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Abstract— For computational intelligence to be useful in
creating game agent AI, we need to focus on creating interesting
and believable agents rather than just learn to play the games
well. To this end, we propose a way to use multiobjective
evolutionary algorithms to automatically create populations
of Non-Player Characters (NPCs), such as opponents and
collaborators, that are interestingly diverse in behaviour space.
Experiments are presented where a number of partially con-
flicting objectives are defined for racing game competitors, and
multiobjective evolution of GP-based controllers yield pareto
fronts of interesting controllers.

Keywords: Genetic Programming, Reinforcement Learn-
ing, Multiobjective Evolution, AI in Computer Games, Car
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I. INTRODUCTION

When learning to play a game, the objective to maximize is
usually taken to be a one-dimensional progress measure such
as the score obtained by the agent, the skill of enemies that
can be defeated, or the length of time the agent survives. Such
measures come naturally to most computational intelligence
researchers who are also gamers, as games usually judge the
performance of a player based on one criteria only. What is
a high-score list, if not a paradigmatic example of single-
objective ranking?

This mode of thinking is appropriate when using games
for testing computational intelligence (CI) algorithms, but
not when developing CI techniques for use in games. This
is because the proper role of CI (and other forms of AI) in a
game is typically not to play the game well, but to provide
interesting behaviour for NPCs (Non-Player Characters),
such as opponents, competitors or sidekick.

An important explanation for the non-interest shown by the
entertainment industry for most research in computational
intelligence and games is that it is relatively easy for a
game developer to construct an AI for a game that plays the
game well. Or rather: even if it is not always straightforward
to construct an AI that actually plays the game well, it is
typically easy to cheat a little bit by providing the NPC with
more information than the player, or better capabilities than
the human-controlled agent, and thus achieve the desired
level of competitiveness. For the most part, CI is just not
needed here. (Though there are important exceptions, notably
complex strategy games such as Civilization, where it is very
hard to the design worthy opposition for a good human player
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without blatant cheating that threatens to dispel the player’s
suspension of disbelief.)

Much of the development effort when developing tradi-
tional game AI is instead focused on developing interesting,
diverse and believable character AI. This is because even
an opponent/collaborator that provides the adequate level of
challenge/support for the human player may be very boring to
play against/with, if it behaves in a very simple or repetitive
and thus predictable way. In fact, predictable NPC behaviours
is one of the most common complaints found under the “AI”
heading in reviews of commercial games. Further, even if
the individual NPCs have a reasonable range of behavioural
responses, a game can quickly become boring if all the
opponents or collaborators in a game behave in the same
way. This is true for most genres of games, including real-
time strategy (an army where all units respond the same way
to new situations is not believable), first- and third-person
shooters (it is no fun to be able to predict all your enemies’
moves) and racing games (a starting field where all your
competitors drive the same way doesn’t require you to vary
your driving style during the race).

Given the amount of work that goes into designing in-
teresting, believable and especially diverse opponents, one
of the principal ways in which computational intelligence
could aid game designers is arguably through assisting in
the design of such agents1. Some academic Computation
Intelligence and Games researchers already focus on the
problem of generating interesting NPC behaviours [2], [3].
This paper proposes a general approach to creating diverse
and interesting NPC behaviours using multiobjective evolu-
tionary algorithms (MOEA) in combination with a number
of partly conflicting behavioural fitness measures. We do this
by defining a number of such objectives for a car controller
in a competitive racing game, and perform a number of
experiments where we optimize for several of these ob-
jectives simultaneously using a standard MOEA. We then
examine the pareto fronts resulting from the experiments,
investigating to what extent we are able to automatically
generate interestingly diverse controller populations. The
vision is that a game designer, using this technique, should
be able to automatically generate populations of opponents
or collaborators spanning a range of interesting behaviours
for any given game, environment, and possibly player.

