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Abstract— The K-connected Deployment and Power Assign- optimized simultaneously [1], [2]. Thus, we have considere

ment Problem (DPAP) in WSNs aims at deciding both the sensor jt important and challenging to investigate the multiohije
locations and transmit power levels, for maximizing both tre K-connected DPAP in WSNS.

network coverage and lifetime under K-connectivity constaints, .
in a single run. Recently, it is shown that the Multi-Objective In [1], [2], [3], we have demonstrated that the Multi-

Evolutionary Algorithm based on Decomposition (MOEA/D) isa Objective Evolutionary Algorithm based on Decomposi-
strong enough tool for dealing with unconstraint real life prob-  tion [11] (MOEA/D) is a strong tool to tackle unconstraint

lems (such as DPAP), emphasizing the importance of incorpat-  real-world problems (e.g. DPAP) emphasizing the imporanc
ing problem specific knowledge for increasing its efficiencySince of incorporating WSN knowledge for increasing its efficignc

the K-connected DPAP requires constraint handling, seveia . . . .
techniques are investigated and compared, including a DPAP However, the addition of constraints in DPAP necessitabes ¢

specific Repair Heuristic (RH) that transforms an infeasibe Straint handling and render the tailoring of the existingABP
network design into a feasible one and maintains the MOEA/DS  specific MOEA/D, to match the abundance of the constraints

tefficiency SiTUJtaUEOUSLV; 'mjs is achievg_d bt)_/ a”””ﬁ““g@jr%m;_een and objectives of the K-connected DPAP for WSN design in its
WO repair strategies, wnicn ravor one objective eacn. simation t H i .
resultsphave shogvvn that the MOEA/D-RIJ—l performs better than full pra(?tlcal Complexny, as a ma_Jolr challenge. MO.EAS with
the popular constrained NSGA-II in several network instanes. Con_Stra'm ha.ndl'ng. focus at obtaining a set of feas@lgeiéar
optimal solutions, i.e. Pareto Front (PF) [12], providirget
l. INTRODUCTION trade-off between two or more conflicting objectives. Felasi
The Deployment and Power Assignment Problem [1], [2&re the solutions that satisfy all constraints, and infdasi
[3] (DPAP) in WSNs [4] aims at deciding both optimal sensoare those that do not. In the literature, there are several
(a) locations (deployment [5]) and (b) transmit power Isvekonstraint handling techniques [13], including the use of a
(power assignment [6]) for maximizing the (i) coverage anBenalty Function (PenF), adopting the rules of the Sup#rior
(ii) lifetime objectives in a single run. DPAP is typical forof Feasible solutions (SoFs) and using a Repair Heuristic
applications which invoke a limited number of expensivéRH) [14]. For the latter, Coello [13] has effectually deeld
sensors, where their operation is affected by their posdind that “any heuristic which would guide the repair process, and
communication. In that case, the application might favar ththe success of this approach relies mainly on the abilityhef t
use of a centralized or even an offline algorithm to compuge thiser to come up with such a heuristitlence, RH is a good
decision variables, prior deployment. In WSNs, conneisti@  choice when an infeasible solution can be easily transfdrme
crucial for most applications [7], [8], since a possibletjtiman to a feasible one without harming the optimization process a
of the network into disjoint parts may cause undesirabie carefully designed with problem domain knowledge.
effects, such as decreasing the coverage and consequantly tIn this paper, the K-connected DPAP in WSNs is defined
amount of information forwarded to the interested users. @&d formulated as a constrained Multiobjective Optimiati
natural generalization of connectivity is K-connectividy K- Problem (MOP). Then, several constraint handling techesqu
fault tolerance [9], [10]. Fault tolerance is a central tdradle are designed and/or adopted by MOEA/D for tackling the
in WSN design, since the failure of the battery constraingmtoposed MOP. Namely, 1) a PenF is defined for DPAP and
sensors is very common in most applications. A WSN desigised for directing the search into the feasible regions of
is usually self-healing when each sensor sust#ing faulty the search space by penalizing the infeasible solutions. 2)
neighbors (i.e K-fault tolerant WSN design). However, mosfThe proposed DPAP-specific RH is designed for transforming
studies [7], [8], [9], [10] focus at deciding either (a) or)(b an infeasible solution into a feasible one and maintaining
for maximizing (i) or (ii) individually, or by constrainingne MOEA/D’s efficiency simultaneously, by alternating betwee
and optimizing the other while maintaining connectivitye(i two repair strategies, which favor one objective each. 3 Th
K=1) and/or designingK-fault tolerant WSNs. This often rules of the SoFs are adopted, initially proposed by Deb for
results in ignoring and losing “better” solutions, sincee thhandling constraints with the popular Non-dominated 8grti
WSN coverage and lifetime are conflicting objectives an@enetic Algorithm 11 (NSGA-II) [12], which favor feasible
warrant a trade-off. Moreover, the two decision variablesolutions over infeasible. Finally, MOEA/D and NSGA-II are
highly influence both objectives and constraints, and shbal compared in several constrained DPAP network instances.



