalities comes at different energy and data transfer ratecharacteristics. For
example, uploading or downloading large data items using Bluetooth can be more
energy-efficient than using a radio network, but Bluetooth may not always be
available and it is often slower. For more details, please refer to Section 2.1 in [12].

9
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Social Network Search Techniques
Let an arbitrary userui, be interested in answering a query2 Q over its social

neighbourhoodG ′ (i.e., nodes inG connected toui either directly or through in-
termediate nodes). For instance, letQ be a depth-bounded Breadth First Search
query overui’s neighbours in the graphG ′ ⊆ G. This kind of conceptual query
can be realized either in (i) central, or (ii) distributed manner.

In (i), the multimedia objectsoak and tags are all uploaded toC prior to query
execution. OnceQ is posted,C can locally derive the answers (using its local tag
database) and return the answers toui. This model, currently utilized by all social
networking sites (such as Twitter, Youtube, etc.), performs well in terms of query
response time but performs poorly both in terms of data disclosure (i.e., objects
oak and tags need to be continuously disclosed toC) and performance (i.e., data
transmission of large objects over radio links is both energy demanding and time
consuming.)

In (ii), the objects and tags are all stored in-situ (on theirowner’s smartphone).
In order to realize the search task, a querying nodeui downloads fromC the
addresses (e.g., IP:PORT address) of its first line neighbouring nodes inG ′. User
ui then contacts these nodes in order to conduct a depth-bounded Breadth First-
Search in a P2P fashion (i.e., using a pre-specified Query Time-To-LiveQTTL >
0). Once some arbitrary nodeuj ∈ G ′ receivesQ, it both looks at its local tags, in
order to identify an answer and also forwards the request further untilQTTL = 0.
The distributed approach improves the data-disclosure drawback of the central
approach, but it is quite inefficient during search becauseQ has to go over a
random neighbourhood rather than a neighbourhood that is contextually related to
the query.

The search method adopted in this paper, aims at utilizing the advantages of
both search approaches (i) and (ii) outlined above. The multimedia objects are
kept in-situ for preserving privacy and facilitate location-awareness and the users
only upload their profiles toC, which will be responsible to derive and forward to
the query userui, a Query Routing TreeX with the addresses of the contextually
related users of the network along with the connection modality that each user
should be contacted. Then the query user will conduct a depth-bounded Breadth
First-Search in a P2P fashion to retrieve the data.

2Without loss of generality we assume simple Boolean keywordqueries over tags.

10
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Table 1: Table of Symbols
Symbol Description

C Centralized Social Networking Service
U Users{u1, u2, ..., uM} of the Social Mobile Network
P Profiles{p1, p2, ..., pM} of users inU stored byC.
oak Objectk (images, videos, etc.) recorded by usera.
G Conceptual Social Network Graph connecting users inU .
G ′ Social neighbourhood of some arbitrary user (G ′ ⊆ G).
Q Query conducted inG ′.
X Query Routing Tree (solution or individual) constructed

to answer queryQ (X ⊆ G ′).
U ′ Active users (nodes ofG ′) connected toC during execution ofQ.

3.2. Problem Formulation

TheMulti-Objective Mobile Social Network Search(MO-MSNS) problem fo-
cuses on improving the search operation of a smartphone userby optimizing the
neighbour selection process. More precisely, given queryQ, a node aims to down-
load fromC an optimizedQuery Routing Tree (QRT)X, which minimizes the to-
tal Energy consumption and maximizes the Recall rate, according to the following
formulation:
Given a social network of users, a queryQ posted by an arbitrary user, a list of
active usersU ′, their coordinates and their profilesP, define:

• The totalEnergy consumption ofX

Energy(X) =
∑

(ua,ub)∈X

e(ua, ub), (3)

wheree(ua, ub) denotes the energy consumption for transmitting one byte
of data over the respective edge (WiFi, Bluetooth and 3G) using the energy
profiling of the devices according to the energy model.

• Recall rate ofX

Recall(X,Q) =
Relevant(Q) ∩Retrieved(X,Q)

Relevant(Q)
(4)

11
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where
Relevant(Q) =

⋃

ua∈U ′

⋃

k

oak,

denotes the set of all objectsoak from active usersua that are relevant toQ,
that is, the profilepa of userua contains terms found inQ and

Retrieved(X,Q) =
⋃

ua∈X

⋃

k

oak,

denotes the actual set of objectsoak from active usersua that have been
retrieved in response toQ overX, andpa contains terms found inQ.

The query processor then aims to:

minimize F (X) = (f1(X), f2(X)), subject toX ⊆ G ′, (5)

with objective functions

f1 = Energy(X), f2 = −Recall(X,Q), (6)

defined above in Equations 3 and 4, respectively.

4. Proposed Approach

This section details the proposed MOEA/D with Meta-Lamarckian Learning
approach, named MOEA/D-ML.

4.1. MOEA/D framework
The MOEA/D-ML builds upon the decompositional generic MOEA/D frame-

work proposed by Zhang and Li in [13], which requires the following pre-processing
steps:

Decomposition: Initially, the MO-MSNS is decomposed into a number of scalar
subproblems using the Tchebycheff approach with a set of uniformly distributed
weight vectors as follows. Given the objective vectorF (X) = (f1(X), f2(X)),
a weight vectorλi, which remains fixed for each subproblem for the whole evo-
lution [46] and a reference pointz∗ = (z1, z2), which is a vector with all the best
valueszk found so far for each objectivefk, the objective function of a subproblem
i is stated as:

g(X|λi, z∗) =
2

∑

k=1

{λi
k|fk(X)− zk|}. (7)
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Assuming that there areN weight vectorsλ1, . . . , λN then the original MOP is
decomposed toN scalar subproblems.

Representation:Each scalar subproblem with an objective functiong(X|λi, z∗),
i = 1, . . . , N has a representative solutionX that is the best solution found so far
for that particular subproblem during the evolution. The set of all representative
solutions at each generation is called the Internal Population (IP ), where theIP
is equal to|IP | = N . In MO-MSNS problem, a solution3 X is a QRT of fixed-
size|G ′|, i.e., the active smartphone users that can participate in the resolution of
Q. Therefore without loss of generality, letX be a fixed-size vector in which each
indexa corresponds to a userua and the value of that index corresponds toua’s
parent. The root of the tree is the query user (for simplicitynoted asu1). A nega-
tive value−1 in any position indicates that the given user is not currently selected
in the query routing treeX.

Subpopulations/Neighbourhoods:Moreover,N subpopulations (or neighbour-
hoods) are generated for each subproblem. The neighbourhood Bi of a subprob-
lem associated with a weight vectorλi is composed of the indexes of the sub-
problems whose associated weight vectors are theT << N closest (in terms of
Euclidean distance) toλi including itself. This is due to the argument of Zhang
and Li in [13] that the optimal solutions of theith andjth subproblems are close
to each other in the search space iff theλi andλj are close to each other in the
weight space. Therefore, the genetic information of theith subproblem should be
helpful for solving thejth subproblem and vice-versa.

At each generationgen, the populationIP is evolved by generating a new solu-
tion for each subproblem. For theith subproblem withg(X|λi, z∗) a new solution
Y , known as offspring, is generated using the genetic operators (i.e., crossover
and/or mutation). Then a solutionZ is generated by locally optimizing solu-
tion Y using a local search heuristic. The local search heuristic is adaptively
selected from a pool of local search heuristics of sizeL using a reward vector
Ri = (r1, . . . , rL), assigned to each subproblemi, which is constructed and up-
dated at each generation by a Meta-Lamarckian (ML) learningapproach. Finally,
solutionZ is used for the following updates. (1)Z is selected as the new rep-
resentative of theith subproblem and therefore replaces the current best solution

3The terms“solution” , “individual” , “vector” and“QRT” are used interchangeably.
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X, iff g(Z|λi, z∗) < g(X|λi, z∗)4. (2) For eachj = 1, . . . , n, update the ref-
erence point, ifzj < fj(Z) then setzj = fj(Z). (3) Update the set of non-
dominated solutions (i.e., Pareto Front - PF) found so far during the evolution as
follows, PF = PF ∪ {Z} if Z is not dominated by any solutionX ∈ PF , and
PF = PF \ {X} if Z ≺ X, for all X ∈ PF . (4) Update the neighbourhoodBi

of theith subproblem: the new solutionZ of theith subproblem is compared with
all representative solutionsX in the neighbourhoodBi = {i1, . . . , iT}. Z updates
X iff g(Z|λj, z∗) < g(X|λj, z∗), for all j ∈ {i1, . . . , iT}. The same process is
followed for allN subproblems. The evolution stops after a termination criterion
is satisfied, such as a maximum number of generationsgenm is reached, or the
PF has not converged after a fixed number of consecutive generationsgenc.

4.2. MOEA/D-ML main steps

The detailed steps ofMOEA/D-ML are presented below:

Input:
• a MO-MSNS problem instance (see Subsection 3.2);

• a termination criterion (genm);

• the number of decomposed subproblemsN and thus weight vectors{λ1, . . . , λN}.

• the pool of local search heuristics of sizeL.

• the size of the neighbourhoodT of each subproblem.

Output: a set of non-dominated solutionsPF .

Step 1: Initialization

1.1 SetPF = ∅;

1.2 Decompose the MO-MSNS problem intoN scalar subproblems;

1.3 InitializeIP = {X1, . . . , XN} corresponding to subproblem with weight
vectorsλ1, . . . , λN respectively, and evaluate it using Eq. (7);

1.4 Compute the Euclidean distance between each pair of the weight vectors to
construct the neighbourhoodBi = {i1, . . . , iT} for each subproblemi, so
thatλi

1, . . . , λ
i
T are theT closest weight vectors toλi (includingλi itself);

4g(Z|λi, z∗) > g(X |λi, z∗) for maximization subproblems
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1.5 SetRi = (ri1, . . . , r
i
L) = 0, wherei = 1, . . . , N ;

Step 2: Main Loop

2.1 Setgen = 1;

2.2 Genetic Operation: For theith subproblem generate a new solutionY i us-
ing conventional genetic operators (i.e., Selection, Crossover and Mutation
as in [13]). In particular, two parent solutions are randomly selected from
the neighbourhoodBi of the ith subproblem. The two parent solutions are
recombined using a two-point crossover to produce a new solution - the off-
spring - with a probabilityrc. The offspring is then modified with a random
mutation operator with a probabilityrm. Finally, evaluate the new solution
Y i using Eq. (7).

