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Abstract—In this paper, we present a novel decaying operator
for Telco Big Data (TBD), coined TBD-DP (Data Postdiction).
Unlike data prediction, which aims to make a statement about
the future value of some tuple, our formulated data postdiction
term, aims to make a statement about the past value of some
tuple, which doesn’t exist anymore as it had to be deleted to
free up disk space. TBD-DP relies on existing Machine Learning
(ML) algorithms to abstract TBD into compact models that can
be stored and queried when necessary. Our proposed TBD-DP
operator has the following two conceptual phases: (i) in an offline
phase, it utilizes a LSTM-based hierarchical ML algorithm to
learn a tree of models (coined TBD-DP tree) over time and
space; (ii) in an online phase, it uses the TBD-DP tree to recover
data within a certain accuracy. In our experimental setup, we
measure the efficiency of the proposed operator using a ∼10GB
anonymized real telco network trace and our experimental results
in Tensorflow over HDFS are extremely encouraging as they show
that TBD-DP saves an order of magnitude storage space while
maintaining a high accuracy on the recovered data.

Index Terms—big data, postdiction, prediction, sampling

I. INTRODUCTION

In recent years there has been considerable interest from

telecommunication companies (telcos) to extract concealed

value from their network data. Consider for example a telco

in the city of Shenzhen, China, which serves 10 million users.

Such a telco is shown to produce 5TB per day [1] (i.e.,

thousands to millions of records every second). Huang et al. [2]

break their 2.26TB per day Telco Big Data (TBD) down as

follows: (i) Business Supporting Systems (BSS) data, which is

generated by the internal work-flows of a telco (e.g., billing,

support), accounting to a moderate of 24GB per day and; (ii)

Operation Supporting Systems (OSS) data, which is generated

by the Radio and Core equipment of a telco, accounting to

2.2TB per day and occupying over 97% of the total volume.

Effectively storing and processing TBD workflows can

unlock a wide spectrum of challenges, ranging from churn

prediction of subscribers [2], city localization [3], 5G network

optimization / user-experience assessment [4]–[6] and road

traffic mapping [7]. Even though the acquisition of TBD is

instrumental in the success of the above scenarios, Telcos

are reaching a point where they are collecting more data

than they could possibly exploit. This has the following two

implications: (i) it introduces a significant financial burden on

the operator to store the collected data locally. Notice that the

deep storage of data in public clouds, where economies-of-

scale are available (e.g., AWS Glacier), is not an option due to
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Fig. 1. Data Prediction (top): aims to make a statement about the future
value of some tuple. Data Postdiction (bottom): aims to make a statement
about the past value of some tuple, which has been deleted for efficiency
reasons, using ML models.

privacy reasons; and (ii) it imposes a high computational cost

for accessing and processing the collected data. For example,

a petabyte Hadoop cluster, using between 125 and 250 nodes,

costs ∼1M USD 1 and a linear scan of 1PB would require

almost 15 hours. Additionally, in [8] it is shown that the

amount of storage doubles every year and storage media costs

decline only at a rate of less than 1/5 per year. Finally, high-

availability storage mandates low-level data replication (e.g.,

in HDFS the default replication is 3). Consequently, we claim

that the vision of infinitely storing all IoT-generated velocity

data on fast or even deep storage will gradually become too

costly and impractical for processing scenarios.

To this end, data decaying [9], [10] (or data rotting) has

recently been suggested as a powerful concept to comple-

ment traditional data reduction techniques (e.g., sampling,

histograms, sketches, compression and signal/timeseries pro-

cessing tools). Data decaying refers to “the progressive loss

of detail in information as data ages with time”. In data

decaying recent data retains complete resolution, which is

practical for operational scenarios that can continue to operate

at full data resolution, while older data is either compacted or

discarded [5], [9], [10]. Additionally, the decaying cost can

be amortized over time, matching current trends in micro-

batching (e.g., Apache Spark). Unfortunately, data decaying

currently relies on rather straightforward methodologies, such

as rotational decaying (i.e., FIFO) [9], or decaying based on

specific queries [5] rather than the complete dataset itself. Our

aim in this work is to expand upon these developments to

provide more intelligent and generalized decaying operators.

In this paper, we present a novel decaying operator for Telco

Big Data, coined TBD-DP (Data Postdiction) (see Figure 1).