A secondary motivation for these experiments is the obser-
vation that in some cases, even single-objective optimization
might be aided by a multiobjective approach. This can be
the case if the objective can somehow be decomposed into

1Another way is through the design of interesting game environments,
which is the subject of [1], and yet another through the design of game
rules, as discussed in another paper submitted to this conference.



several mutually reinforcing objectives. We have previously
showed that for a version of the car racing task where
the controller lacks a key input, the lack of which can be
mitigated by good use of internal memory, an increase in
attainability of the main objective (driving far on the track)
can be achieved by adding a second “reinforcing” objective
(use of internal memory) [4]. It is thus plausible that similar
effects can be seen for some of the behavioural objectives
used in this paper.

II. METHODS

This section describes the car racing game used as a
testbed in our experiments, the multiple fitness measures,
and the multiobjective evolutionary algorithm used.

A. Car racing game

The experiments described below were performed in a
2-dimensional simulator intended to, qualitatively if not
quantitatively model a standard radio-controlled (RC) toy
car (approximately 17cm long) in an arena with dimensions
approximately 3 × 2 meters, where the track is delimited
by solid walls. The simulation has the dimensions 400 ×
300pixels, and the car measures 20× 10pixels.

In our model, a track consists of a set of walls, a chain
of waypoints, and a set of starting positions and directions.
When a car is added to a track in one of the starting positions,
with corresponding starting direction, both the position and
angle being subject to random alterations. The waypoints are
used for fitness calculations.

The dynamics of the car are based on a reasonably detailed
mechanical model, taking into account the small size of the
car and bad grip on the surface, but is not based on any ac-
tual measurement [5][6]. The collision response system was
implemented and tuned so as to make collisions reasonably
realistic after observations of collisions with our physical
RC cars. As an effect, collisions are generally undesirable,
as they may cause the car to get stuck if the wall is struck at
an unfortunate angle and speed. Just like most toy RC cars,
the control of the car is bang-bang, with three possible drive
modes (forward, backward, and neutral) and three possible
steering modes (left, right and center).

Variations of racing games based on this simulator have
been used as testbeds in a string of papers in recent years,
as well as in two competitions associated with international
conferences. For an overview, and a more detailed descrip-
tion of the racing simulator, see [7]. In particular, human-
competitive neural network-based controllers for a single car
on a single track were evolved in [8]; general controllers
capable of driving on a wide range of tracks were evolved
in [9]; co-evolution of two cars on a single track was explored
in [10]; and controller based on genetic programming rather
than neural networks were evolved in [11].

B. GP-based controllers, inputs and outputs

The controllers employ an expression-tree representation
as practiced in standard functional Genetic Programming.
Details on the GP system used can be found in [11].

For programming language standard arithmetic and
trigonometric functions have been defined. Selected elements
of the state are available to the controller via formal parame-
ters to the program. The available information is all such that
it could in principle have been gathered by sensors placed on
the car (‘first person’): speed of the car, angle and distance
to the next way point and distance to a wall or an opponent
car

in a given direction relative to the heading of the car. A
small amount of noise is added to all sensor readings.

As for the outputs of the controller, these are two real
numbers which are interpreted by the simulation as any of
the nine possible commands. The first controller output is
interpreted as the command for driving forward if its value
is above 0.3, backward if below -0.3 and neutral otherwise.
The second output is interpreted as steering left, right or
centre in the same manner.

C. Behavioural fitness measures

The original car racing experiments used a single fitness
measure, namely how many way points were passed in 700
time steps. We call this absolute progress fitness. In [10],
where we introduced another car on the same track, we
experimented with a second fitness measure, relative progress
fitness: how far ahead of the other car the controlled car
was after 700 time steps. We found that controllers evolved
with relative progress as the only fitness measure drove
much more aggressively than those evolved for absolute
progress, and often focused on pushing their opponents of
the track more than on progressing along the course; they
were also quite worthless in the absence of an opponent.
Relative and absolute progress is thus an example of partly
conflicting objectives. We also experimented with mixed
fitness functions, with parts absolute fitness and part relative
fitness, and found that we could modulate the aggressiveness
of the resulti

In the experiments below, we use the following setup:
the controlled car (the one whose controller is evaluated)
is placed at random in one of two possible starting positions
at the beginning of the race, subject to a small amount of
noise in initial position and orientation. Another car (the
competitor) is placed in the other starting position nearby
and controlled during the race by an incrementally evolved
general controller (see [9]) for details. The controller for the
competitor car does not change during either evolutionary
time or the course of a single trial.