Il. PROBLEM DEFINITION B. Problem formulation

A. System model and assumptions The K-connected DPAP in WSNs can be formulated as a

Consider a 2-D static WSN formed by: a rectangular Sensi@qnstr'amed MOP,

area A, N homogeneous sensors and a static sthkwith )

unlimited energy, placed at the center df We assume a * “‘ 2-D plane of area size x y.

perfect medium access control and we adopt the simple bue /V: humber of sensors to be deployedAn
relevant path loss communication model [2]. In this model, * £ initial power supply, the same for all sensors.

the transmit power level that should be assigned to a sensot [s: Sensing range, the same for all sensors.
i to reach a sensof is P, = 8 x d%, wherea € [2,6] is e P4z : maximum transmission power level, the same for
1 T 3 b)

73
the path loss exponent arti= 1 is the transmission quality all sensors.

parameter. The energy loss due to channel transmissidh,is Decision variables of solution X:

whered; ; is the Euclidean distance between sengaxad ;. « Lj; : the location of sensoy.

The communication range of each sensds k. = d;;, S.t. « P; : the transmission power level of sengor

Ri < Rpax, Where Ry, is the maximum communication Objectives: Maximize coverageCv(X) and lifetime L(X),
range that is determined by the maximum transmit poweubject to K-connectivity Cn(X) = 1.

level that a sensor can be assigned, denote®as.. The  The network coverag€v(X) is defined as the percentage
assignedP; and the locationd; = (x;,y;) are the DPAP’s of the covered grids over the total grids dfand is evaluated
decision variables and are considered fixed for the whade follows:
network lifetime, wherdz;, y;) are sensoi’s coordinates and

i =1,...,N. The residual energy of sensgrat timet, is

calculated as follows:

T Y
Co(X)=1>_ > g y)/(x xy) 4)
2'=01y'=0
Ei(t) = Ei(t— 1) — [EL(t) + E () + Es] 1) where,x X y.is the total grids ofA andg(z’, ') is calculated
using Equation (2).

whereE! (t) = kx (r;(t)+1) x (P, x amp+ E.), B! (t) = The network lifetimeL (X) is defined as the duration from
k xr;(t) x E.; is the amount of energy consumed by sensorthe deployment of the network to the cyele which a sensor
for transmission and reception, respectivdly,is the amount j depletes its energy suppl and is evaluated as follows:
of energy consumed for sensing and procesgingvhich is Algorithm: Lifetime Evaluation
the amount of data sensed and collected by a sensor with &ep 0: Sett := 1; E;(0) := E, ¥j € {1,.., N};