1April 16, 2012: Forbes Magazine, URL: https://goo.gl/eM1uwV
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Fig. 2. System Model: The TBD-DP operator works on the storage layer of
a typical TBD stack and abstracts the incoming data signals (D) into abstract
models (md) that are organized in a tree data structure (B).

Unlike data prediction, which aims to make a statement about

the future value of some tuple in a TBD store, data postdiction

aims to make a statement about the past value of some tuple

that doesn’t exist anymore, as it had to be deleted to free

up space. TBD-DP relies on existing Machine Learning (ML)

algorithms to abstract TBD into compact models that can

be stored and queried when necessary. Our proposed TBD-

DP operator has the following two conceptual phases: (i) in

an offline phase, it utilizes a LSTM-based hierarchical ML

algorithm to learn a tree of models (coined TBD-DP tree) over

time and space; (ii) in an online phase, it uses the TBD-DP

tree to recover data with a certain accuracy.

To understand the operational aspects of our proposed TBD-

DP operator, consider Figure 2, where we show how incoming

telco data signals are absorbed by the TBD architecture and

stored on high-availability and fast storage (i.e., D). This

helps to carry out operational tasks (e.g., alerting services and

visual analytics) with full data resolution. Subsequently, in

the first phase of TBD-DP, we utilize a specialized Recurrent

Neural Network (RNN) composed of Long Short Term Memory

(LSTM) units, which has the ability to detect long-term corre-

lations in activity data and the trained model has a small disk

space footprint [11]. This enables TBD-DP to utilize minimum

storage capacity of the decayed data by representing them

with LSTM models on the disk media (D’) and provide real-

time postdictions with high accuracy in a subsequent recovery

phase, which will be initiated on-demand (i.e., whenever some

high-level operator requests the given data blocks).

The contributions of this work are summarized as follows:

• We propose a TBD decay operator that deploys the

notion of data postdiction using off-the-shelf LSTM-

based prediction models.

• We propose the DP-tree, which is a hierarchical index

to organize the generated models in a data structure to

enable the efficient recovery of data when necessary.

• We measure the efficiency of the proposed operator

using a ∼10GB anonymized real telco network trace,

showing that TBD-DP can be a premise for efficient TBD

management in the future. We also summarize a prototype

architecture and user interface we have developed for the

TABLE I
SUMMARY OF NOTATION

Notation Description

p, dp,D Ingestion period, data snapshot of one p, set of all dps

t, rt Timestamp within an ingestion cycle, record at t

C, cr, cli Set of all cell towers, Cell of record r, cluster of records
i = 1, . . . , k

mdi,MD LSTM model of cluster cli, set of all models

f Decaying factor: percentage of data to be removed

management of TBD.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section formalizes our system model, assumptions and

problem. The main symbols and their respective definitions

are summarized in Table I.

A typical Telco system, illustrated in Figure 2, is composed

of the Telco network, which is responsible for providing

telecommunication services, and a Telco data management

system, such as SPATE [5], which is responsible for the

efficient exploration of Telco datasets. The data arrives at the

data center in batches, called henceforth data snapshots noted

by dp, in the form of horizontally segmented files with in an

ingestion period p. A snapshot dp contains multiple records

rt created at a certain timestamp t. Each record rt consists

of a predefined set of attributes including the cell id cr that

represents the spatial information inherent within the Telco

network. Particularly, each cell id cr corresponds to a cell

that covers a geographical cellular area that usually spans

hundreds of meters. Finally, the cells are spatially grouped into

clusters cli, i = i . . . k for facilitating the postdiction process

by creating a model mdi, i = i . . . k for each cli as this will

be explained in the next section.

A. Problem Formulation

Research Goal. Given a Telco setting, this work aims at

achieving a pre-specified decaying of TBD with minimum

additional storage space capacity and being able to recover

the decayed data accurately and efficiently.

The efficiency of the proposed techniques to achieve the above

goal is measured by the following objectives:

Definition 2.1: Storage Capacity (S) is the total storage

space required for achieving decaying of data based on a pre-

specified decaying factor f .

Definition 2.2: Accuracy (NRMSE) is the percentage of the

correctly recovered decayed data using a postdiction model.

NRMSE is measured using the normalized root mean square

error, which is the normalized difference between the predicted

and the actual data.