Each fitness evaluation consisted of five independent races.
Each race went on for 700 time steps, and during this time a
number of key statistics on the behaviour of the controlled car
were gathered. These statistics made it possible to calculate
the ten fitness measures described below. For some of the
objectives, we include our hypothesis about with which other
objective(s) it conflicts.

1) Absolute progress is the “orthodox” and most straight-
forward fitness measure used in most of the experi-
ments in evolutionary car racing: a continuous approx-



imation of the number of way points passed in 700
time steps.

2) Relative progress is the absolute progress of the
controlled car, minus the absolute progress of the
competitor. According to previous results in [10] there
is a conflict between absolute and relative progress
fitness, as it often pays off better to stop the competitor
by pushing it into a wall as soon as possible rather than
just driving as fast as possible.

3) Maximum speed is simply the maximum speed of
the controlled car at any point during the race. The
relationship to absolute and relative progress is not
obvious: on the one hand, a car that has absolute
progress close to zero obviously also has low maxi-
mum speed. On the other hand, a controller that only
outputs the “accelerate” command and thus drives as
fast as possible along the first straight segment of the
track and crashes into the wall at the end of it has
a high maximum speed but low absolute and relative
progress.

4) Progress variance is the standard deviation of absolute
progress fitness between the five trials that constitute
each fitness evaluation. This can be seen as a measure
of the boldness of a driving style.

5) Number of steering changes is the number of time
steps minus the number of times the steering command
changes between left, right and centre divided by
the number of time steps (the number of steering
changes is maximised by minimising this fraction and
minimised by maximising it). Previous experience has
shown that evolved neural network and GP drivers
tend to oscillate quickly between different driving
commands (thus having a low steering changes fitness)
whereas humans change steering direction much less
often.

6) Number of driving changes is (the number of time
steps minus the number of times the acceleration
command changes between accelerate, brake/backward
and neutral) divided by the number of time steps.

7) Wall collisions is defined as (the number of time steps
minus the number of times the controlled car collides
with a wall) divided by the number of time steps (the
number of wall collisions is maximised by minimising
this fraction and minimised by maximising it). While it
is expected that wall collision fitness will be in conflict
with both progress variance and maximum speed, it is
very unclear what relation it will have to absolute and
relative progress fitness.

8) Proximity to competitor is calculated as 500 minus
the number of pixels between the center of the con-
trolled car and the competitor, averaged over all time
steps. A high proximity to competitor means that the
controlled car is either staying right behind, in front
of or besides the competitor, or that both cars crashed
next to each other.

9) Car collisions (maximum) is simply the number

of car-to-car collisions that occured during the race.
This should be positively correlated with proximity to
competitor, but in conflict with absolute progress and
number of steering and driving changes, as car-to-car
collisions typically require corrective actions in order
to avoid ensuing wall collisions.

10) Car collisions (minimum) is the number time steps
minus the number of car-to-car collisions. This objec-
tive exists as it makes sense to both maximize and
minimize the number of such collisions.

D. Multiobjective Evolutionary Algorithm, Variation Opera-
tors and Run Parameters

For multiobjective evolutionary algorithm we used the
Non-Dominated Sorting Genetic Algorithm (NSGA-II) [12].
The algorithm uses tournament selection with a tournament
size of 7. In order to allow for more exploitation towards the
end of each evolutionary run the tournament size has been
made dynamic during the final 10 generations incremented
by a percentage of 20% in each generation. The evolutionary
run proceeds for 50 generations and the population size
is set to 500 individuals. Evolution halts when all of 50
generations have elapsed. Ramped-half-and-half tree creation
with a maximum depth of 8 is used to perform a random
sampling of program space during run initialisation. During
the run, expression trees are allowed to grow up to depth
of 17. Heuristic search employs a mixture of mutation-based
variation operators similarly to [13].