fixed sensing range?, (ri(t) + 1) is the total traffic load  gtep 1: For all sensorsj at each time interval do
that sensor; fo_rwards towardsH at }t”(@(t) is the traffic Step 1.1:UpdateE; (t) according to Equation (1);
load thati receives and_ relays andfl is th_e data packet Step 1.2:Assign each incoming link of sensgra
generated by to forward its own data informationymp is the weight equal toF; (t);
power am.plifier’s energy consu_mption aritl; i_s the energy Step 1.3:Calculate the shortest path frojrto H:
consumption due to the transmitter and receiver electsonic Step 2 If 3 € {1,..., N} such that&; () = 0 then stop
Furthermore, it is assumed that is divided intox x y .and set: Y J
uniform consecutive grids to make the coverage problem more |
computationally manageable. The size of the grids is skvera
times smaller tham x R, for a more accurate approximation
within the sensing disk. A sensing model based on the definite Elset =t + 1, go to step 1;
range law approximation is considered [7], The same algorithm can be easily modified to consider differ-
ent energy models in Step 1.1 (e.g. [2]) and routing algorth
. 1 if 35 € {1,., N}, da, 4,209y < Rs, in Step 1.3 (e.g. geographical-based [15] routing algorith
9", y') = { 0 otherwise P The percentage of K-connected sensorsXircan be mea-
’ (2) sured as follows:
is the monitoring status of a grid centered(at, y") with 1
indicating that the grid is covered aridotherwise. Cn(X) =|CS|/N (6)
Finally, the connectivity status of a sengprs denoted as,

L(X) =t %)

whereC'S = {j|c; = 1}, Cn(X) = 1 when all sensors are
K-connected and, is calculated using Equation (3).

®3)

~_J 1if j is K-connected,
71 O otherwise,

IIl. CONSTRAINT HANDLING TECHNIQUES THE

where sensojy is usually considered K-connected [9], if it PROPOSEDREPAIR HEURISTIC (RH) IN MOEA/D

directly communicates witH or if it sustains K neighbors A- MOEA/D [11]: an overview
with positive advance [15] towardd, considering the many- The MOP can be decomposed into subproblems using
to-one communication nature of WSNSs. any technique that constructs aggregation functions, they.



Weighted Sum Approach [11]. Then, a subprobléemith a 1) Penalty Function [13], PenFtransforms a constrained

weight coefficient\! can be defined as: MOP into an unconstrained one by subtracting a certain value
maz ¢ (X|N) = NL(X) + (1 = X)Co(X). (known_as penalty measured by a penalty function) f_rom.the

scalar fithess value, based on the amount of constraint-viola
The dense-to-spread encoding representation is adogted {@n. It aims at favoring the feasible solutions over infbkes

The Internal Population/ P (stores the best solutions foundones during the selection process. The amount of violation i

for each subproblem during the search) is randomly initial- measured based on the percentage of sensors in the network

ized. A new solutiorO is generated by the genetic operatorghat violate the K-connectivity constraint. The penalty af

(e.g. [2]) and a local heuristic (e.g. [3]) is applied to e&2ko  go|ution X is measured as follows:
produceX. In the update phase [11], tHé>, the neighborhood

of X (i.e. the solutions of thel' closest subproblems of pn(X) =1-Cn(X),

i in terms of their weight coefficient§\',---,A™}) and whereCn(X) is calculated using Equation (6).

the external populatioi£P) (stores all the non-dominated A constrained subproblem can then be transformed into
solutions found so far during the search) are updated With gn unconstrained one as follows:

The search stops after a predefined number of generations, , . . ,
genmaz- MOEA/D proceeds as in Algorithm 1. maz  g'(X, ") = [N'L(X) + (1 = X")Cv(X)] — pn(X)

2) The superiority of feasible solutions [12], SoF#
comparison between two solutiods andY of a subproblem