III. THE TBD-DP OPERATOR

In this section, we introduce the proposed TBD-DP operator

and discuss its two internal algorithms, namely, the Construc-

tion (Data model creation) and the Recovery (Data recreation),

which capture its core functionality as illustrated in Figure 3.
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Fig. 3. TBD-DP Operator Overview.

The Construction algorithm can be triggered either by the

user, or automatically when the total storage capacity reaches

a certain level. In both cases, the data are initially clustered

based on spatial characteristics and then ordered based on

temporal information. Finally, postdiction models based on

the LSTM machine learning approach are generated for each

cluster and the real data is decayed by f%. The Recovery

algorithm utilizes the postdiction models for retrieving the

decayed data by adopting a proposed DP-tree based algorithm.

A. Construction Algorithm

Algorithm 1 outlines the major steps of the construc-

tion algorithm. Initially, the decaying factor f specifies the

percentage of the whole dataset D that will be decayed,

and consequently the decayed subset D′ ⊆ D that will be

utilized for generating the postdiction models. In the spatial

partitioning step (Step 1 - lines 2-5), k ≤ |C| clusters are

created by using the cell tower locations. Particularly, each

cluster cli, i = 1, . . . , k is represented by a cell tower (in cases

where k < |C| then the closest cell towers are merged using

a kNN approach until we finally generate k clusters.) Then

the MAP function associates all records rt ∈ D′ with the

previously created clusters by taking into consideration their

cell id cr attribute. By the end of this function execution,

k clusters of cell towers with their associate records will be

created. Then all records of each cluster are ordered based

on their timestamp (i.e., time originally generated) by using

the ORDER function of the temporal ordering step (Step 2

- lines 6-8). Finally, the learning step (Step 3 - lines 9-12)

generates k postdiction models mdi for each cluster cli by

using a specialized Recurrent Neural Network (RNN) known

as the Long Short Term Memory (LSTM) model [12].

Specifically, the LEARNING function generates, for each

cluster at each iteration, an LSTM model that relies on a

structure called a memory cell, which is composed of four

main elements: an input gate, a neuron with a self-recurrent

connection (a connection to itself), a forget gate and an output

gate. A memory cell is updated at every time-step by using

the following parameters and equations:

• xt is the input to the memory cell layer at time-step t

• Wi,Wf ,WC and Wo are weight matrices

• bi, bf , bC and bo are bias vectors

The forget gate layer:

ft = σ(Wf × [ht−1, xt] + bf),

Algorithm 1 - TBD-DP Construction Algorithm

Input: Dataset D, C set of cell towers, Number of clusters k
Output: B: Set of models MD (DP-tree structure)

⊲ Step 0: Decaying Pre-processing
1: D′ ← f of D ⊲ Select f% of D to be decayed

⊲ Step 1: Spatial Partitioning

2: Create k ≤ |C| clusters cli ⊲ Use cell towers locations
3: for all rt ∈ D′ do

4: cli ←MAP (rt, cli)|i = 1, . . . k ⊲ Associate records to clusters
5: end for

⊲ Step 2: Temporal Ordering
6: for i = 1 to k do

7: cli ← ORDER(cli) ⊲ Sort records in clusters based on timestamp
8: end for

⊲ Step 3: Hierarchical Model

9: for i = 1 to k do
10: mdi ← LEARNING(cli) ⊲ Create an LSTM model for each cli
11: Insert mdi in B
12: end for

decides what information are going to be thrown away from

the memory cells. The input gate layer:

it = s(Wi[ht−1, xt] + bi),

decides which values to be updated. The tanh layer decides

what new information we are going to store in the memory

cells using:

C̃t = tanh(WC [ht−1, xt] + bC).

Moreover, the update memory cells function:

Ct = ft × Ct−1 + it × C̃t,

used to forget the things decided to be forgotten earlier and

scale the new candidate values by a pre-specified state value.

Finally, the update hidden cells function:

ot = σ(Wo[ht−1, xt] + bo)

and a sigmoid layer that decide what parts of the cell state to

output,

ht = ot ∗ tanh(Ct).

The Construction algorithm outputs a set of postdiction

models B in a DP-tree for facilitating the recovery algorithm

that follows. Here it is important to note that at the end

of the Construction algorithm execution, the D′ set of data

is removed for saving storage space and it is conceptually

replaced by the final B set of postdiction models, where

|B| << |D′|.