III. EXPERIMENTAL METHODOLOGY

For the purposes of car racing we define two different
general kinds of behaviours :
(a) Aggressiveness, is an umbrella term that encompasses
speed, wall and car collisions. While wall and car collisions
have been already discussed in previous sections, speed
levels can create a significant burden by requiring a car to
flexibly avoid slowly moving opponents (especially when
the cars are moving into narrow parts of the track).
(b) Opponent Weakness Exploitation, not a crisply defined
term at this stage of our research but it generally concerns
all those behaviours that can exploit mistakes made by
opponent drivers. As an example consider a controller
that learns how to take close turns often pushing away an
opponent that takes wider turns.

The following section presents the results of our attempts
to optimise genetically programmed controllers to exhibit the
bahavioural characteristics described above. For purposes of
clarity of presentation, pareto fronts that combine more than
two objectives have been decomposed into pairs of objectives
and these have been plotted in the cartesian space.

We have previously attempted [11] to understand and distil
(by static inspection of expression trees) the inner workings
of genetically programmed controllers, unfortunately, with
little success. In this vein, we will attempt to shed more
light into the way controllers operate by (a) performing
a genotypic analysis and identifying the average use of



parameterised sensor readings within the expression-trees;
(b) calculating Pearson correlation coefficients between the
values of driving/steering commands issued and the values of
sensor readings in each time-step throughout a race (correla-
tion coefficients are based on the average of 50 independent
races of a controller) and (c) examining a series of scatter
plots between driving/steering commands and selected sensor
readings.

IV. RESULTS

A. Optimisation for Aggressiveness

1) Optimising for wall collisions: The first step was to
evolve controllers that learn how to keep a safe distance
to the walls at all times, thus, simulating the behaviour of
a conservative driver. An intuitive hypothesis suggests that
this could be achieved by maximising absolute progress and
minimising wall collisions. Much to our dismay, the desired
objectives failed to be optimised and the evolved controllers
exhibited a rather aggressive behaviour by developing high
speeds and crashing into the walls while turning (see Fig-
ure 2(b)). The pareto front presented in Figure 1(a) clealy
identifies this trend. Note the negative correlation in which a
high absolute fitness is seen with low wall collisions fitness
(high number of wall collisions).

The next step was to incorporate more objectives crafted
to describe the frequency of changes in the steering and
driving commands issued by the controller. We have pre-
viously observed that changes on these commands have
been made quite frequently in evolved controllers whereas
human drivers rely on a more steady style of driving, so,
we decided to minimise the number steering and driving
changes (the minimisation of steering and driving changes
has been performed into different runs) combining them with
the maximisation of absolute progress and minimisation of
wall collisions. The pareto front resulting from the three
objectives (steering changes, absolute fitness and wall col-
lisions) has been decomposed into three pairs of objectives
and is illustrated in Figures 1(b), 1(c),1(d). Surprisingly,
we observed that high absolute fitness has been traded-off
with low steering changes fitness (high number of steering
changes) and low wall collision fitness (high number of
wall collisions). Interestingly, in Figure 1(c) we note that
that steering changes and wall collisions are non-conflicting
objectives (low number of steering changes is seen with low
number of wall collisions – although their relationship does
not appear to be completely linear). At first sight it seems
that a steady human driving style has not been adopted
by the evolved controllers, resulting mainly in aggressive
driving behaviours that exhibit numerous wall collisions in
an effort to achieve high absolute fitness. On the other
hand, a different trend has been observed into the majority
of pareto fronts resulted from the optimisation of driving
changes, absolute progress and wall collisions (an illustrative
pareto front is presented in Figures 1(e), 1(f), 1(g)). In
Figure 1(e) we note that high absolute progress fitness has
been traded-off with a high driving changes fitness (low