2.3 Meta-Lamarckian Learning: Then select a local search heuristic from the
pool of local search heuristics using a Meta-Lamarckian learning approach
and the reward vectorRi. Apply the selected local search toY i to generate
Z i and evaluate it using Eq. (7). Calculate the rewardrj of the selected
local search heuristicj ∈ {1, . . . , L} using a reward function that measures
the improvement contributed byj to generateZ i with respect toX i andY i.
Update the reward vectorRi = (r1, . . . , rL), accordingly.

Step 3: Update: Use solutionZ i to updatez∗, IP , PF andBi. If i < N then
i = i+ 1 and goto Step 2.2;

Step 4: Termination: If the termination criteriongen = genm is satisfied then
terminate the algorithm and output thePF , otherwise goto Step 2.1;

4.3. Definition of Reward Function

During the Meta-Lamarckian learning in Step 2.3 areward(ranging from 0 to
1) is calculated to measure the improvement contributed by alocal search heuristic
when applied toY to generate a new solutionZ, recalling that solutionX is
the best solution found so far during the evolution for subproblem i, using the
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following rules:

r =











































1 (a) if g(Z) < g(X) < g(Y )

g(Y )−g(Z)
g(X)−g(Z)

(b) if g(Z) < g(Y ) ≤ g(X)

g(Y )−g(Z)
g(Y )−g(X)

(c) if g(X) ≤ g(Z) < g(Y )

0 (d) otherwise

(8)

whereg(X), g(Y ) andg(Z) correspond tog(X|λi, z∗), g(Y |λi, z∗) andg(Z|λi, z∗),
respectively. The proposed reward function and rules reflect to the actual contribu-
tion of the local search approach in the scalar objective function space by taking
into consideration the actual replacement ofg(Z) towards the optimal solution
with respect tog(X) andg(Y ) as follows:

• Rule (a) rewards the local search heuristic with the maximumpossible value
(i.e., 1), since it generates a solutionZ that is better than the current best
solutionX even if the genetic operation generated a poorest offspringY
thanX.

• Rule (b) rewards the local search heuristic with a possibly moderate value,
since it generates a solutionZ that is the same or better than the current best
X but the improvement builds upon the already improved solutionY that is
generated by the genetic operation.

• Rule (c) rewards the local search heuristic with a possibly moderate value,
as it generates a solutionZ that is better thanY , but at most as good asX.

• In Rule (d) the local search has not been rewarded since no improvement is
observed. Note thatg(Z|λi, z∗) = g(Y |λi, z∗) in the worst case.

4.4. Pool of general Local Search (LS) heuristics

In order to maintain the robustness and generalizability ofour proposition as
well as to promote the adaptiveness and contribution of our learning strategy that
follows, we decided to use six general local search heuristics, which have been
frequently used on permutation or sequencing problems [47]in the past:

• Swap Heuristic (Sw): randomly selects and swaps the parent nodes of two
users{ui, uj} ∈ Y .
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• Double Swap(DSw): performs the random swap heuristic twice.

• Copy Heuristic (CH): randomly selects the parent node of a userui and
copies it to another useruj.

• Shift Heuristic (Sh): randomly chooses to perform either a backward shift
or a forward shift. A backward shift randomly selects a parent node from its
current position of userui and inserts it at a position before a useruj, where
i > j. A forward shift is similar to backward shift, but it selectsa parent
node from its current position of userui and inserts it at a position after a
customeruj, wherei < j.

• Double Shift (DSh): is the combination of Backward and Forward Shift.

• Inverse (IH): is the selection of a portion ofY i and reversing its order.

In all cases, the local search approaches are used greedily.That is, the local
search starts from solutionY i and continues for a pre-defined numberI of iter-
ations. Each time an improvement is achieved and an improvedsolutionZ i is
obtained, the search continues from the improved solutionZ i for the remaining
moves, otherwise the search continues from the originalY i solution. Note that
moves that lead to infeasibility such as disconnecting the tree or forming cycles
are not allowed during local search.

In [47], Reeves has mentioned some interesting relationships on local search
operators for SOO. For example, one can say that Swap is the weakest from all
these operators and an optimal solution with respect to any other operator is also
optimal for Swap heuristic. In that sense, Swap is subsumed by all other operators
in the pool of local search approaches. Similarly, Forward and Backward Shifts
are subsumed by Double Shift, which should theoretically produce better solutions
given that its search space is twice as large. One can say thatthis is also true for
the Inverse heuristic, in which the Copy heuristic is subsumed. However, in this
article the type of questions that are considered interesting and challenging for
investigation are: (i) whether one operator of the same sizeoutperforms another
in all test instances and all objectives; considering the fact that different operators
induce different landscapes and that the combination of these operators in different
times of the evolution may perform better and faster; (ii) whether there is a bias of
different operators in different areas of the objective space, for dissimilar classes
of MO-MSNS instances and if this bias can be learned during the evolution.
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Figure 1: The adaptive search heuristics.

4.5. Proposed Learning Strategy

The idea behind the adaptive strategy for Meta-Lamarckian learning in the
proposed decompositional MOEA aims at providing insights to those questions
by learning the effectiveness of each local search heuristic in dealing with the
current objectives, problem instances and problem area as the search progresses.

At the beginning of the evolution and for a predefined number of generations
gt each single local search heuristic is given the opportunityto hybridize with the
MOEA for locally optimizing the solutionY i of each subproblemi. The reward
of each local search is calculated using Equation 8. Those initial reward values
will be used later to guide future LS choices and will change dynamically as the
overall search progresses. This is commonly known as the training stage, after
which the learning phase takes over, using the proposedǫ-greedy strategy, which
probabilistically alternates between the following two learning strategies.

TheGreedy Neighbourhood-based(GN) strategy works as follows:

Step 1: Locate the neighbourhoodBi of sizeT of a subproblemi.

Step 2: Find the average reward valueRi = (r1, . . . , rL) in the neighbour-
hoodBi.

Step 3: Select local searchj with the maximum average reward valuerj.

For each parent solutionX in the population to be searched, the GN strategy
locates itsT closest neighbours from the archived database by using simple Eu-
clidean measures. Note that each neighbour solutionY is associated with a pool
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of LS strategies and their current rewards achieved so far. Then the average re-
ward of each LS from the pool of LS approaches is measured. Finally, the LS
with the highest average reward in the neighbourhood is usedto improve the par-
ent solutionX. After LS, theX and the reward of the selected LS are updated in
the database.

TheStochastic Roulette-wheel(SR) strategy works as follows:

Step 1: Sum the reward valuesrj ∈ Ri of all local search approaches for
subproblemi.

Step 2:Determine normalized relative reward value of each member of Ri.

Step 3: Assign space on the roulette wheel for each local search based on
the normalized value.

Step 4: Generate a random number between 0 and 1, select the local search
corresponding to the portion of the wheel in which the chosenrandom num-
ber falls.

The SR strategy ensures that the probability that a LS approach is selected is
biased from its own previous performance, which changes dynamically as the
overall search progresses. In particular, each time a parent solutionX is about to
be locally searched, a biased roulette wheel is used to pick up the subsequent LS,
based on the rewards taken and archived over all previous LSs. The highest a LS’s
reward for particularX, the highest the probability to be selected for future local
searches. This strategy, ensures diversity in the choice ofLS approaches since it
restricts a LS from completely dominating the search.

Finally, the proposedǫ-greedy strategy, which is based on a pre-defined0 <
ǫ < 1 parameter, generates a random numberrand between 0 and 1 and selects
the Stochastic Roulette-wheel strategy ifrand < ǫ or the Greedy Neighbourhood-
based strategy otherwise. Each time a local search approachj is adaptively se-
lected and used onY i to generate a solutionZ i, the reward value ofrj ∈ Ri is
updated using Equation 8.

The ǫ-greedy strategy promotes both cooperation and competition. It pro-
motes competition by giving the opportunity of a LS that performs better along
the direction of one objective and within a particular neighbourhood of a par-
ticular problem and/or a particular instance of the problem, to be rewarded with
greater chances of being selected for subsequent optimizations during the evo-
lution. It promotes cooperation by allowing the solutions of subproblems to ex-
change neighbourhood information, not only about the genotype and fitness of

19



Page 21 of 56

Acc
ep

te
d 

M
an

us
cr

ip
t

the individuals as in the conventional MOEA/D, but also about the performance
of each LS on a particular subproblemi and its neighbourhoodBi.

5. Experimental Studies

In this section, we introduce the experimental setup followed in our experi-
mental studies. First we discuss the real data sets utilizedto design our synthetic
data sets and test instances on the MO-MSNS problem. We then describe the
various methods that are compared with our proposed MOEA/D-ML and their
parameter settings, as well as, the performance metrics utilized to evaluate the
algorithms’ performance. In order to evaluate the efficacy of incorporating the
Meta-Lamarckian (ML) learning approach in MOEA/D seven experimental series
are developed. We then compare the proposed approach with the state-of-the-art
in MOEAs based on Pareto-Dominance, the Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II) [6]. Finally, we test the generalizability of the proposed
method on eight test instances of the well-known Multi-Objective Permutation
Flow Shop Scheduling Problem (PFSSP). We introduce three experimental series
in order to compare its performance against the Multi-Objective Genetic Local
Search (MOGLS) approach and other MOEA/D variants. Statistical and sensitiv-
ity analyses are also provided in order to support the evaluation results.

5.1. Experimental Setup for MO-MSNS

In our experimental studies, we examined a mobile social scenario that is de-
rived from the following two real datasets as in [12]:

GeoLife[15] (mobility): This real dataset by Microsoft Research Asia includes
1,100 trajectories of a human moving in the city of Beijing over a life span of two
years (2007-2009). The average length of each trajectory is190, 110 points, while
the maximum trajectory length is 699,600 points. Notice that 95% of the GeoLife
dataset refers to a granularity of 1 sample every 2-5 secondsor every 5-10 meters.

DBLP [16] (social): This real dataset by the DBLP Computer Science Bibliogra-
phy website, includes over 1.4 million publications in XML format. In particular,
the dataset records the paper titles, paper urls, co-authors, links between papers
and authors and other useful semantics. In order to map this dataset to our prob-
lem, we assume that each object is an author’s paper. We also assume that each
object is “tagged” by the keywords found in the paper title.

In order to link the above datasets we have constructed a mobile social scenario
that uses the DBLP social dataset and GeoLife mobility dataset. The DBLP
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dataset is used to construct a social graphG of authors that are related based on
their research interests (i.e., keywords of their articles’ titles) as well as their co-
authorships that are attributes of the DBLP dataset. Then wehave mapped each
DBLP author to a trajectory of the Geolife dataset. That is, we have extracted
1,100 authors from the DBLP dataset and we have mapped them tothe 1,100 tra-
jectories of the Geolife dataset using a 1-1 correspondence. This resulted in a
social graph with 1,100 mobile DBLP authors moving in the city of Beijing.