Algorithm 1 MOEA/D framework

Input: i is performed based on the following rules:
e network parameters4, N, E, R;); . . . -
e m : population size and number of subproblems: « If X is feasible and” is not feasible then select.
e T': neighborhood size; « If both X andY are feasible then select the one with the
e uniform spread of weight coefficients', ..., A™; highest scalar fitness.
-othe maximum nun|1ber 0‘; g_energtlonmznmaw; « Ifboth X andY” are infeasible then select the one with the
utput: the external populationi; . least constraint violation, i.e. the least number of senisor
Step 0-Setup:Set EP := 0; gen := 0; IPyep, := 0; that violate the K-connectivity constraint.
Step 1-Decomposition:Initialize m subproblems. It aims at favoring the good feasible, or least infeasible
Step 2-Initialization: Randomly generate an initial internalsp|utions to be copied in the next generation.
: _ 1 m . e . . .
population/ P = {Y ", ... , Y™}, 3) DPAP-specific Repair Heuristic, RHiims at transform-
Step 3: For each subproblem =1 to m do . . : ; : . .
) ing an infeasible solutiotX to a feasible solutior¥ in such
Step 3.1-Genetic Operators [2]:Generate a new solu- that:
tion O by using the weight-based selection, the windo/ft Way that: ) S _ )
crossover and the adaptive mutation operators. « the feasible solution is similar to the infeasible to suppor
Step 3.2-Local heuristics: Apply an improvement [3] the exploration behavior of the MOEA/D.
and/or repair heuristic t0 to produceX. . the origin of infeasibility is used to support the exploita-

Step 3.3-Update PopulationsUpdatel Py, EP and the
T closest neighbors of subprobleinwith X .

Step 4-Stopping criterion: If stopping criterion is satisfied, i.e. - — - —
gen = genmae, then stop and outpuE P, otherwisegen — Algorithm 2 The DPAP-specific Repair Heuristic (RH)

gen + 1, go to Step 3 Input: A solutiqn X; .
Output: A feasible solutionZ;

. Step 0: SetK; s;
A major advantage of MOEA/D, compared to other P ° 1 goto Step 2

MOEAs, is that each solution in the population is associatedeP 11 Cn(X) =1 o goto Step 5
with a scalar subproblem. Thus, in [1], [2], [3], we have showStep 2: Find the origin of infeasibility, e.g. sensgr
that MOEA/D can easily adopt different single objectiveteP 3:
methods for optimizing each scalar subproblémaccord- ( Step 3.1Divide the circle ¢ = Rimaz)
ingly. This is achieved by designing problem specific geneti centered at_x into s equal sectors
operators/heuristics rising by each subproblémobjective > 0.5 Step 3.2Find the sparsest secfor
L . . ) Step 3.3Uniformly randomly generate a new
preferer)ce (i.es*) and reqwremen_ts.. The pargmgter is used i\ location L', in the sparsest sector, sBf = (d%%);
as a guide to the operators/heuristics for adjusting theegeg Step 3.4Find the K*" closest location td.;,
of network coverage and lifetime. In this paper, the main eg.L, € X;
focus is at constraint handling and specifically at the mepai Step 3.5Calculate a new locatiod; using Eq. 7,
heuristic, which aims at designing feasible and high qualit . setP; = (R2)%;
WSN topologies of different objective preferences, at tias Step 4:1f 3j](25,4;) € X, ¢; £ 1 then goto Step 2:
time. Step 5:Output Z = X;
B. Constraint Handling Techniques

The following constraint handling techniques were designe To achieve this, the\* weight coefficient of each subprob-
and/or adopted for tackling th&-connected DPAP, lem i is used as a guide to the RH for specifically repairing

tion behavior of the MOEA/D.

< 0.5
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(a) Repairing an infeasible solution with low, (b) Repairing an infeasible solution with low?, (c) Repairing an infeasible solution with high
increasing lifetime. increasing coverage without affecting lifetime. \*, increasing coverage.