Example: Consider the scenario in Figure 4 where there are

10 cell towers {A, ..., J}. First, the Construction algorithm

creates k = 5 clusters {cl1,...,cl5} denoted with the solid line

that surrounds the cell towers in Step 1 of Figure 4 (left). The

MAP function associates the records to a cluster based on the

cell id cr (e.g., all records related to A and B are grouped

into cl1). Then, the ORDER function sorts the records of each

cluster based on their timestamp t as shown in Step 2 of

Figure 4 (center). Finally, for each cluster cli a model mdi
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Fig. 4. The conceptual steps of the proposed TBD-DP construction algorithm.
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Fig. 5. The conceptual steps of the proposed TBD-DP recovery algorithm.

is trained and inserted into a DP-tree index using the cell ids

as keys, as shown in Figure 4 (right).

B. Recovery Algorithm

Algorithm 2 outlines the Recovery algorithm that utilizes

the DP-tree structure of postdiction models of Algorithm 1

for retrieving a selected subset from the decayed data, i.e.,

pD′ ⊆ D′. For doing this the Recovery algorithm inputs the

set of models B as well as some spatiotemporal information

L and R that will specify the amount of the decayed data to

be retrieved. For example, L can be a cellular tower’s location

or a user’s location associated to a cellular tower and R can

be a range of timestamps, within which a number of records

were generated and stored in D′. In any case, L and R will

be utilized by the DP-tree LOOKUP function for deciding a

subset of models B′ ⊆ B in line 13 that will be used for

creating the pD′ dataset in line 15.

Example: Consider the scenario where the data of cell tower

A needs to be recovered for timestamps t1,...,t4. LOOKUP

retrieves the LSTM model md1 for cluster cl1 created from

all records related to cell towers A and B as shown in Step

1 of Figure 5 (left). In Step 2 of Figure 5 (right), the

Recovery algorithm recreates the values of cell tower A for

each timestamp t recovering in this way a part of the decayed

data pD′ using the selected LSTM model.

C. Performance Analysis

The major focus of TBD-DP is the efficient decaying of

data and consequently the minimization of TBD storage space

while maintaining a high accuracy during data recovery.

Algorithm 2 - TBD-DP Recovery Algorithm

Input: L: spatial input; R: temporal input; B: set of postdiction models in a
DP-tree structure
Output: Partial decayed dataset pD′

1: procedure LOOKUP(k,node) ⊲ The number of children is b.
2: if node is a leaf then

3: return node
4: end if

5: switch k do

6: case k < k0
7: return LOOKUP(k,p0)

8: case ki ≤ k < ki+1

9: return LOOKUP(k,pi+1)

10: case kd ≤ k ⊲ Each node has at most d ≤ b
11: return LOOKUP(k,pd+1)

12: end procedure

⊲ Step 1: Index Lookup

13: B′ ← LOOKUP (L,B) ⊲ Select a subset of postdiction models

⊲ Step 2: Recreate part of the Decayed Dataset using LSTM model

14: for all t ∈ R do
15: pD′ = RECREATE(B′, t) ⊲ Retrieve decayed data of specific

time periods.
16: end for

According to Definition 2.1 the total storage space S is

equal to the actual data minus the decayed data based on f ,

plus any additional storage required by the decaying approach

to achieve an optimal recreation of the decayed data. When

there is no decaying f = 0% (that is the standard prediction

case) then S = |D|+ |B|, which is the size of the actual (raw)

data D and the size of the set of prediction models B. In the

case of TBD-DP, S = |D|−|D′|+|B|, which is the actual data

size minus the size of the decayed dataset |D′| = |D| × f%
plus the size of a set of models B, where |D| >> |D′|+ |B|.
When f = 100% then all data are decayed and the required

storage space of TBD-DP is S = |B|. In the case of sampling,

the storage space is equal to S = |D|−|V |, which is the actual

data size minus a sample set V = sampling(D′, s) generated

by sampling the decayed dataset D′ with a pre-specified rate

s. Note that |D| − |D′|+ |B| << |D| − |V | for a reasonable

s that provides an NRMSE similar to TBD-DP.

According to Definition 2.2 the NRMSE measures the simi-

larity of the decayed dataset D′ and the recovered dataset pD′.