number of driving changes) and most importantly Figure 1(f)
shows that in the majority of pareto front points, low wall
collisions fitness (many wall collisions) correlates (with a
non-linear relationship) with high driving changes fitness
(small number of driving changes), an observation indicative
of two conflicting objectives. Nevertheless, similarly to the
previous case, there is a negative correlation between wall
collision fitness and absolute progress fitness (Figure 1(g))
indicating that a controller that drives as far as possible will
have to trade this off with a high number of wall collisions.

It has become apparent that in order to evolve controllers
that drive conservatively without crushing into the walls we
need to request the maximisation of driving changes (min-
imisation of driving changes fitness). Intuitively, a controller
could avoid wall collisions by either constantly oscillat-
ing between forward and backward driving commands thus
achieving a constant low speed or, at the best case, accelerate
and brake only when appropriate. The next experiment has
been setup in this way using three objectives: absolute
progress fitness, driving changes fitness, wall collision fitness
(progress and collision fitness to be maximised). A resulted
pareto front is depicted in Figures 1(g), 1(h), 1(i). First thing
to observe is a great diversity of points. Our hypothesis
that a minimisation of driving changes will result in more
diverse driving behaviours was justified when we tested the
evolved controllers. In this case it is not very obvious that
high absolute fitness is seen with a great number of driving
changes (Figure 1(g)). In addition, Figure 1(h) shows that the
relation between wall collision fitness and driving changes
fitness is highly non-linear. The movement trace depicted in
Figure 2(c) shows a smooth trajectory of the learner (red
car) without any wall collisions, however, the car drives at
a constant low speed and does not reach a high absolute
progress fitness.

Figures 3(a) and 3(b) show the average use of formal
parameters, representing sensor readings, in the controllers
of pareto fronts generated by maximising and minimising
the number of driving changes respectively. In Figure 3(a)
we note the angle to next way point and speed sensor
readings are the dominant parameters used by the program
structures. Interestingly, the angle to next way point sensor
reading is under dominant usage and significantly determines
the steering direction (see a consistent negative correlation
between steering commands and AWP in cases 1 and 2 of
Table I). Car sensor readings for reasons that will be clear
later on are not used at all. Case 1 in Table I refers to the
maximisation of driving changes and details a negative corre-
lation between driving commands and speed sensor readings
(i.e. low driving command when high speed is reached)
indicative that the controller quickly oscillates between dif-
ferent driving commands in order to keep a steady speed
and avoid wall collisions. On the other hand, we note that in
Case 2 of Table I the relation between speed sensor reading
and driving command is positive explaining the fact that the
controller can reach high speeds (aggressive behaviour, no
avoidance of wall collisions). The examination of scatter
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Fig. 1. Pareto Fronts: (a) optimising for wall collision avoidance; (b, c, d) optimising for aggression and max. speed; (e, f, g) optimising for aggression
and max. speed; (h, i, j) optimising for smoothness, wall collision avoidance and low speed; (k, l, m, n, o) for maximum car collisions.

(a) (b) (c) (d) (e)

Fig. 2. (a) Wall-sensors setup (Car sensors have same orientation); Movement Traces (learner in red, opponent in blue): (b) maximum speed, wall-collisions;
(c) low speed, no wall collisions; (d) car-collisions-provoking driver; (e) opponent weakness exploitation.

plots in Figures 4(a), 4(b) (referring to maximisation of
driving changes) show that the controller is issuing a wider
range of driving commands (including neutral) allowing it to
better regulate its speed whereas Figures 4(c), 4(d) (referring
to minimisation of driving changes) detail that the controller
is exclusively issuing either forward or backward commands.
A similar trend is depicted in the scatter plots of steering
commands in which the wall avoiding controller issues
numerous neutrals (no steering) allowing it to better regulate
and smooths its orbit. The aggressive controller is mainly
issuing left or right (Figure 4(d)) indicative of “desperate”
efforts (mainly due to high speed) to get into course and orbit
the next way point. However, this was a slow driver. Note
how in the case of a quicker driver, in Figure 4(e), there are
less neutral driving commands issued and these are issued in
higher speeds. Also we observe a higher variance in angle-
to-next-way-point values where the controller issues neutral
steering commands.