Fig. 1. Examples of repairing an infeasible solution for gnalblems with low and high\? coefficients.

an infeasible solutioX based on the foresaid remarks and ithe infeasible solution (Figure 1(c), fdt = 1). If there does
objective preference. The RH (outlined in Algorithm 2), hasot exist aL that satisfies;; = 1 andd,, < d;u, thenj is
the following characteristics: directly connected td{ to repair the infeasibility.

« When )\ is high, and subproblem focuses at feasible
solutions with high network lifetime, the RH

1) divides the circle with radius = R,,,, centered at
Ly into s equal sectors (e.g. = 4).

2) finds the sparsest sector (i.e. the sector with t
lowest number of sensors).

3) redeploys the origin of infeasibility, e.gatL; € X,

IV. SIMULATION RESULTS AND DISCUSSION

The goals of our simulation studies are: 1) to demon-
strate the difficulty in obtaining feasible solutions foreth
ﬂ%—connected DPAP through a purely random process, 2) to
test the strength of the three constraint handling teclesqu
with MOEA/D at dealing with the K-connected DPAP and
o a random locatiorL; within the sparsest sector,to show the superiority of the_z_proposed repair heuristic \RH

such thatRy — d,j; < Rumee and setsP; — (R7)°. that mcorporates DPAP-specific knowledge. 3_)_T0 demotestra

i c oY i o J ¢ the effectiveness of the proposed DPAP-specific MOEA/D-RH
In this case, while the RH is repairing an infeasible nely,qinst the popular constrained NSGA-II (using the SoFs) in
work design it might also provide the following benef'tsi/arious WSN instances, giving the trade-off of the objeativ

— supports the network load balancing and prevengmd a variety of feasible network design choices.
a premature energy exhaustion of the sensors that

are already directly connected fé, increasing the
network lifetime (Figure 1(a), foi = 1).

TABLE |
NETWORK INSTANCES(NIN)

— covers any previously uncovered area closeHtp Nin A (m?) N Density (N/A)
; ; ; ; T 2500(50% 50) | 25 | 0.01 (25/2500)
increasing thg n.etwork_ coverage without decreasing > S200(30% 50) |50 |—0.02 (5012500}
the network lifetime (Figure 1(b), foK = 1). 3 2500(50 x 50) 63 | 0.025 (63/2500)
i . : _ 4 10000(100x 100) | 100 0.01 (100/10000)
. When/\_ is _Iow, subproblemy focuses at feasible solu 5 10000(100% 100) | 150 | 0.02 (150/10000)
tions with high network coverage. The RH, & | 10000(100x 100) | 250 | 0.025 (250710000)

1) finds a sensov, which is the K*" closest positive-
advance neighbor of sensgpr
2) Then,j is redeployed to a new’; as follows,

Table | shows several network instances. In our simulation
studies we have investigated sixteen network instanceg; ho
ever, only six are presented here due to the page limit. In
all simulations, we have used the following network seting
a =2, Ry = 5m, Ryax = 10m, amp = 100p.J/bit/m?,

E, = E. = 50nJ/b, k = 250bytes, E = 5J and square grids
with 1m side length. Moreover, we have used the following
9R, algorithm settingsm = 120, crossover rate. = 1, mutation

{ Rinas rater,, = 0.1, tournament size; = 10 and gen,,q, = 250,
_ T =2 asin [1], [2], [3]. In all cases, lifetime is normalized
3) SetspP; = (R1)”. with the upper boundI(,,,...) defined in [3].