Therefore, in cases where the decaying factor is f = 0%,

which corresponds to a low |D′| = 0 and no decaying is



applied then NRMSE = 0 and when f = 100%, which

corresponds to a high |D′| = |D| and all data are discarded

then NRMSE >> 0. Moreover, it is reasonable to assume that

in sampling, where a sample set V of the decayed data D′ is

permanently discarded with a sampling rate s then, its NRMSE

(V,D′) will be equal to the normalized difference between

the sampled and the actual data. Finally, the NRMSE of the

proposed TBD-DP will be equal to the normalized difference

between the predicted data of the LSTM model and the actual

data, i.e., NRMSE (pD′, D′).

IV. PROTOTYPE DESCRIPTION

We have developed a complete prototype architecture that

integrates TBD-DP as part of the TBD Awareness project 2.

Our proposed architecture comprises of three layers (see Fig-

ure 6), namely Storage Layer, Indexing Layer and Application

Layer.

The Storage layer passes newly arrived network snapshots

through a lossless compression process storing the results on a

replicated big data file system for availability and performance.

This component is responsible for minimizing the required

storage space with minimal overhead on the query response

time. The intuition is to use compression techniques that yield

high compression ratios but at the same time guarantee small

decompression times. We particularly use GZIP compression

that offers high compression/decompression speeds, with a

high compression ratio and maximum compatibility with I/O

stream libraries in a typical big data ecosystem we use.

Additionally, this layer uses the TBD-DP operator in order

to provide the decay methods for the next layer. The storage

layer is basically only responsible for the leaf pages of the

SPATE index described in the next layer.

The Indexing Layer uses a multi-resolution spatio-temporal

index, which is incremented on the rightmost path with every

new data snapshot that arrives (i.e., every 30 minutes). In ad-

dition, the component computes interesting event summaries,

called “highlights”, from data stored in children nodes and

stores them at the parent node. For each data exploration query,

the internal node that covers the temporal window of the query

is accessed, and its highlights are used to answer the query.

The Application Layer implements the querying module

and the data exploration interfaces, which receive the data

exploration queries in visual or declarative mode and use

the index to combine the needed highlights and snapshots to

answer the query. SPATE is equipped with an easy-to-use map-

based web interface layer that hides the complexity of the

system through a simple and elegant web interface.

V. EXPERIMENTAL METHODOLOGY AND EVALUATION

This section presents an experimental evaluation of our

proposed TBD-DP operator. We start-out with the experi-

mental methodology and setup, followed by two experiments.

Particularly, in the first experiment, the performance of TBD-

DP is compared against two baseline approaches and two

2TBD Awareness, https://tbd.cs.ucy.ac.cy/

Fig. 6. SPATE: The decay module of SPATE uses the TBD-DP operator to
enable the decay process and retain the high exploration functionality without
consuming enormous amounts of storage.

decaying-based approaches with respect to various metrics on

a set of anonymized datasets. The second experiment examines

the influence of several control parameters on the performance

of TBD-DP.

A. Methodology

This section provides details regarding the algorithms, met-

rics and datasets used for evaluating the performance of the

proposed approach.

Testbed: Our evaluation is carried out on the DMSL VCenter

IaaS datacenter, a private cloud, which encompasses 5 IBM

System x3550 M3 and HP Proliant DL 360 G7 rackables

featuring single socket (8 cores) or dual socket (16 cores)

Intel(R) Xeon(R) CPU E5620 @ 2.40GHz, respectively. These

hosts have collectively 300GB of main memory, 16TB of

RAID-5 storage on an IBM 3512 and are interconnected

through a Gigabit network. The datacenter is managed through

a VMWare vCenter Server 5.1 that connects to the respective

VMWare ESXi 5.0.0 hosts. Computing Nodes: The computing

cluster, deployed over our VCenter IaaS, comprises of 4

Ubuntu 16.04 server images, each featuring 8GB of RAM

with 2 virtual CPUs (@ 2.40GHz). The images utilize fast

local 10K RPM RAID-5 LSILogic SCSI disks, formatted with

VMFS 5.54 (1MB block size). Each node features Hadoop

v2.5.2.

We utilize measurements from a real Telco operator that

comprises of 1192 real cell towers (i.e., 3660 cells of 2G,

3G and LTE networks) distributed in an area of 5,896 km2.