2) Optimisation for car collisions: The next step was
to evolve controllers that maximise the car collisions with
the opponent driver. The combination of objectives that
induced behaviourally interesting individulas included the
maximisation of absolute progress fitness, car collisions,
car closeness, and driving changes. Figure 3(d) shows the
average use of formal parameters in the evolved expression
trees of one of the most diverse pareto front resulted in an
experimental run. We note that car-sensors are not being
utilised by the evolved programs. In an attempt to understand
why we recorded the car-sensor readings during 100 races of
10 different evolved controllers from different pareto fronts
optimised using different objectives. Surprisingly, it turned
out that opponent cars are most of the times invisible to the
learner. Significant sensor values indicating the presence of
a car appear only in the 100 time-steps where the competing
cars are moving in the first straight track segment and are
more likely to be moving next to each other. While the
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Fig. 3. (a, b, c, d) average usage of formal parameters in expression-trees; (e) distance between competing cars during first 100 time-steps in weakness
exploitation behaviour (avg. of 50 races); (f) distance between competing cars during whole race (700 time-steps) in car-collisions-provoking behaviour
(avg. of 50 races); (g, h) opponent car sensor readings during whole (700 time-steps) race averaged over 10 evolved controllers in 10 races with each
one; (i) comparison of average values of behavioural objectives between opponent and a car-collisions-provoking driver; (j) scatter plot between driving
commands issued in one sample race with a a car-collisions-provoking driver.
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Fig. 4. Scatter plots of issued driving and steering commands against sensor readings throughout a sample race: (a, b) slow driver, no wall collisions; (c,
d) wall colliding driver; (e, f) fast driver, no wall collisions; (g, h, i, j, k) opponent-weakness exploiter; (l, m, n, o) car-collisions-provoking driver.

graphs show an average of sensor values its variance is
high (not shown for clarity) making these kind of sensor
readings not a very reliable and consistent measurement for
the learner. This is intuitive in a way if we consider that most
of the times the distance between the cars oscillates making
often making them invisible to each other. The testing of
evolved controllers under this setup revealed that in order
to maximise the car collisions, the learner needs to model

the driving behaviour of the opponent and drive close to
it at all times. The closer the driving distance the higher
the likelihood of collision. Figure 3(f) show that for a car-
collision-provoking controller the average distance between
cars remains approximately constant throughout a race (avg.
of 50 races). Also, for the same controller, Figure 3(i) shows
its behavioural measurements matching those of the opponent
car. Figure 3(j) illustrates an excellent relation between the



driving commands issued by the opponents in the race
depicted in Figure 2(e) (note the small course deviation that
indicate car collisions). It is clear that the majority of times
that the opponent issues a forward command the learner is-
sues either forward or neutral in order to adjust its speed. The
pareto front depicted in Figures 1(k), 1(l), 1(m), 1(n), 1(o)
shows no correlation between closeness and minimum car
collisions resulting in great diversity of values that does
not necessarily reflect behavioural diversity. Interestingly,
small number of driving changes is seen with high closeness
between cars. On the other hand, driving changes did not
seem to correlate with the number of car collisions and a
widespread pareto front has been generated. Finally, high
diversity is also noticed between absolute progress fitness
and car-closeness, nevertheless, absolute progress is not a
significant objective as the ultimate goal has been revealed
to be the modeling of competitor’s behaviour.