In our experiments, we utilize the following two queries:

-- Query 1
SELECT S.title, S.url
FROM SmartphoneUsers S, Query Q
WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)

AND S.Title LIKE ’%optimization%’;

-- Query 2
SELECT S.title, S.url
FROM SmartphoneUsers S, Query Q
WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)

AND S.Title LIKE ’%data%’;

where “S.x,S.y” represent the (x, y) coordinates of a Smartphone user inS and
“Q.x,Q.y” represent the (x, y) coordinates of the query user. The query search
will be conducted within an area of radius10 KM.

Table 2: Experimental Execution Scenarios and Test Instances for MO-MSNS.

Test Instance Keyword Query Q Time Active UsersU ′ Total Objects Relevant Objects

T1 Query1 1:48:4[0-9] am 95 8884 183
T2 Query2 1:48:4[0-9] am 95 8884 657
T3 Query1 11:34:3% am 121 10691 201
T4 Query2 11:34:3% am 121 10691 859
T5 Query1 17:34:[1-5]% pm 139 12316 231
T6 Query2 17:34:[1-5]% pm 139 12316 1004
T7 Query1 20:[2-3]4:3% pm 165 14630 254
T8 Query2 20:[2-3]4:3% pm 165 14630 1162

In our experimental studies, we have examined eight test instances as sum-
marized in Table 2, denoted asT and designed using the popular Factorial design
process [48], which represent mobile social scenarios of various time periods (e.g.,
1:48:4[0-9] corresponds to a network snapshot of 10 secondsat 1:48 am), in or-
der to capture different mobility patterns that are inherent in the GeoLife dataset
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with different number of active users and for different queries in order to vary the
number of relevant objects.

5.2. MO-MSNS Algorithms: MOEA/D-ML, NSGA-II and other MOEA/D-variants

The hybridization of the conventional MOEA/D with a single LS heuristic that
is used throughout the search is coined Individualistic MOEA/D (note that this hy-
bridization is an optional step for the conventional MOEA/Dframework [13]). In
this paper, six different Individualistic MOEA/D approaches are designed, i.e.,
MOEA/D-Sw, MOEA/D-CH, MOEA/D-DSw, MOEA/D-Sh, MOEA/D-DShand
MOEA/D-IH, by hybridizing MOEA/D with swap, copy, double swap, shift, dou-
ble shift and inverse heuristics, respectively.

The idea of allowing the competition and cooperation among different LSs [49]
has given rise to the so-called adaptive strategies with Meta-Lamarckian learning.
The MOEA/D combined with the most basic Meta-Lamarckian learning scheme
which selects LSs with a simple Random Walk (RW) over the available meth-
ods is denoted as MOEA/D-RW. This method does not adapt but atleast it gives
the opportunity to every LS approach to locally improve a solution. Finally in
this paper, three decompositional MOEAs with different Meta-Lamarckian learn-
ing strategies are designed. That is, (i) MOEA/D-SR that uses the Stochastic
Roulette-wheel approach as its learning strategy, (ii) theMOEA/D-GN that uses
the Greedy Neighbourhood-based strategy throughout the evolution and (iii) the
proposed MOEA/D-ML with theǫ-greedy strategy. For ease of reference, the
abbreviations of all MOEA/D variants used in the experimental series are summa-
rized in Table 3.

Finally, the proposed MOEA/D-ML is compared with the state-of-the-art in
MOEAs based on Pareto-dominance NSGA-II. NSGA-II maintains a population
IP of sizeN at each generationgen, for genm generations. NSGA-II adopts the
same evolutionary operators (i.e. selection, crossover and mutation) for offspring
reproduction as MOEA/D. The key characteristic of NSGA-II is that it uses a
fast non-dominated sorting and a crowded distance estimation for comparing the
quality of different solutions during selection and to update theIP and thePF .
We refer interested readers to [6] for details.

5.3. Performance Metrics

The performance of a MOEA is often evaluated from two perspectives. That
is, the obtained non-dominated set should be (i) as close to the true Pareto Front as
possible and mainly corresponds to the convergence (or quality) of the obtained
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Table 3: Abbreviations of MOEA/D variants used in the experimental series

Notation Description

MOEA/D Conventional MOEA based on Decomposition [13].
MOEA/D-Sw Individualistic MOEA/D hybridized with Swap Heuristic.
MOEA/D-DSw Individualistic MOEA/D hybridized with Double-swap Heuristic.
MOEA/D-CH Individualistic MOEA/D hybridized with Copy Heuristic.
MOEA/D-Sh Individualistic MOEA/D hybridized with Shift Heuristic.
MOEA/D-DSh Individualistic MOEA/D hybridized with Double-shift Heuristic.
MOEA/D-IH Individualistic MOEA/D hybridized with Inverse Heuristic.
MOEA/D-RW MOEA/D with the Random Walk learning strategy.
MOEA/D-SR MOEA/D with the Stochastic Roulette-wheel learning strategy.
MOEA/D-GN MOEA/D with the Greedy Neighbourhood-based learning strategy.
MOEA/D-ML Proposed MOEA/D with theǫ-greedy learning strategy.

solutions, and (ii) distributed as diversely and uniformlyas possible. In the lit-
erature, there is no single metric that can reflect both of these aspects and thus a
number of metrics are often used [50, 6, 11, 7, 51]. In this study, we have used the
following four metrics:

• Coverage (C): commonly used for comparing two sets of non-dominated
solutionsA andB, originally proposed by Zitzler and L. Thiele in [52]. The
C(A,B) metric, which is often considered as a MOEA quality metric, cal-
culates the ratio of the non-dominated solutions inB dominated by the non-
dominated solutions inA, divided by the total number of non-dominated
solutions inB. Hence,

C(A,B) =
|{x ∈ B|∃y ∈ A : y ≺ x}|

|B|
.

Therefore,C(A,B) = 1 means that all non-dominated solutions inB are
dominated by the non-dominated solutions inA. Note thatC(A,B) 6=
1− C(B,A).

• Distance from reference set (ID): defined by Czyzzak et al. in [53] as
follows:

ID(A) =

∑

y∈R{minx∈A{d(x, y)}}

|R|
.
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This shows the average distance from a solution in the reference setR to the
closest solution inA. The smaller the value ofID is then the closer the set
A is toR indicating better convergence. In the absence of the real reference
set (i.e., PF) in MO-MSNS the average distance of each singlepoint to the
nadir point is used.

• Hypervolume (IH): originally proposed by Zitzler et al. in [27] indicating
the area dominated by at least one solution in the obtained non-dominated
setA. Therefore highIH indicates better diversity. The metric is formally
defined as

IH(A) =

∫

z∈∪x∈A

. . .

∫

HV (f(x),f∗)

1.dz,

whereHV (f(x), f ∗) = [f1(x), f
∗
1 ] × . . . × [fm(x), f

∗
m] is the Cartesian

product of the closed intervals[fi(x), f ∗
i ], i = 1, . . . , m. Since we consider

minimization objectives the reference pointf ∗ = (f ∗
1 , . . . , f

∗
m) is the ideal

worst point, i.e.,f ∗
i = maxx∈Ωfi(x), ∀i = 1, . . . , m.

• Number of Non-Dominated Solutions (NDS): a straightforward metric
proposed by Weicker et al. in [51] that is usually consideredin cases of
real-life discrete optimization problems such as the MO-MSNS showing
the cardinality or the number of Non-Dominated Solutions inset A, i.e.

NDS(A) = |A|.

In these cases, it is more desirable to obtain a high number ofNDS(A)
in order to provide an adequate number of Pareto optimal choices. In con-
trast, and usually in cases of continuous optimization [13], a high number of
NDS is not desirable, since the decision making procedure becomes more
complicated and more time consuming. However, theNDS should be con-
sidered in combination with other metrics (e.g.∆ andC metrics), since it
is usually desirable to have a high number ofNDS when the solutions is
of high quality (i.e. lowC-metric) and spread (i.e. low∆-metric) in the
objective space.

5.4. Experimental Layout and Algorithmic Settings for MO-MSNS

In the experimental studies on the MO-MSNS problem that follow, several
decompositional MOEAs have been examined and compared withthe proposed
MOEA/D-ML approach:
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• Experimental series 1examines the effect of each LS on the MOEA/D
individualistically. The conventional MOEA/D approach asproposed by
Zhang and Li in [13] is compared with the six individualisticMOEA/D
variants defined above (i.e., MOEA/D-Sw, MOEA/D-DSw, MOEA/D-CH,
MOEA/D-Sh, MOEA/D-DSh and MOEA/D-IH).

• Experimental series 2compares MOEA/D-ML and the two best perform-
ing Individualistic MOEA/Ds of Experimental series 1.

• Experimental series 3compares MOEA/D-ML and the MOEA/D-RW vari-
ant that uniformly randomly selects a local search heuristic from the pool
of generalized local search heuristics.

• Experimental series 4compares three MOEA/Ds combined with differ-
ent adaptive learning strategies: i) MOEA/D-SR with Stochastic Roulette-
wheel , ii) MOEA/D-GN with Greedy Neighbourhood-based learning, and
iii) MOEA/D-ML with ǫ-greedy learning strategy.

• Experimental series 5compares MOEA/D-ML and NSGA-II.

• Experimental series 6provides statistical analysis on the performance of
both MOEA/D-ML and NSGA-II.

• Experimental series 7provides sensitivity analysis on the step size (num-
ber of iterations) of local search of the MOEA/D-ML.

The algorithmic parameters are set as follows: terminationcriteriagenm=250
andgenc = 25 , population size and number of subproblemsN=120, crossover
raterc=0.9, mutation raterm=0.5, neighbourhood sizeT=10, the size of the pool
of local search heuristicsL = 6, the number of iterations for each local search
is set toI = 10 and the training phase for the MOEA/D with Meta-Lamarckian
Learning approaches is set togt = 10. For the MOEA/D-ML that utilizes the
proposedǫ-greedy strategy, theǫ is set to0.8. Moreover, in all simulations the
recall and energy objectives are evaluated as in Subsection3.2. All algorithms
were coded in Java programming language and run on an Intel(R) Core(M) i5
CPU 2.4GHz Windows 7 server with 4 GB RAM. Note that in our experimental
studies we have used the same number of function evaluationsfor all methods,
for fairness, and each algorithm is executed 20 times in eachstudy. Statistical
analysis on the multiple runs is provided in the experimental studies below.