The cells are connected through a Gigabit network to a d

datacenter. Each cell tower keeps several UMTS/GSM network

logs for the performance of the tower and forwards the

information through the base station controller (BSC) or the

radio network controller (RNC) to be stored. There is a CDR

server that generates call detail records (CDRs) for incoming

and outgoing calls in the enterprise. When a CDR is generated

in the CDR server, the management server and third-party

application can use SFTP to obtain the CDR from the CDR

server. Then the Telco can query the CDRs for call/data

information and check outgoing call/data fees with the carrier.
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on the decayed set of data (right) in all datasets.

Algorithms: The proposed TBD-DP operator is compared with

the following approaches:

• RAW: does not apply any decaying on the whole dataset.

• COMPRESSION: the decayed dataset (that is the sub-

set of data selected based on the decaying factor f )

is compressed with the GZIP library, which has been

shown in [5] to offer the best balance between com-

pression/decompression speeds, compression ratios and

compatibility with I/O stream libraries in the TBD soft-

ware ecosystem.

• SAMPLING: a consecutive sampling algorithm used for

achieving a 50% sample size on the decayed dataset.

• RANDOM: uniformly randomly select one record from

the decayed dataset.

Note that RAW and RANDOM are the baseline approaches

used to demonstrate the trade-off between the storage capacity

and the normalized RMSE objectives.

Datasets: We utilize an anonymized dataset of Telco traces

comprising of ∼ 100M network measurements records (NMS)

and 3660 cells (CELL) coming from 2G, 3G and LTE anten-

nas. The data traffic is created from about 300K users and has

a total size of ∼10GB. We constructed 10 realistic datasets

from real TBD obtained through SPATE described in Section

V-A based on the Key Performance Indicators (KPIs) [13].

• Calls (CS): the number of calls ended normally during

snapshot dt.

• Call Drops (CSD): the number of calls dropped during

snapshot dt.

• ThroughPut (TP): the amount of data passing through

the cells during a snapshot dt.

• Handover Attempts (HA): the amount of handovers into

or from the cells attempted during a snapshot dt.

• Handovers (HS): the number of successful handovers

into or from the cells during a snapshot dt.

• Number of Received RRC (RRRC): the number of

received Radio Resource Control (RRC) requests for CS

Services in a Cell during a snapshot dt.

• Number of RRC Connection Establishment Requests

(ERRC4): the number of RRC Connection Establishment

Requests with Propagation Delay of 4 during snapshot dt.

• Call Setup Attempts (CSA): the amount of call setup

processes attempted during snapshot dt.

• Call Setups (CS): the amount of successful call setup

processes during snapshot dt.

• RRC Connection Establishment Requests (ERRC10):

the number of RRC Connection Establishment Requests

with Propagation Delay of 10-16 during snapshot dt.

Metrics: We evaluate the performance of TBD-DP using the

metrics defined in Section II-A in all experiments:

• Storage Capacity (S): measures the total space that data

and index occupy throughout the distributed system in

Megabytes (MB).

• Normalized Root Mean Square Error (NRMSE): mea-

sures the error of the recovered data D′ using the well-

known Normalized root Mean Square Error (NRMSE).

The objective for a technique is to obtain the lowest

possible NRMSE value.

Parameters: In all experiments the simulation parameters

were configured as follows: decay factor f = 50%, ML

model LSTM and number of neurons 16 x 16. The influence

of each of those parameters on the proposed approach is

investigated individually in Experiment 2 by fixing the rest

of the parameters accordingly.

B. Experiment 1: Performance Evaluation

In the first experiment, we evaluate the performance of the

proposed TBD-DP operator against all four algorithms and

over all datasets introduced in Section V-A, with respect to

space capacity (as a percentage to the RAW data) and accuracy

(in terms of NRMSE on the decayed set of data).

Figure 7 clearly demonstrates the trade-off between the

space capacity S and the NRMSE objectives on the results of

costantinos
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the baseline approaches, since RAW (no decaying) approach

obtained the worst possible S = 100% of the whole dataset,

and the lowest error NRMSE = 0. In contrast, the RANDOM

(almost all data are decayed) approach obtained the best

possible S = 50% of the whole dataset and the worst NRMSE

≈ 100 on the decayed dataset, for a decaying factor f = 50%.