This results in low sensing range overlaps between the sentnitially, to get an estimate of how difficult is to generate

sors that might increase the network coverage while regairifeasible network designs in the proposed K-connected DPAP

L = Lj + (dju = R)) x (Lu = L;)/dju - (7)

v if ¢ =1,djy <dju
H otherwise

)

where,u = {

if Ryaz > 2R

otherwise

Rl =



TABLE Il TABLE Il

SIMULATION RESULTS ON S = 30000 RANDOM NETWORK DESIGNS SIMULATION RESULTS OF MOEA/D W/RH, w/SOFs AND W/PENF
Disconnected Sensorf Disconnected Sensors
NIn | K | Infeasible Sol. 0 Total Average NIn | K | Infeasible Sol.| o Total | Average
1 29235.0 0.0255 | 275337.0 9.175 MOEA/D wW/RH
2 30000.0 0.0 511665.0 17.05 1 27751.0 0.075 | 153857.0 5.12
1 3 30000.0 0.0 649890.0 21.675 2 19665.0 0.345 52634.0 1.754
4 30000.0 0.0 717879.0 | 23.925 3 20106.0 0.330 | 60080.0 2.0
5 30000.0 0.0 741642.0 | 24.725 4 20448.0 0.318 | 70083.0 2.33
1 12870.0 0571 16766.0 1.7 5 21898.0 0.270 | 80357.0 2.67
2 30000.0 0.0 110425.0| 11.05 MOEA/D w/SoFs
2 3 30000.0 0.0 2144410 | 21.45 1 27941.0 0.069 | 197800.0 6.59
4 30000.0 0.0 321518.0 32.15 1 2 30000.0 0.0 313096.0 10.43
5 30000.0 0.0 205060.0 205 3 30000.0 0.0 458423.0 15.28
T o900 o7 | S0 [ oS ! ey oe e e
2 30000.0 0.0 82646.0 8.253 . i EA/b WIPenE . -
o |3 o e e 1| zmmo" oo [ Teemeo] ses
5 30000.0 0.0 | 411594.0 | 41.139 2 30000.0 00 | 1595600[ 531
3 30000.0 0.0 217785.0 7.25
4 30000.0 0.0 242473.0 8.08
5 30000.0 0.0 289071.0 9.63

through a purely random process, we have measured (i) the

o = |F|/|S| metric, where|F| is the number of feasible ut | dal he REDS(A) is th |
solutions and S| is the total number of solutions generated;° utions are evenly spread aong the (4) Is the tota

(ii) the total number of infeasible solutions, (iii) the abeand number of non-dominated solutions obtained by algorithm A,

(iv) the average number of disconnected sensor$0o00 the higher the NDS is the better algorithm A is. Finally,
random trials in NIn1,2 and 3 withk € {1,...,5}. Note CPU(A) measures the total computational effort of A.
that, disconnected sensors are those that aré&rodnnected.

The results of Table Il show that the random process obtai § 1200f
feasible solutions only wheiil’ = 1. For K = 2 to 5, all
30000 network designs are infeasible in all network instance
(i.e. NIn1-3). Moreover, whenk = 1 and the density is
low (i.e. NInl, N = 25), there are only2.55% feasible 50 100 150 200 250
solutions, which mean29235 out of 30000 network designs N2 KL
are infeasible, having abo@/25 sensors disconnected pel
network design (i.e. aboui6%). When the density is high
(e.g. NIn3, N = 63) this number decreases to abdu$9%
(i.e. 0.567/63 sensors, on average). This is the reason wh
sometimes it is assumed [16] that a dense sensor deploynr Nt
implies network connectivity. Table Il, however, showstthe §*®
even when the number of disconnected sensors is low, 1
0 = 79.9% indicates that a relatively high number of solution:
is still infeasible, i.e. abou20.1% or 6030/30000 solutions.

Thereinafter, the three constraint handling techniques we
tested in NInl forK € {1,...,5} andS = m X genmas =
30000 in terms of the (i-iv) metrics, which are evaluated aftig. 2. The number of disconnected sensor per generatioaineit by
the beginning of each generation for PenF and SoFs, dA@EA/D with RH, SoFs and PenF in Ninl-3, K=1.
before repairing for RH. The results of Table Il show that
MOEA/D w/RH helps the evolutionary process to obtain Figure 2 examines the total number of disconnected sensors
feasible solutions for al's. In contrast, MOEA/D w/SoFs (ds) obtained by MOEA/D with each technique. In NIn1, all
and w/PenH obtain infeasible solutions only wh&En= 2 to techniques begin with about 1100 ds. The latter is sharply
5 (i.e. 30000 infeasible solutions and = 0.0). Besides, the decreased to about 600 ds after one generation when RH
number of disconnected sensors obtained by MOEA/D w/Risl adopted and is smoothly decreased to about 800 ds after
is lower than those obtained w/SoFs and w/PenH fosadl about 20 generations when PenF and SoFs are adopted. This