25



Page 27 of 56

Acc
ep

te
d 

M
an

us
cr

ip
t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Energy ×10-3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

T3

MOEA/D
MOEA/D-Sw
MOEA/D-CH
MOEA/D-DSw
MOEA/D-SH
MOEA/D-DSh
MOEA/D-IH

0 0.5 1 1.5 2 2.5

Energy ×10-3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

T7

MOEA/D
MOEA/D-Sw
MOEA/D-CH
MOEA/D-DSw
MOEA/D-SH
MOEA/D-DSh
MOEA/D-IH

Figure 2: Experimental Series 1 (MO-MSNS) - Comparison between conventional MOEA/D with
Individualistic MOEA/D variants on two representative test instances T3 and T7.

5.5. Experimental Results for the MO-MSNS problem
The results of the seven experimental series are presented below:

5.5.1. Experimental Series 1 (MO-MSNS) - Effect of LS on MOEA/D
In experimental series 1, we examine the effect of each LS on the MOEA/D

individualistically. The main purpose of this experiment is not just to test if the
hybridization of the MOEA/D with a single LS improves its performance, but
also to examine the behaviour of each LS on various test instances of the MO-
MSNS problem in general as well as during the evolution. Therefore, we examine
and compare the conventional MOEA/D and its six individualistic variants, i.e.,
MOEA/D-Sw, MOEA/D-CH, MOEA/D-DSw, MOEA/D-Sh, MOEA/D-DShand
MOEA/D-IH. The algorithms are evaluated on all eight test instances of Table 2
using the performance metrics of Subsection 5.3.

Figure 2 shows that the hybridization of MOEA/D with any Local Search
heuristic improves the performance of the conventional MOEA/D in terms of both
convergence and diversity. The improvement, however, achieved by some local
search heuristics such as the Copy (MOEA/D-CH), the Double Swap (MOEA/D-
DSw) and the Inverse (MOEA/D-IH) is higher than the others. For example, it
is visually possible to argue that the MOEA/D-CH provides a good convergence
and diversity in both T3 and T7. However, one can say that it does not converge
well towards the energy objective. MOEA/D-DSw and MOEA/D-IH, on the other
hand, provide a better diversity and convergence with respect to the energy ob-
jective. These are the test instances with fewer relevant objects of interest and
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Figure 3: Experimental Series 1 (MO-MSNS) - Comparison between the conventional MOEA/D
and the six Individualistic MOEA/D variants in terms of the Coverage metric C(A,B). In this
figure, the darker a square is, the closer the C(A,B) is to 1 (asillustrated by the colorbar in the
bottom-right corner of the figure) where A and B are the MOEAs depicted on the horizontal and
vertical axes, respectively. For example, the square in row1 and column 1 of T1 (in subfigure
(a)) represents the value C(M-IH,MOEA/D)=0.71 and shows that the hybrid MOEA/D with the
Inverse Heuristic (IH) outperforms the conventional MOEA/D.
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Table 4: Results of Experimental Series 1 (MO-MSNS) - Comparison between the conventional
MOEA/D and the six Individualistic MOEA/D variants in termsof the performance metricsID
andIH . The best results of each test instance are denoted in bold.

Alg: MOEA/D M-Sw M-CH M-DSw M-Sh M-DSh M-IH
TI ID IH ID IH ID IH ID IH ID IH ID IH ID IH

1: 0.2602 0.2600 0.0912 0.4980 0.0595 0.7120 0.0647 0.8450 0.0856 0.5670 0.0759 0.7370 0.0640 0.6690
2: 0.2257 0.2590 0.0769 0.5390 0.0445 0.9270 0.0660 0.7710 0.0754 0.6760 0.0584 0.7500 0.0849 0.5920
3: 0.3416 0.0710 0.0925 0.5200 0.1030 0.2620 0.0760 0.7000 0.1044 0.5170 0.0920 0.5290 0.0815 0.8160
4: 0.1477 0.3190 0.0694 0.6580 0.0421 0.8580 0.0646 0.7780 0.0990 0.5600 0.1290 0.4310 0.0667 0.6880
5: 0.1508 0.2710 0.1472 0.3490 0.0827 0.5280 0.0730 0.7590 0.1112 0.3910 0.0955 0.4740 0.0945 0.5890
6: 0.2907 0.1460 0.0819 0.7050 0.0528 0.7330 0.0672 0.7330 0.0834 0.7090 0.1190 0.4130 0.0737 0.6310
7: 0.1653 0.2900 0.1533 0.1320 0.0873 0.4380 0.0657 0.8220 0.1195 0.3340 0.0960 0.3920 0.0854 0.5010
8: 0.2283 0.1090 0.0687 0.6560 0.0536 0.8540 0.0631 0.7440 0.0780 0.5410 0.1037 0.3420 0.0834 0.5750

mean: 0.23 0.22 0.10 0.51 0.07 0.66 0.07 0.76 0.09 0.53 0.09 0.50 0.07 0.63
std: 0.07 0.09 0.03 0.19 0.02 0.23 0.00 0.05 0.02 0.12 0.02 0.15 0.01 0.09

therefore require more effort in finding the “appropriate” users to participate in
the Query Routing Tree (QRT). This is also shown by the statistical results sum-
marized in Tables 4, 5 and Figure 3. Table 4 shows a comparisonof the MOEA/D
variants in terms of the distance between the obtained PF andthe reference set
(ID) and the hypervolume (IH ). The results show that the MOEA/D-CH con-
verges closer to the reference set in five out of eight test instances (lowest value of
ID metric along rows) and provide the best diversity in three test instances (high-
est value ofIH metric along rows). Moreover, the MOEA/D-DSw obtains a better
ID in the remaining three test instances and provide a better diversity in half of
the test instances. Finally, the MOEA/D with the Inverse Heuristic (IH) provides
the best diversity in test instance T3.

Figure 3, shows a comparison between the MOEA/D variants in terms of the
C-metric. The colored squares of the subfigures represent the C(A,B) value, where
A and B are the MOEAs depicted on the vertical and horizontal axes of the sub-
figure, respectively. For example, in T1 of subfigure 3(a), the fifth row represents
all C(M-CH,B) values of the MOEA/D with the Copy Heuristic (CH) with respect
to the remaining algorithms, substituting B with the respective algorithm shown
on the x-axis from left to right. The darker a square is the closer the C-value is to
1. Therefore, examining the top row of each subfigure (a-h), the results show that
the PF obtained by the conventional MOEA/D does not dominateany of the PFs
obtained by the other MOEA/D hybrids.

In addition, the PF obtained by the MOEA/D-CH is of higher quality com-
pared to the other MOEA/Ds even if it does not converge towards the energy
objective in some test instances (see Figure 2) as it is discussed above. Therefore,
one can say that there is a preference of different LS approaches towards differ-
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Table 5: Results of Experimental Series 1 (MO-MSNS) - Comparison between the conventional
MOEA/D and the six Individualistic MOEA/D variants in termsof NDS. The best results of each
test instance are denoted in bold.

TI MOEA/D M-Sw M-CH M-DSw M-Sh M-DSh M-IH
1: 9 58 110 95 57 68 82
2: 13 63 163 94 64 97 49
3: 5 52 60 83 39 53 54
4: 30 85 156 91 53 29 84
5: 23 30 72 79 40 52 59
6: 8 63 138 64 64 40 80
7: 18 30 67 86 37 57 64
8: 16 80 110 110 77 58 62

mean: 15.25 57.63 109.5 87.75 53.88 56.75 66.75
std: 8.35 20.23 40.53 13.44 14.39 20.13 13.49

ent objective functions for the same test instances of the same problem domain.
This is the reason why the quality of the non-dominated solutions obtained by
MOEA/D-DSw and MOEA/D-IH is also higher in some cases. Finally, Table 5
summarizes the number of NDS obtained by each MOEA/D variantfor each test
instance T1-T8 of Table 2. The results show that MOEA/D-CH provides more
Pareto-Optimal choices to the Decision Maker in five out of eight test instances,
with MOEA/D-DSw having the higher NDS in the remaining three.

The conclusions drawn from experimental series 1 are summarized below:

(i) the traditional MOEA/D is outperformed by almost all MOEA/D hybrids in
almost all cases, showing that the hybridization with localsearch heuristics
improves its performance and

(ii) there is preference in the choice of the local search heuristic in different test
instances as well as for different objectives of the same test instance.

The next experimental series aims to further justify the last conclusion of ex-
perimental series 1.

5.5.2. Experimental Series 2 (MO-MSNS) - Effect of Meta-Lamarckian Learning:
comparing MOEA/D-ML and two best performing individualistic MOEA/Ds

In this experimental series, we compare our proposed MOEA/D-ML method
and the two individualistic variants MOEA/D-CH and MOEA/D-DSw that per-
formed best in experimental series 1 (that is, MOEA/D hybridised with the Copy
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Figure 4: Experimental Series 2 (MO-MSNS) - The effect of Meta-Lamarckian Learning: The
proposed MOEA/D-ML, i.e., MOEA/D with theǫ-greedy Meta-Lamarckian learning approach
is compared with MOEA/D-CH and MOEA/D-Sw, the best performing individualistic MOEAs
(hybridized with the Copy and Double-Swap heuristics, respectively) of experimental series 1.

and Double Swap Heuristics, respectively). We adopt both statistical comparison
in terms of the performance metrics introduced in Subsection 5.3, as well as visual
comparison where necessary in all test instances of Table 2.
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Table 6: Results of Experimental Series 2 (MO-MSNS) - MOEA/D-ML (i.e., the proposed
MOEA/D with theǫ-greedy learning strategy) is compared with individualistic variants MOEA/D-
CH and MOEA/D-DSw (i.e., MOEA/D’s hybridized with the Copy and Double Swap Heuristic,
respectively), that performed well in Experimental Series1, in terms of the performance metrics
ID, IH andNDS (top) and coverage metricC (bottom). The best results of each test instance are
denoted in bold.