The results of the three other approaches appear in between

the results of the two baseline approaches. The proposed

TBD-DP operator, however, provides around 25% and 50%
better space capacity S compared to COMPRESSION and

SAMPLING approaches, respectively. This is due to the fact

that the additional space required by the set of LSTM models

is much less than the sample set of SAMPLING and the

compressed decayed dataset of COMPRESSION.

In terms of NRMSE, the TBD-DP outperforms the SAM-

PLING approach by 50%, on average, in all datasets. The

COMPRESSION approach provides an optimal NRMSE = 0,

since it does not apply any prediction on the decayed data,

but recovers them via decompression, when requested. The

advantage of COMPRESSION, however, is usually achieved

in the sake of more computational effort and query response

time.

C. Experiment 2: Control Experiments

In Experiment 2, we examine the influence of several

control parameters on the performance of the proposed TBD-

DP] in terms of S and NRMSE. Specifically, we vary the

decay factor (f ), the ML models and the number of neurons

on LSTM.

Figure 8 shows how the decaying factor f , and consequently

the amount of data that will be decayed and represented by

LSTM models, affect the S and NRMSE of the proposed

TBD-DP operator. The results show that the storage capacity

required by the TBD-DP decreases as the decaying factor

increases, which is reasonable due to the fact that the highest

f is, the more data need to be decayed and therefore more disk

space will be released. The accuracy of the proposed TBD-DP

however, is not influenced, since NRMSE remains almost the
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same for all decaying factors, in most datasets. This shows

the scalability and generalizability of the proposed approach,

which is not influenced from the increase on the decaying

dataset size. It is also important to note that the variations

on the NRMSE obtained by TBD-DP between the datasets is

mainly due to the different characteristics of each dataset.

Figure 9 examines the performance of the TBD-DP operator

in terms of S and NRMSE when combined with three different

ML models, namely, the traditional Recurrent Neural Network

(RNN), the Gated Recurrent Unit (GRU) [14] and the Long

Short Term Memory (LSTM) that is finally adopted by the

proposed approach. The results show that TBD-DP maintains

a similar storage capacity for different learning models, with a

slight increase (about 1%) when the LSTM model is used. In

terms of NRMSE, however, the TBD-DP+LSTM combination

clearly outperforms the other two combinations providing

around 75% less error, on average.

Finally, Figure 10 examines how the number of neurons of

the LSTM model influences the TBD-DP’s performance. The

results support our previous observations on the scalability

and generalizability of the proposed TBD-DP approach. The

increase on the number of neurons slightly influences the TBD-

DP in terms of storage capacity, since the required space

slightly increases. This is reasonable since the increase on

the number of neurons results in “bigger” models that require

more disk space to be stored. The additional required space,

however, is almost negligible compared to the disk space

needed to store the actual data before decaying. In terms

of NRMSE, the increase on the number of neurons doesn’t

influence the performance of the TBD-DP operator, since

NRMSE remains almost the same while varying this control

parameter in almost all datasets.

VI. RELATED WORK

In this section, we present existing research that exploits

space and time over TBD. These works are not directly

comparable to TBD-DP but are presented for completeness.

A. Compressing Incremental Archives

Domain-specific compression techniques are often adopted

for compressing spatiotemporal climate data [15], text doc-

ument collections [16], scientific simulation floating point

data [17]–[21], and floating point data streams [22]. Moreover,

several research studies [23]–[26] have utilized differential

compression techniques for studying the tradeoff between

compression ratio and decompression times for incremental

archival data. None of these prior research works, however,

has been proposed for dealing with data compression in

Telco-specific distributed systems, since Telco datasets mostly

contain generic string and integer values.

B. Telco Big Data (TBD) Research

Telco research can be roughly classified into the following

three categories: (i) real-time analytics and detection; (ii)

predicting user behavior; and (iii) privacy. There is also Telco

research that focus on applications that Telcos can use to

improve their services and revenue. Such kind of literature,

however, is orthogonal to the topic of this article and will,

therefore, not be presented.

Real-time Analytics and Detection: Zhang et al. [1] have

developed OceanRT for managing large spatiotemporal data,

such as Telco OSS data, running on top of cloud infrastructure.

It contains a novel storage scheme that optimizes queries with

joins and multi-dimensional selections. Yuan et al. [27] present

OceanST which features (i) an efficient loading mechanism of

ever-growing Telco MBB data, (ii) new spatiotemporal index

structures to process exact and approximate spatiotemporal ag-

gregate queries in order to cope with the huge volume of MBB

data. Iyer et al. [4] present CellIQ to optimize queries such

as “spatiotemporal traffic hotspots” and “handoff sequences

with performance problems”. It represents the snapshots of

cellular network data as graphs and leverages on the spatial

and temporal locality of cellular network data.