B. Optimisation for Opponent Weakness Exploitation
This is a rather obscure definition of behaviour, thus,

the objectives that needed to be in place in order for the
emergence of something interesting were not obvious prior
to experimentation. Our intuition suggested that we could
allow the evolutionary process to help us understand what
could be possibly defined as opponent weakness exploitation.
Indeed, a driving behaviour that was learned along this line
was obtained while maximising for absolute progress, speed,
closeness and steering changes. A movement trace of this
bahaviour is illustrated in Figure 2(e). An opponent car (in
blue) that ignores a approaching learner (red car gradually
approach by the side) and keeps on moving in a straight
line (without any attempt of avoidance) will be pushed away.
Figure 3(e) plots the distance between the two cars for the
first 100 time steps as recorded in 50 independent races
(average shown with bold line). A close look reveals that
the distance decreases after time-step 20 until it reaches a
global minimum at around time-step 32 (when the impact
takes place) and then gradually increases again leaving the
opponent stuck against the wall in most of the times. The fact
that the opponent car (in blue) constantly drives in a straight
line is indicative that the learner is slowly approaches until
it crushes onto the opponent and quite surprisingly proceeds
counter-clockwise but facing the wrong way.

Figure 3(d) shows the average use of parameters within
the expression-trees of the evolved pareto front. Surprisingly,
the controllers, similarly to previous cases, make no use of
car sensor readings. So, how can a learner know how to
approach the opponent if that car is not visible? Looking
for correlations in Case 4 of Table I we noted a positive
correlation between the driving command and car sensor
readings 3 and 4 (these are sensors protruding vertically to
the sides of the car – see Figure 2(a)). We then examined the
series of scatter plots between the driving commands issued
and the value of these two car sensors (Figures 4(j), 4(k)).
The data for these scatter plots have been generated during
a race where after the initial collision the learner process but
faces the wrong way. Surprisingly, we found that for sensor

4, in Figure 4(k)), the controller issues a backward driving
command while it senses the opponent. This happens towards
the half of the first straight segment of the track. This is
of course imaginary, the learner makes no use of car sensor
readings, it is being discussed for the shake of demonstration
of driving commands issued when the learner is in parallel
to its opponent. The scatter plot (Figure 4(k)) indicates that
as long as the learner is in parallel to the opponent it issues
slowing commands to adjust its speed for collision. After the
collision the opponent was crushed against the wall and the
learner proceeded facing the wrong way, thus the positive
driving command in Figure 4(j) (causing the car to slow
down) each additional time the learner was passing by the
stopped opponent. We argue that besides the fact that the
learner was unable to see the opponent it was still possible
to evolve a quite aggressive behaviour that was observed
towards the middle of the first straight segment of the track
and was only due to the commands emerging by the non-
linear combination of way-point and wall sensor readings.
The commands issued at that particular track segment often
resulted in opponent knock out2, thus, making the race easier
and was often rewarded by selection pressure.

V. DISCUSSION

Multiobjective evolutionary algorithms have not been ap-
plied widely to games so far; one very recent exception is
due to Schrum and Miikkulainen [14]. In this paper, we have
tried to demonstrate a way in which MOEAs lend themselves
to improving the relevance of game learning research, by
allowing us to create agents that not only play a game well,
but in an interesting way.

A conceivable criticism of this idea is that it might not
be very general: it works for car racing, but does it work
for real-time strategy, first-person shooters and chess? We
are still waiting for those experiments to be done, but
there are reasons to believe it would work. Many of the
objectives defined in this paper can be transformed more
or less straightforwardly to other game genres. Absolute
progress is simply the score of a game, or the number of
captures or frags or some such measure; relative progress is
simply absolute progress minus the absolute progress of your
competitor or opponent (most games are not zero-sum games
for most measurable quantities). Proximity to competitor is
a measure that can be used in any game that takes place in
physical space. The number of driving and steering changes
objectives can be applied as they are to a game with discrete
action space, or as an average control signal magnitude in
games with continuous space.

Of course, there will always be a objectives that are unique
for particular games or game genres. Examples of these (to
be maximized or minimized) could be number of bullets
fired or time spent hiding in a first-person shooter, number
of resources secured or time from start of the game until the

2During that segment the opponent’s trajectory is predictable and of
course the two cars start in a high proximity, making it easier for the learner
to approach and overtake.