Alg: MOEA/D-ML MOEA/D-CH MOEA/D-DSw MOEA/D-ML MOEA/D-CH MOEA/D-DSw
TI ID IH ID IH ID IH NDS NDS NDS
1: 0.0506 0.9210 0.0595 0.6640 0.0647 0.8520 150 110 95
2: 0.0436 0.8980 0.0445 0.9160 0.0660 0.7330 219 163 94
3: 0.0491 0.9000 0.1030 0.2320 0.0760 0.6280 160 60 83
4: 0.0373 0.9160 0.0421 0.8210 0.0646 0.6730 255 156 91
5: 0.0537 0.9160 0.0827 0.4630 0.0730 0.6810 149 72 79
6: 0.0485 0.8880 0.0528 0.6640 0.0672 0.6560 168 138 64
7: 0.0455 0.9270 0.0873 0.4090 0.0657 0.7840 171 67 86
8: 0.0288 0.8240 0.0536 0.8250 0.0631 0.7070 452 110 110

mean: 0.04 0.90 0.07 0.62 0.07 0.71 215.5 109.5 87.75
std: 0.01 0.03 0.02 0.24 0.00 0.07 102.49 40.53 13.44

Test Inst. C(MOEA/D-ML,MOEA/D-SR) C(MOEA/D-SR,MOEA/D-ML) C(MOEA/D-ML,MOEA/D-GN) C(MOEA/D-GN,MOEA/D-ML)
1: 0.5533 0.2000 0.8133 0.0526
2: 0.8721 0.0000 0.8447 0.0000
3: 0.4375 0.0000 0.7937 0.0000
4: 0.4510 0.4423 0.7569 0.0000
5: 0.5235 0.4028 0.8054 0.0000
6: 0.3433 0.3406 0.7619 0.0000
7: 0.4152 0.2388 0.8070 0.0116
8: 0.5752 0.5273 0.8429 0.0455

mean: 0.52 0.27 0.80 0.01
std: 0.16 0.20 0.03 0.02

MOEA/D-ML is more effective than the individualistic MOEA/D variants.
The results of Figure 4 show that the proposed approach provide better diversity
and convergence than the two best performing individualistic approaches (i.e.,
MOEA/D-CH and MOEA/D-DSw) of experimental series 1. Here itis more im-
portant to notice the adaptive behaviour of the proposed hybrid with respect to
the other two approaches. For example, considering the experimental results of
test instanceT7 (left bottom corner of Figure 4), it is evident that on the one
hand MOEA/D-CH provides high quality non-dominated solutions for the sub-
problems that favor the recall objective (i.e., upper half of the PF) and stops con-
verging when the weights start favoring the energy objective. On the other hand,
the MOEA/D-DSw provides some low-quality (compared to those of MOEA/D-
CH) non-dominated solutions in that part of the PF and converges well towards
the energy objective. The proposed MOEA/D, however, adaptively follows the
pattern of each local search heuristic where they perform well, absorbs the best
non-dominated solutions and finally provides a diverse and high quality set of
Pareto-optimal solutions. The improvement on the performance of the MOEA/D
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hybridized with an adaptive local search and a Meta-Lamarckian learning strategy
is also summarized in the statistical results of Table 6. Theresults show that the
MOEA/D-ML clearly outperforms the individualistic MOEA/Dvariants in all test
instances with respect to all metrics adopted in this article.

Table 7: Results of Experimental Series 3 (MO-MSNS) - The proposed MOEA/D-ML, i.e.,
MOEA/D with the proposed Meta-Lamarckian learning approach (ǫ-greedy) is compared with
the MOEA/D-RW Heuristic in terms of the performance metricsID, IH , NDS andC. The best
results of each test instance are denoted in bold.

Alg: MOEA/D-ML MOEA/D-RW MOEA/D-ML MOEA/D-RW C(MOEA/D-ML, C(MOEA/D-ML,
TI ID IH ID IH NDS NDS MOEA/D-RW) MOEA/D-RW)
1: 0.0479 0.913 0.0557 0.9 150 113 0.74 0.09
2: 0.04 0.89 0.049 0.794 219 98 0.78 0.06
3: 0.045 0.91 0.059 0.74 160 88 0.8 0.02
4: 0.035 0.94 0.06 0.69 255 86 0.7 0.00
5: 0.05 0.93 0.06 0.797 149 85 0.71 0.12
6: 0.044 0.88 0.047 0.80 168 118 0.8 0.05
7: 0.042 0.92 0.064 0.84 171 86 0.7 0.08
8: 0.02 0.86 0.063 0.737 452 81 0.6 0.23

mean: 0.0418 0.8986 0.0578 0.7913 215.12 94.37 0.7210 0.0812
std: 0.0081 0.0061 0.0344 0.0617 102.6846 13.9687 0.060 0.0721

5.5.3. Experimental Series 3 (MO-MSNS) - Effect of Meta-Lamarckian Learning:
comparing MOEA/D-ML and MOEA/D-RW

In this experimental series, we compare the proposed MOEA/Dwith Meta-
Lamarckian learning (ǫ-greedy strategy) and the MOEA/D with Random Walk
(MOEA/D-RW) that uniformly randomly selects a local searchheuristic from the
pool of local search heuristics. We adopt both statistical comparison in terms of
the performance metrics introduced in Subsection 5.3 as well as visual comparison
where necessary in all test instances of Table 2.

The results of Table 7 show that the proposed MOEA/D-ML (ǫ-greedy) tech-
nique provides a more diverse (i.e., highIH) Pareto Front, that is closer to the
reference set (i.e., lowID) and with more Pareto optimal solutions (i.e., high
NDS) of higher quality (i.e., highC) compared to the MOEA/D-RW variant,
in all eight test instances. In particular, MOEA/D-ML provides about20% better
ID than MOEA/D-RW on average, it approximates the reference set by around
90% compared to around80% of MOEA/D-RW and provides significantly more
Pareto Optimal solutions. Finally, the Pareto Front solutions obtained by the pro-
posed approach dominate around72% of the Pareto Front solutions obtained by
MOEA/D-RW while only around8% are dominated, on average.

Furthermore, Figure 5 visually shows the dominance of the proposed MOEA/D-
ML approach with respect to MOEA/D-RW in terms of both diversity and conver-
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Figure 5: Experimental Series 3 (MO-MSNS) - Comparison of MOEA/D-ML (with the ǫ-greedy
learning strategy) with MOEA/D-RW (that uniformly randomly selects at each hybridization step
a LS heuristic from the pool of generalized LS heuristics)

gence, in all eight test instances. Here it is important to notice that MOEA/D-RW
does not obtain Pareto-optimal solutions of low energy consumption when recall is
low (i.e., bottom-left of plots) and obtains solutions of poor energy-consumption
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Figure 6: Experimental Series 3 (MO-MSNS) - The effect of Meta-Lamarckian Learning: Com-
parison of the proposed MOEA/D-ML (with theǫ-greedy learning strategy) with MOEA/D-RW
(that uniformly randomly selects at each hybridization step a LS heuristic from the pool of gener-
alized LS heuristics) in terms of convergence of the internal population during the evolution.

when the recall is high (top-right of plots). This is due to the fact that random
walk does not search the objective space efficiently and therefore cannot obtain
solutions close to the extremes.
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Finally, Figure 6 demonstrates the convergence of the internal populations
(i.e., IP ) of the two approaches compared in this section during the evolution.
Note that for better visualization we randomly selected andpresented the results
of three test instances (i.e., T2, T6 and T8) for generationsgen = 1, 50, 250.
The results show that at the beginning, i.e.,gen = 1, Figure 6 (left), both ap-
proaches start from a similar low-quality, low-diversity population. The proposed
MOEA/D-ML approach, however, after few generations, i.e.,gen = 50, Fig-
ure 6 (center), starts improving both the diversity and quality of the obtained so-
lutions. This is due to the fact that Meta-Lamarckian learning approach requires
some iterations to start learning and adapting to the needs of each test instance
with respect to the local search selection. At the end, i.e.,gen = 250, Figure 6
(right), MOEA/D-ML provides a better approximation towards the reference set
compared to the MOEA/D-RW. Here it is important to notice that the better per-
formance of the proposed approach is both in terms of convergence and diversity.
The latter, for example for test instance T2 (top-row of Figure 6), improves ap-
proximately10% in the first 50 generations and another25% for the last 200 gen-
erations, where the MOEA/D-RW improves10% in the first 50 generations and
just12% in the last 200 generations.

5.5.4. Experimental Series 4 (MO-MSNS) - Comparison between different Meta-
Lamarckian Learning strategies

In this experimental series, we present a comparison between the decompo-
sitional MOEA with the three Meta-Lamarckian learning strategies introduced
in Subsection 5.2, namely, MOEA/D-SR (Stochastic Roulette-wheel), MOEA/D-
GN (Greedy Neighbourhood-based) and MOEA/D-ML (ǫ-greedy), in terms of the
performance metrics introduced in Subsection 5.3.

The results of Table 8 show that the proposed MOEA/D-ML approach outper-
forms both MOEA/D with Meta-Lamarckian learning variants MOEA/D-SR and
MOEA/D-GN in most cases. In particular, MOEA/D-ML providesa more diverse
(i.e., highIH) Pareto Front, that is closer to the reference set (i.e., lowID) and with
more Pareto-optimal solutions (i.e., highNDS) in six out of eight test instances.
Moreover, the PF obtained by the proposed approach is of higher quality (i.e., high
C) compared to the PF obtained by the MOEA/D-SR in six cases andthe PF ob-
tained by the MOEA/D-GN in all eight cases. Therefore, it is reasonable to argue
that theǫ-greedy collaboration between the two Meta-Lamarckian approaches in
more effective than using them individually.
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Table 8: Results of Experimental Series 4 (MO-MSNS) - The proposed MOEA/D-ML, i.e.,
MOEA/D with the proposed Meta-Lamarckian learning approach (ǫ-greedy) is compared with the
MOEA/D-SR (Stochastic Roulette-wheel) and the MOEA/D-GN (Greedy Neighbourhood-based)
approaches in terms of the performance metricsID, IH andNDS (top) and coverage metricC
(bottom). The best results of each test instance are denotedin bold.