Braun et al. [28] developed a scalable distributed system

that efficiently processes mixed workloads to answer event

stream and analytic queries over Telco data. Bouillet et al. [29]

proposed a system on top of IBM’s InfoSphere Streams

middleware that analyzes 6 billion CDRs per day in real-

time. Abbasoğlu et al. [30] present a system for maintaining

call profiles of customers in a streaming setting by applying

distributed stream processing.

C. Big Data Storage

Big data storage technologies have recently evolved in

order to accommodate the huge big data load generated by

IoT and smart devices. Typically, big data storage systems

are distributed with shared-nothing architectures, such as

the Hadoop Distributed File System (HDFS). Additionally,

NoSQL databases introduce key-value stores (e.g, DynamoDB,

Cassandra), column stores (e.g., HBase), document stores

(e.g., Couchbase, CouchDB, MongoDB) and graph databases

(e.g., Neo4j). Hive and Impala are new big data query plat-

forms build on top of HDFS or HBase providing an SQL-like

query language. Particularly, novel distributed file systems,

such as OctopusFS, manage the data using heterogeneous

storage media [31] but none of these systems deploys data

decaying principles like the propositions in this work.

D. Data Synopsis

Sampling refers to the process of randomly selecting a

subset of data elements from a relatively large dataset. Sophis-

ticated techniques, such as Bernoulli and Poisson sampling,

choose data elements using probabilities and statistics. Chaud-

huri et al. [32] proposed stratified where the probability of the

selection is biased. In order to encounter the big data sampling

issue Zeng et al. [33] implemented G-OLA, which is a model

that generalize the OLA in order to support general OLAP

queries utilizing delta maintenance algorithms. Particularly,

BlinkDB [34] allows users to choose the error bounds and the

response time of query using dynamic sampling algorithms.

SciBORQ [35] is a framework that allows the user to choose

the quality of the query result based on multiple interesting

data samples called impressions.

Several works have adapted the sampling processes to create

synopsis of data in order to achieve low response time for ad-

hoc queries [35]. Moreover, Zeng et al. [33] proposed a novel

online aggregation model to support OLAP queries using delta

maintenance techniques. Data sketches, which are stores in

memory, require little modifications to alter the sketches on

an insertion or deletion of a row [36] that makes them very

flexible. Additionally, Wei et al. proposed persistent sketches

that can answer queries at any prior time [37] and have the

ability to merge in order to answer a generalize query [38].

E. Learning

Telcos focus on user activity predictions for optimizing

their network, in terms of minimizing deployment cost and

energy consumption [39]. Huang et al. [2] showed how ML

algorithms can be applied over TBD to predict Telco customer

churn. Moreover, Kasiran et al. [40] also predicted the Telco

customers churn using two new variations of Recurrent Neural

Network (RNN), namely Elman and Jordan. Luo et al. [6]

proposed a framework to predict user behavior involving more

than one million Telco users. Their framework was using

documents containing a collection of changing spatiotemporal

“words” that described the user and his/her behavior. By

extracting the users space-time access records from MBB

dataset, the ML model was able to learn user-specific compact

topic features achieving high user activity level prediction.

Additionally, Krishna et al. [11] used an LSTM network

to detect long term correlations in human activity data. The

authors showed that LSTM is performing significantly better

compared to traditional approaches based on sequence mining

or hidden Markov models.

VII. CONCLUSIONS

This paper presents the TBD-DP (Data-Postdiction) decay

operator that aims at minimizing TBD storage capacity by

using data decaying, but also keeping the accuracy of the query

results high, by using data postdiction. Particularly, TBD-DP

initially clusters all anonymous Telco data by using spatio-

temporal information of real Telco users and then utilizes a

LSTM-based ML algorithm and a hierarchical index approach

to achieve decaying of TBD without sacrificing the accuracy of

the results. In our experiment setup, we measure the efficiency

of the proposed operator using a ∼10GB anonymized real

Telco network trace and our experimental results show that

TBD-DP saves an order of magnitude storage space while

maintaining a high accuracy during data recovery.
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