TABLE I
PEARSON CORRELATION COEFFICIENTS BETWEEN DRIVING/STEERING COMMANDS AND SENSOR READINGS ISSUED EACH TIME-STEP AVERAGED

OVER 50 INDEPENDENT RACES; Case 1: NON-WALL COLLISIONS; Case 2: WALL COLLISIONS, MAX. SPEED; Case 3: MAX. CAR COLLISIONS; Case 4:

OPPONENT WEAKNESS EXPLOITATION

WSR1 WSR2 WSR3 WSR4 WSR5 SR AWP DWP CSR1 CSR2 CSR3 CSR4 CSR5

Case 1 Driving .187 .016 −.173 −.057 .230 −.329 −.182 −.048 −.007 −.002 .061 .050 −.035
Steering .382 −.284 .197 −.218 .009 −.224 −.431 .096 −.006 −.011 −.008 .056 .024

Case 2 Driving .043 .242 −.265 .079 .450 .568 .040 −.004 −.002 −.029 .098 .098 −.021
Steering .291 −.280 .124 −.127 −.036 −.122 −.628 .031 .013 .013 .010 .042 .006

Case 3 Driving .039 .001 −.302 −.168 .347 −.439 .096 .223 −.045 −.016 −.003 .035 −.114
Steering .271 −.217 −.050 .022 .004 −.031 −.570 .004 .038 .006 .015 .046 .014

Case 4 Driving .055 .270 −.234 .063 .256 .773 .106 .287 .057 .033 .533 .517 −.005
Steering .083 −.088 .012 −.044 .112 −.025 −.290 −.046 −.014 −.011 −.041 −.008 .020

first military encounter in a real-time strategy game, or the
dispersion of units over the board or time until first capture
in chess. The important thing is that the objectives should be
at least partly conflicting for a pareto curve to be generated
from which interesting strategies can be picked.

An interesting future research topic would be to auto-
matically define new objectives. This could probably be
done using statistical and clustering techniques, based on the
behaviours of controllers of varying performance.

Multiobjective evolution with behavioural objectives could
also be used to improve modelling of human playing styles.
In [1] we argue (and exemplify) that direct modelling of
human playing styles tends to result in player models that
generalizes badly to new environments. It seems plausible
that a combination of objectives based on consistent perfor-
mance across multiple environments and objectives based on
faithful replication of human playing styles could help in
learning behaviour that was both robust and human-like. In
the context of the current racing game, the fitness measures
used in this paper could be complemented with e.g. average
absolute progress on a number of tracks, variance in absolute
progress on the same set of tracks, and similarity of driving
to the recorded human player’s driving on a test track (based
on e.g. speed and lateral displacement at each way point).

In this paper, we have only investigated evolving against a
single fixed opponent. It would also be interesting to evolve
against a number of other cars and to evolve against cars
controlled by models of human players, like in [1].

VI. CONCLUSIONS

We have argued that it is important for CIG research to
focus on agents that not only play games well, but also
that behave in interesting way. One way to automatically
create such agents is to evolve populations that behave
differently to each other along interesting dimensions, and
then select various individuals from the population that are
sufficiently dissimilar to each other. This can be done using
multiobjective evolutionary algorithms and multiple partly
conflicting behavioural fitness measures.

We have provided an example of this approach, through
defining a number of suitable behavioural fitness measures
for a car racing game and evolving neural network controllers
for the game using two or three objectives at a time. Our

experimental results show that a surprisingly rich repertoire
of different strategies can be automatically generated using
these simple means and an apparently simple game. They
further showed that the interactions between the behavioural
objectives produced unexpected effects which added to our
understanding of the central mechanic of the game. We
believe the technique presented in this paper to be useful
for a large number of game genres, and even the specific be-
havioural fitness measures presented here to be transferrable
to games of other genres.
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