Alg: MOEA/D-ML MOEA/D-SR MOEA/D-GN MOEA/D-ML MOEA/D-SR MOEA/D-GN
TI ID IH ID IH ID IH NDS NDS NDS
1: 0.0496 0.9430 0.0498 0.8870 0.0656 0.7430 150 147 76
2: 0.0436 0.8940 0.0404 0.9770 0.0765 0.5620 219 250 75
3: 0.0491 0.9090 0.0519 0.9280 0.0734 0.7320 160 150 75
4: 0.0373 0.9310 0.0471 0.8500 0.0906 0.5120 255 213 54
5: 0.0537 0.9260 0.0502 0.9140 0.0574 0.7840 149 167 88
6: 0.0485 0.9270 0.0566 0.7820 0.0890 0.5810 168 101 63
7: 0.0455 0.9260 0.0565 0.8740 0.0951 0.4870 171 129 53
8: 0.0288 0.8400 0.0525 0.8170 0.1118 0.2630 452 139 35

mean: 0.0445 0.912 0.0506 0.8786 0.08242 0.583 215.5 162 64.875
std: 0.0079 0.03263 0.0052 0.06257 0.0175 0.1712 102.49 47.92 16.98

Test Inst. C(MOEA/D-ML,MOEA/D-SR) C(MOEA/D-SR,MOEA/D-ML) C(MOEA/D-ML,MOEA/D-GN) C(MOEA/D-GN,MOEA/D-ML)
1: 0.4267 0.3605 0.7800 0.0395
2: 0.2466 0.5360 0.7626 0.0000
3: 0.6563 0.1667 0.8313 0.0000
4: 0.5569 0.1268 0.6745 0.0000
5: 0.1879 0.6707 0.7383 0.1023
6: 0.5774 0.2178 0.6786 0.0000
7: 0.3743 0.3643 0.6667 0.0000
8: 0.7458 0.7410 0.5398 0.0000

mean: 0.471 0.397 0.70 0.01
std: 0.196 0.23 0.089 0.036

5.5.5. Experimental Series 5 (MO-MSNS) - Comparison between MOEA/D-ML
and NSGA-II

In this experimental series, we compare the proposed MOEA/Dwith Meta-
Lamarckian learning (ǫ-greedy strategy) and NSGA-II, the state-of-the-art on Pareto-
dominance based approaches. We adopt both a statistical comparison in terms of
the performance metrics introduced in Subsection 5.3 as well as a visual compar-
ison in all test instances of Table 2.

Figure 7 visually shows the dominance of the proposed MOEA/D-ML ap-
proach with respect to NSGA-II in terms of both diversity andconvergence, in all
eight test instances. MOEA/D-ML provides a diverse set of non-dominated solu-
tions that smoothly cover the objective space where at the same time its quality
adequately approximates the extreme objective fitness values (i.e., energy = 0 and
recall = 1). On the other hand, NSGA-II in the absence of Meta-Lamarckian learn-
ing and local search obtains a PF of both poor diversity and quality. In particular,
NSGA-II finds difficulties in obtaining non-dominated solutions in the direction

36



Page 38 of 56

Acc
ep

te
d 

M
an

us
cr

ip
t

0 2 4

Energy ×10-3

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

T1

0 0.01 0.02

Energy

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

T2

0 2 4 6

Energy ×10-3

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

T3

0 0.01 0.02 0.03

Energy

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

T4

0 2 4 6

Energy ×10-3

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

T5

0 0.02 0.04

Energy

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

T6

0 0.01 0.02

Energy

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

T7

0 0.02 0.04

Energy

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

T8

MOEA/D-ML

NSGA-II

Figure 7: Experimental Series 5 (MO-MSNS) - Comparison6of MOEA/D-ML (with the ǫ-greedy
learning strategy) with NSGA-II in all test instances T1-T8of Table 2.

of the more demanding energy objective.
The results of Table 9 support the previous observations since MOEA/D-ML

6Note that a common legend for all sub-figures appears in the bottom-right box.
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Table 9: Results of Experimental Series 5 (MO-MSNS) - The proposed MOEA/D-ML is compared
with NSGA-II in terms of the performance metricsID, IH , NDS andC. The best results of each
test instance are denoted in bold.

Alg: MOEA/D-ML NSGA-II MOEA/D-ML NSGA-II C(MOEA/D-ML,NSGA-II) C(NSGA-II, MOEA/D-ML)
TI ID IH ID IH NDS NDS
1: 0.05 0.95 0.19 0.45 150 15 0.64 0.00
2: 0.04 0.94 0.18 0.43 219 15 0.61 0.00
3: 0.05 0.93 0.21 0.40 160 11 0.56 0.00
4: 0.04 0.96 0.16 0.38 255 20 0.48 0.00
5: 0.05 0.95 0.20 0.32 149 13 0.58 0.00
6: 0.04 0.93 0.21 0.40 168 10 0.56 0.00
7: 0.04 0.92 0.17 0.41 171 20 0.31 0.30
8: 0.03 0.91 0.21 0.30 452 10 0.46 0.00

mean: 0.05 0.98 0.21 0.39 215.5 13.70 0.54 0.04
std: 0.0027 0.0135 0.03 0.10 102.49 4.06 0.1046 0.00

provides better results in all four performance metrics with respect to NSGA-II. In
particular, MOEA/D-ML provides about four and three times better performance
with respect to theID andIH metrics, respectively. It also provides around 200
more non-dominated solutions, on average, and its non-dominated solutions dom-
inate54% of the non-dominated solutions obtained by NSGA-II. MOEA/D-ML
also provides a low standard deviation in most cases indicating a consistency on
its performance along different test instances in the same MOP.

Table 10: Results of Experimental Series 6 (MO-MSNS) - Statistical analysis on the best results
obtained by MOEA/D-ML (M) and NSGA-II (N) in terms of mean andstandard deviation on
the performance metricsID, IH , NDS andC in all eight test instances (T1-T8). Student t-test
is performed to evaluate the significance of the final results. Note thath=“+” indicates rejection
of the null hypothesis that the two sets are not significantlydifferent with a significance level
α = 0.05, whereh= “-” indicates the alternative.

Metric: ID(M) ID(N) IH(M) IH(N) NDS(M) NDS(N) C(M,N) C(N,M)
mean: 0.05 0.21 0.98 0.39 215.5 13.70 0.54 0.00
std: 0.0027 0.03 0.0135 0.1 102.49 4.06 0.1046 0.04

t-test (h): + + + +

5.5.6. Experimental Series 6 (MO-MSNS) - Statistical Analysis
In this experimental study, we perform statistical analysis on the results ob-

tained by MOEA/D-ML and NSGA-II on 20 runs x eight (8) test instances. In par-
ticular, the two approaches are compared with respect to their mean and standard
deviation values, as well as by using statistical hypothesis tests, i.e., theStudent’s
sample t-testand theone-way ANOVA. The t-test is carried out for comparing the
results between the two approaches and the one-way ANOVA is carried out when
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the results of multiple runs of each algorithm is compared. Each test returns anh
value on the null hypothesis that the average results are notsignificantly different
against the alternative that the average results are significantly different. Theh =
“+” indicates a rejection on the null hypothesis andh = “-” indicates a failure to
reject the null hypothesis with a given significance levelα.

Table 11: Results of Experimental Series 6 (MO-MSNS) - Statistical analysis on the results ob-
tained by MOEA/D-ML (M) and NSGA-II (N) in all 20 runs in termsof average and standard
deviation on the performance metricsID, IH , NDS andC. Moreover a one-way ANOVA is
performed in order to evaluate the robustness of the two approaches. Note thath=“+” indicates
rejection of the null hypothesis that the sets obtained during the 20 runs for each approach are not
significantly different with a significance levelα = 0.05, whereh=“-” indicates the alternative.

Metric: ID(M) ID(N) IH(M) IH(N) NDS(M) NDS(N) C(M,N) C(M,N)
T1 mean: 0.05 0.21 0.98 0.39 157.30 13.70 0.54 0.00

std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T2 mean: 0.05 0.18 0.98 0.44 159.20 16.70 0.61 0.00

std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T3 mean: 0.05 0.20 0.94 0.40 147.30 13.80 0.57 0.00

std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T4 mean: 0.05 0.18 0.95 0.36 157.90 16.20 0.54 0.00

std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T5 mean: 0.04 0.20 0.97 0.35 191.00 15.20 0.49 0.00

std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T6 mean: 0.04 0.20 0.97 0.37 184.50 15.90 0.52 0.00

std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T7 mean: 0.04 0.19 0.96 0.36 175.50 15.20 0.46 0.03

std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T8 mean: 0.04 0.19 0.96 0.34 206.30 17.50 0.46 0.00

std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00

T1-8 mean: 0.05 0.19 0.96 0.38 172.38 15.53 0.53 0.00
std: 0.0018 0.01 0.01 0.02 25.90 1.54 0.03 0.03

t-test (h) + + + +

Anova p: 0.4240 0.8180 0.1597 0.7773 0.2836 0.3690 0.3782 0.4484
Anova h: - - - - - - - -

Table 10 shows a t-test statistical analysis on the best results of each MOEA
approach for each performance metric. This test indicates arejection (h = +) of
the null hypothesis that the results obtained between the two approaches are not
significantly different. This supports our previous observations that MOEA/D-ML
significantly outperforms NSGA-II.

Table 11 shows a statistical analysis of the two approaches over 20 indepen-
dent runs on all eight test instances. The top part of the table indicates the mean
and standard deviation results for each test instance (Ti) over 20 runs, the middle
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part shows the mean and standard deviation of all 20x8=160 test instances (T1-T8)
of each performance metric for both the MOEA/D-ML and NSGA-II. The results
clearly demonstrate the superiority of MOEA/D-ML in all test instances individu-
ally as well as in all runs together with respect to all performance metrics, since it
provides better mean values and better standard deviation in almost all cases. The
bottom part of the table shows the results of the two statistical hypothesis tests
with a significance levelα = 0.05. The t-test indicates a rejection (h = +) of
the null hypothesis that the results obtained between the two approaches are not
significantly different in all eight test instances over all20 runs. The ANOVA test
demonstrates the robustness of the proposed approach alongthe 20 independent
runs, since the results show a failure to reject (h = +) the null hypothesis that
the results are not significantly different (p > α). This indicates that the pro-
posed MOEA/D-ML approach, as well as NSGA-II, consistentlyprovide similar
performance over a number of independent runs.

5.5.7. Experimental Series 7 (MO-MSNS) - Sensitivity Analysis on step size of
Local Search
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Figure 8: Experimental Series 7 (MO-MSNS) - Sensitivity Analysis: The effect of step size (iter-
ations) of local search heuristics on MOEA/D-ML approach ontest instance T3.

In this last experimental series, it is examined how the local search step-size
(i.e., the number of iterations each time a local search heuristic is selected) affects
the performance of the proposed MOEA/D-ML approach with respect to the qual-
ity and diversity of the obtained Pareto-Front as well as therequired CPU time (in
seconds) required to obtain that particular non-dominatedset of solutions over a
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fixed termination criterion (i.e., fixed maximum number of generations). Figure 8
clearly shows a trade-off between the quality and diversityof the obtained PF and
the required CPU time. The increase of the local search step-size results in a non-
linear improvement on the quality and diversity of the PF meaning that the more
iterations allowed for the local search the better the results are, but the improve-
ment decreases as the step-size increases. On the other hand, the increase on the
step-size cause a significant increase of the CPU time. Therefore, an average step-
size=10 is considered as a good choice providing both good quality and diversity
in the PF and a reasonable CPU time, at the same time.