The hybridization of MOEA/D with each constraint hanindicates that RH directs the search into the feasible resyid
dling technique is compared in NIn1-3 fdf = 1, in terms the search space more effectively. When the network becomes
of the following performance metric€?(A, B) measures the denser (NIn2,3) the number of ds decreases and the three tech
solutions in an algorithm A's PF dominated by the solutionsiques perform similarly. Nevertheless, the statistiesuits,
in an algorithm B’s PF, the smallef' (A, B) is the better summarized in Table IV, show that RH is more beneficial for
algorithm A is. A(A) shows the diversity of the PF obtainedMOEA/D's performance than PenF and SoFs. MOEA/D w/RH
by algorithm A, i.e. the spread/variety of the network dasigprovides a better average metric and about 0.7 more NDS.
choices.A = 0 is the maximum, which means that thdn terms of quality, the NDS obtained by MOEA/D w/RH

NIn1,K=1

— = — MOEADwWRH |
MOEA/D wiSoFs
1000 ———— MOEAD wiPenF —|

800

@
=}
=)

# of disconnected sen:

— = — MOEADWRH _|
MOEA/D wiSoFs
———— MOEA/D wiPenF

w

o

=)
T

[
1S}
=}

# of disconnected sensors
N
=1
=]

— = — MOEADwWRH
MOEAID wiSOFs
150

# of disconnected sensors

generations



TABLE IV
SIMULATION RESULTS FORMOEA/D WITH RH, SOFs AND PENF, K = 1

A NDS CPU (hrs) c
NIn RH SoFs | PenF RH SoFs | PenF RH SoFs | PenF || RH,SoFs| SoFs,RH| RH,PenF| PenF,RH
T 0.9075 | 0.9701 | 0.9627 11 7 7 0.1296 | 0.0976 | 0.0815 0.0 0.8571 0.0 0.7143
7 0.9776 | 0.9642 | 0.9797 7 8 5 0.2611 | 0.1514 | 0.1137 || 0.3333 | 0.7143 05 0.4
3 0.9799 | 0.9787 | 0.9763 7 7 5 0.3194 | 0.2001 | 0.1817 0.0 1.0 0.0 0.6

[(Av: ][ 09550 | 0.9710 | 0.9729 || 8.3333 | 7.3333 | 5.6667 || 0.2367 | 0.1497 | 0.1257 || 0.1111 | 0.8571 | 0.1667 | 05714 |

o Ninl NIn2 NIn3 o Nin4 NIn5 NIn6
% 04 0.2 0.2 % 02 0.1 0.1
'é —%—— MOEA/D —%—— MOEAD —%—— MOEA/D x MOEA/D —*—— MOEA/D —*—— MOEA/D
g NSGA-II NSGA-II NSGA-II g NS | * NSGA-II NSGA-II
% 02 01 01 F\K\N‘ % 01 0.05 0.05
2 2 |
8 o 0 0 3 ol ol 0!
5 0 0.5 1 0 0.5 1 0 0.5 135 0 0.2 0.4 0 0.5 1 0 0.5 1
Coverage (x A, m2) Coverage (x A, mz) Coverage (x A, mz) Coverage (x A, mz) Coverage (x A, mz) Coverage (x A, m2)
Fig. 3. Comparison of MOEA/D and NSGA-II in NIn1-6, K=1
dominate85% and 57%, on average, of the NDS obtained REFERENCES
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