5.6. Generalizability: Permutation Flow Shop Scheduling Problem (PFSSP)

In this subsection, we evaluate the performance of the proposed MOEA/D-
ML approach on the multi-objective Permutation Flow Shop Scheduling Problem
(PPFSP) with respect to the popular MOGLS approach proposedin [7] in order to
validate its generalizability over a well-known combinatorial MOP.

Given a permutation ofn jobs and a series ofm machines, and fori = 1, ..., n
andk = 1, ..., m, the processing timesP (i, k) of job i on machinek and the due
datesdi of job i, PFSSP can be formulated as follows: Each of thesen jobs has
to be processed sequentially from the first machine to the last, in the same order.
In other words, sequence changes are not allowed, so once thesequence of jobs
is scheduled on the first machine, this sequence remains unchanged on the other
machines. After completion on one machine a job joins the queue at the next ma-
chine, all queues are assumed to operate under the FIFO discipline. Each machine
can process at most one job at any given time, and it can not be interrupted. Ma-
chines never breakdown and are available throughout the scheduling period. Each
job is available at time zero, and can be processed by at most one machine in any
given time. The set-up times of the jobs on machines are sequence independent
and are included in processing times.

The aim is to determine a permutationπ = (π1, π2, ..., πn), i.e., a processing
order of the jobs on each machine, which minimizes the following two objectives:
i) makespanCmax(π), and ii) maximum tardinessTmax(π).

Let C(πi; k) denote the completion time of jobπi on machinek. Then the
completion times for this permutation can be recursively calculated as follows:
C(π1, 1) = P (π1, 1)
C(πi, 1) = C(πi−1, 1) + P (πi, 1), (2 ≤ i ≤ n);
C(π1, k) = C(π1, k − 1) + P (π1, k), (2 ≤ k ≤ m);
C(πi, k) = max{C(πi−1, k), C(πi, k−1)}+P (πi, k), (2 ≤ i ≤ n, 2 ≤ k ≤ m).
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The makespan (total completion time) is the time required tocomplete the last
job of permutationπ on the last machinem, defined asCmax(π) = C(πn, m).

The lateness of jobπi is defined asLπi
= C(πi, m)− dπi

and the tardiness of
jobπi is defined asTπi

= max{Lπi
, 0}. The tardiness of permutationπ is defined

asTmax(π) = max1≤i≤n{Tπi
}.

5.6.1. Experimental Setup and Algorithms for PFSSP
We evaluate the performance of MOEA/D-ML on eight benchmarktest in-

stances ofm -machine,n-job permutation flow shop scheduling problems as sum-
marized in Table 12.

Table 12: Test Instances (PFSSP) - T1-T4 refer to the test problems from Ishibuchi et. al. [7] and
T5-T8 refer to the test problems from Bin-Bin Li et. al. [14].

Test Instance # of jobs # of machines α β
T1 20 20 - -
T2 40 20 - -
T3 60 20 - -
T4 80 20 - -
T5 20 10 0.2 0.6
T6 20 10 0.2 1.2
T7 20 10 0.4 0.6
T8 20 10 0.4 1.2

The first four test instances (i.e., T1-T4) were initially defined in [7] as fol-
lows: the processing time of each job on each machine was specified as a random
integer in the interval[1, 99]. The due date of each job was specified by adding
a random integer in the interval[−100, 100] to its actual completion time in a
randomly generated schedule.

The next four test instances (i.e., T5-T8) were initially defined in [14] as fol-
lows: the processing time of each job in every machine is uniformly distributed in
interval[1, 99], whereas the due date of each job is uniformly distributed ininter-
val [Q(1 − a − (b/2)), Q(1 − a + (b/2))], where a and b represent the tardiness
factor of jobs and the dispersion range of due dates, respectively, andQ is a lower
bound of makespan estimated as:

42



Page 44 of 56

Acc
ep

te
d 

M
an

us
cr

ip
t

Q = max

{

max
i

m
∑

k=1

pi,k, max
1≤k≤m

{

n
∑

i=1

pi,k +min
i

k−1
∑

l=1

pi,l +min
i

m
∑

l=k+1

pi,l

}}

.

Then the following four scenarios about due dates are considered as in [14], where
each scenario is determined by a different combination of the values ofa andb.
In general, the due dates are more restrictive whena increases, whereas the due
dates are more diversified whenb increases.

• T5: Scenario 1) low tardiness factor (a = 0.2) and small due date range (b = 0.6);

• T6: Scenario 2) low tardiness factor (a = 0.2) and wide due date range (b = 1.2);

• T7: Scenario 3) high tardiness factor (a = 0.4) and small due date range (b = 0.6);

• T8: Scenario 4) high tardiness factor (a = 0.4) and wide due date range (b = 1.2);

We have compared the proposed MOEA/D-ML against (i) the popular MOGLS
that also does not utilize any problem-specific heuristics (e.g., NEH [14]), and (ii)
all MOEA/D variants summarized in Table 3, except the MOEA/D-CH, since the
Copy Heuristic (CH) causes infeasible solutions in the PFSSP; instead MOEA/D-
SwA (Swap Adjacent) is used. The algorithmic parameters in the following ex-
perimental studies are set as follows: termination criterion genm=1000, popula-
tion size and number of subproblemsN=500, crossover raterc=0.8, mutation rate
rm=0.2, neighbourhood sizeT=14, the size of the pool of local search heuristics
L = 6, the number of iterations for each local search is set toI = 10 and the
training phase for the MOEA/D with Meta-Lamarckian Learning approaches is
set togt = 100. For the MOEA/D-ML that utilizes the proposedǫ-greedy strat-
egy, theǫ is set to0.8. Note that in our experimental studies we have used the same
number of function evaluations for all methods, for fairness, and each algorithm
is executed 20 times in each study.

5.6.2. Experimental Series 1 (PFSSP) - MOEA/D-ML vs. MOGLS
In experimental series 1, we compare the performance of the proposed MOEA/D-

ML approach against the MOGLS in all eight test instances (i.e, T1-T4 from [7]
and T5-T8 from [14]) of Table 12 in terms of all performance metrics introduced
in Subsection 5.3.

Figure 9 shows the superiority of the proposed approach whenalso applied to
this well-known multi-objective combinatorial problem. In particular, MOEA/D-
ML provides better quality and diversity than MOGLS in all eight test distances.
The superiority of MOEA/D-ML increases as the complexity ofthe test instances
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Figure 9: Experimental Series 1 (PFSSP) - Comparison of MOEA/D-ML (with the ǫ-greedy learn-
ing strategy) with MOGLS in both the test instances T1-T4 from [7] and T5-T8 from [14].

increases. That is the performance of MOGLS, for example, intest instances T1
(the first test instance of [7] with the lowest number of jobs)and T5 (the first
test instance of [14] with the lowest values of parametersα andβ) is relatively
comparable to, but slightly worse than, MOEA/D-ML. This is more evident in the
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Table 13: Results of Experimental Series 1 (PFSSP) - The proposed MOEA/D-ML is compared
with MOGLS in terms of the performance metricsID, IH , NDS andC. Note that T1-T4 refer to
the test problems OF Ishibuchi et. al. [7] and T5-T8 refer to the test problems OF Bin-Bin Li et.
al. [14]. The best results of each test instance are denoted in bold.

Alg: MOEA/D-ML MOGLS MOEA/D-ML MOGLS C(MOEA/D-ML,MOGLS) C(MOEA/D-ML,MOGLS)
TI ID IH ID IH NDS NDS
1: 62.14 0.09 56.15 0.07 29 18 0.72 0.00
2: 115.03 0.06 224.65 0.03 30 11 0.80 0.00
3: 213.18 0.08 322.82 0.04 29 11 0.79 0.00
4: 264.99 0.06 687.43 0.02 24 5 0.58 0.00
5: 49.54 0.03 66.93 0.02 16 10 0.56 0.20
6: 69.76 0.08 82.01 0.05 27 11 0.70 0.00
7: 57.74 0.03 94.52 0.02 14 6 0.57 0.17
8: 71.17 0.08 99.65 0.06 24 12 0.79 0.00

mean: 112.94 0.063 204.27 0.038 24.12 10.5 0.688 0.046
std: 81.44 0.023 216.02 0.019 6.08 3.96 0.104 0.086

statistical results summarized in Table 13.
Table 13 shows that MOEA/D-ML outperforms MOGLS in almost all test

instances with respect to all performance metrics. In particular, MOEA/D-ML
provides two times better performance in both theID and IH metrics. It also
provides about two times more non-dominated solutions and its non-dominated
solutions dominate68% of the non-dominated solutions obtained by MOGLS, on
average. MOEA/D-ML also provides a relatively low standarddeviation in all
cases indicating a consistency at its performance along different test instances in
the well-known PFSSP.
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Figure 10: Experimental Series 2 (PFSSP) - Sensitivity Analysis: The effect of step size (itera-
tions) of local search heuristics on MOEA/D-ML approach on test instance T4.
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5.6.3. Experimental Series 2 (PFSSP) - Sensitivity Analysis on step size of Local
Search

Similarly to experimental series 7 (Subsection 5.5.7) of the MO-MSNS prob-
lem, this experimental series examines how the local searchstep-size (i.e., the
number of iterations each time a local search heuristic is selected) affects the per-
formance of the proposed MOEA/D-ML approach with respect tothe quality and
diversity of the obtained Pareto-Front as well as the required CPU time (in sec-
onds) required to obtain that particular non-dominated setof solutions over a fixed
termination criterion (i.e., fixed maximum number of generations). Figure 10
clearly shows the trade-off between the quality and diversity of the obtained PF
and the required CPU time. Once again, the increase of the local search step-size
results in a non-linear improvement on the quality and diversity of the PF in the
sake of a significant increase on the CPU time.
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Figure 11: Experimental Series 3 (PFSSP) - Effect of Meta-Lamarckian Learning: Adaptiveness
of MOEA/D-ML and comparison against all Individualistic MOEA/D variants in test instances T3
and T4.

5.6.4. Experimental Series 3 (PFSSP) - Effect of Meta-Lamarckian Learning
One of the major contributions of this research study is the demonstration

of the adaptiveness of the proposed MOEA/D-ML in learning the effectiveness of
each LS from a pool of generalized LS methods, online, and selecting the best per-
forming LS for each objective function of each problem instance of each class of
problems, during the evolution. Therefore, in this experimental series, we discuss
the effect of the proposed Meta-Lamarckian learning approach (ǫ-greedy strategy)
on the MOEA/D when applied to the PFSSP.
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Table 14: Results of Experimental Series 3 (PFSSP) - Comparison between the MOEA/D-ML
and the six Individualistic MOEA/D variants in terms of the performance metricsID andIH .
The best overall results of each test instance are denoted inbold and the best results among the
individualistic approaches are underlined.

Alg: M-ML M-Sw M-SwA M-DSw M-Sh M-DSh M-IH
TI ID IH ID IH ID IH ID IH ID IH ID IH ID IH

1: 62.14 0.09 71.34 0.09 95.51 0.07 83.46 0.07 65.01 0.09 61.93 0.10 88.80 0.07
2: 115.03 0.06 171.28 0.09 210.14 0.05 170.15 0.07 140.06 0.10 103.11 0.07 219.28 0.08
3: 213.18 0.08 348.21 0.06 445.13 0.04 271.50 0.05 260.37 0.07 253.63 0.07 387.87 0.06
4: 264.99 0.06 549.95 0.07 691.76 0.03 338.00 0.07 292.09 0.10 306.25 0.08 731.31 0.06
5: 49.54 0.03 73.48 0.03 63.00 0.03 66.48 0.02 60.74 0.03 60.78 0.04 64.66 0.02
6: 69.76 0.08 70.11 0.09 105.37 0.08 78.82 0.07 69.19 0.08 61.18 0.09 78.00 0.06
7: 57.74 0.03 59.75 0.03 87.51 0.02 65.46 0.04 73.05 0.02 75.67 0.04 83.28 0.03
8: 71.17 0.08 65.25 0.07 109.70 0.06 69.32 0.06 71.29 0.09 67.28 0.09 73.22 0.07

mean: 112.94 0.063 176.17 0.0662 226.015 0.047 142.89 0.056 128.97 0.072 123.728 0.072 215.8 0.056
std: 81.44 0.023 180.46 0.02 225.53 0.02 107.06 0.018 94.69 0.03 98.41 0.02 236.40 0.02

Figure 11 shows a visual comparison between the proposed MOEA/D-ML
with all individualistic MOEA/D variants in the most representative test instances
T3 and T4. Statistical comparison between all approaches inall test instances
follows. The results show that the best performing Individualistic approach is
the MOEA/D-DSh, which obtained better quality and diversity than all the Indi-
vidualistic approaches, overall. The makespan objective,however, shows a slight
preference on the MOEA/D-Sw approach since it provides the best objective value
in both test instances, where it provides a very poor performance on the other ob-
jective. The MOEA/D-Sh, on the other hand, provides comparable results to (but
slightly worse than) the other two approaches in both objective functions and all
test instances. The MOEA/D-ML approach adaptively learns the performance of
each Individualistic LS for each objective function and selects the best for each
case. Consequently, the proposed approach clearly outperforms all Individualistic
MOEA/D variants in terms of both diversity and quality of theobtained PF.

The above observations are also supported by the statistical results summa-
rized in Tables 14-16. The results show a comparison betweenthe proposed
MOEA/D-ML and all Individualistic MOEA/D variants in all eight test instances
with respect to performance metricsID, IH andNDS as well as a comparison be-
tween the MOEA/D-ML and the two best performing Individualistic approaches
with respect to theC-metric. MOEA/D-ML performs better in six out of eight test
instance with respect to theID metric, where the best performance in terms the
IH andNDS metrics varies between different MOEA/D variants. In termsof the
C-metric MOEA/D-ML dominates59% of the PF obtained by MOEA/D-Sh and
56% of the PF obtained by MOEA/D-DSh, on average in all test instances, where
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Table 15: Results of Experimental Series 3 (PFSSP) - Comparison between the MOEA/D-ML
and the six Individualistic MOEA/D variants in terms of NDS.The best overall results of each
test instance are denoted in bold and the best results among the individualistic approaches are
underlined.

TI M-ML M-Sw M-SwA M-DSw M-Sh M-DSh M-IH
1: 29 29 16 21 32 30 24
2: 30 26 11 27 23 33 17
3: 29 25 13 29 28 30 20
4: 24 9 12 21 18 27 7
5: 16 8 13 10 12 11 9
6: 27 22 13 22 25 29 21
7: 14 12 7 10 8 11 7
8: 24 22 15 26 25 27 17

mean: 24.13 19.13 12.50 20.75 21.38 24.75 15.25
std: 6.08 8.22 2.73 7.25 8.14 8.70 6.69

only 1% of the MOEA/D-ML’s PF is dominated by MOEA/D-Sh and only8% of
its PF is dominated by MOEA/D-DSh, on average.

Finally, Table 17 shows a comparison between the proposed MOEA/D with
Meta-Lamarckian learning (ǫ-greedy strategy), the conventional MOEA/D [13]
and the MOEA/D with Random Walk (MOEA/D-RW) that uniformly randomly
selects a local search heuristic from the pool of local search heuristics, in terms
of the performance metrics introduced in Subsection 5.3 in all test instances of
Table 12. The results demonstrate the effect of the Meta-Lamarckian learning
in improving the performance of the conventional MOEA/D andin adaptively

Table 16: Results of Experimental Series 3 (PFSSP) - Comparison between the MOEA/D-ML and
the best performing Individualistic MOEA/D variants in terms of the C-metric. The best results of
each test instance are denoted in bold.

Test Inst. C(MOEA/D-ML,MOEA/D-Sh) C(MOEA/D-Sh,MOEA/D-ML) C(MOEA/D-ML,MOEA/D-DSh) C(MOEA/D-DSh,MOEA/D-ML)
1: 0.55 0.00 0.31 0.10
2: 0.93 0.00 0.93 0.00
3: 0.97 0.00 1.00 0.00
4: 0.79 0.00 0.83 0.00
5: 0.50 0.00 0.25 0.09
6: 0.37 0.00 0.44 0.07
7: 0.29 0.00 0.29 0.27
8: 0.33 0.04 0.46 0.07

mean: 0.59 0.01 0.56 0.08
std: 0.27 0.01 0.31 0.09
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Table 17: Results of Experimental Series 3 (PFSSP) - The proposed MOEA/D-ML is compared
with the conventional MOEA/D and the MOEA/D-RW approaches in terms of the performance
metricsID, IH andNDS (top) and coverage metricC (bottom). The best results of each test
instance are denoted in bold.

Alg: MOEA/D-ML MOEA/D MOEA/D-RW MOEA/D-ML MOEA/D MOEA/D-RW
TI ID IH ID IH ID IH NDS NDS NDS
1: 62.28 0.07 79.66 0.07 63.04 0.08 29 19 29
2: 115.03 0.10 266.11 0.03 104.09 0.10 30 16 34
3: 213.18 0.16 432.96 0.04 206.09 0.13 29 17 30
4: 265.21 0.12 756.72 0.04 392.10 0.11 24 13 22
5: 49.92 0.03 78.40 0.01 57.49 0.03 16 8 14
6: 69.76 0.10 111.65 0.06 67.83 0.08 27 17 27
7: 57.74 0.03 71.90 0.03 66.28 0.03 14 13 10
8: 71.17 0.08 78.82 0.08 72.25 0.08 24 17 24

mean: 113.04 0.09 234.53 0.05 128.65 0.08 24.13 15 23.75
std: 81.44 0.04 247.04 0.02 117.20 0.04 6.08 3.51 8.19

Test Inst. C(MOEA/D-ML,MOEA/D) C(MOEA/D,MOEA/D-ML) C(MOEA/D-ML,MOEA/D-RW) C(MOEA/D-RW,MOEA/D-ML)
1: 0.83 0.00 0.14 0.17
2: 1.00 0.00 0.60 0.24
3: 1.00 0.00 0.59 0.13
4: 1.00 0.00 0.67 0.09
5: 0.63 0.00 0.19 0.14
6: 0.85 0.00 0.48 0.04
7: 1.00 0.00 0.14 0.10
8: 0.88 0.00 0.42 0.04

mean: 0.90 0.00 0.40 0.12
std: 0.13 0.00 0.22 0.07

selecting the best performing local search heuristic, rather than randomly selecting
any local search heuristic from a pool of generalized local searches.

In particular, the MOEA/D-ML approach clearly outperformsthe conven-
tional MOEA/D approach in all test instances with respect toall performance
metrics. Here it is important to notice that no non-dominated solution obtained
by MOEA/D dominates any solution obtained by MOEA/D-ML, in any test in-
stance. MOEA/D-ML provides better performance than MOEA/D-RW in five test
instances with respect toID metric and in seven out of total eight test instances,
with respect toIH , NDS andC-metric.

6. Conclusions and Future Work

In this paper, we deal with a realistic Multi-objective Optimization Mobile So-
cial Network Search (MO-MSNS) problem: given a query by a smartphone user in
a MSN optimize the search operation by minimizing the total energy consumption
and maximizing the recall rate.

Our proposed algorithm, namely MOEA/D-ML, follows the general frame-
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work of MOEA/D, combined with a Meta-Lamarckian approach that learns from
the problem’s properties and objective functions. A strategy promoting both co-
operation and competition was devised for adaptively selecting the best perform-
ing local search heuristic for each objective function of each problem instance of
each class of problems, from a pool of general-purpose localsearch heuristics,
so as to locally optimize the solutions during the evolution. To the best of our
knowledge, this is the first such hybridization of a decompositional MOEA and a
Meta-Lamarckian learning strategy, in the literature.

We evaluate our algorithm on mobility and social behaviour patterns derived
from the real data of GeoLife and DBLP datasets and a trace-driven experimen-
tal methodology. Extensive experimental studies investigate the adaptiveness and
performance of the proposed approach. The experimental results initially reveal
that individualistic local search heuristics exhibit biasin different test instances of
the MO-MSNS problem as well as in different areas of the objective space of the
same test instance. It is then shown that the proposed MOEA/D-ML successfully
learns from this behaviour during the evolution and adaptively follows the pattern
of best performing local search heuristics at different areas of the objective space.
As a result of this learning strategy, MOEA/D-ML selects thebest non-dominated
solutions and at the end provides a more diverse and high quality set of Pareto-
optimal solutions compared to its competitors. It is also evident from the experi-
mental results that the greedy collaboration between the Greedy Neighbourhood-
based and Stochastic Roulette-wheel Meta-Lamarckian approaches is more effec-
tive than using them separately. The generalizability of the proposed MOEA/D-
ML approach is finally evaluated on the well-known multi-objective Permutation
Flow Shop Scheduling Problem (PFSSP) on various benchmark test instances and
the results reinforce the aforementioned findings.

In the future, we aim at investigating our propositions in the context of many-
objective optimization as well as applying our MOEA/D-ML approach in other
real-life problems. Further research future directions may also include the hy-
bridization of the proposed approach with problem-specificlocal search heuris-
tics as well as heuristics suitable for searching continuous objective spaces for
investigating the application of the MOEA/D-ML on continuous MOPs.
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