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Abstract. Setting appropriate parameters of an evolutionary algorithm
(EA) is challenging in real world applications. On one hand, the charac-
teristics of a real world problem are usually unknown. On the other hand,
in different running states of an EA, the best parameters may be differ-
ent. Thus adaptively tuning algorithm parameters online is preferred. In
this paper, we propose to use an estimation of distribution algorithm
(EDA) to tune the parameters of a particle swarm optimization (PSO)
algorithm. A probability distribution model of the parameters is main-
tained throughout the run. To generate a new particle, the parameters
will be sampled from the model. The model is then updated by the per-
formance improvements of all the particles. The new approach is applied
to a set of test instances and the results show that it could improve the
performance of a PSO algorithm.

1 Introduction

The parameter tuning plays a key role in applying evolutionary algorithms (EAs)
to real world applications [1]. The success of an EA depends not only on the al-
gorithm itself but also on the problem to be solved. In algorithm design, we could
tune the parameters either by repeated running or analyzing the properties of
benchmark probelems. However, these strategies may not be applicable in real
world applications. Furthermore, to achieve the best performance, the parame-
ters of an algorithm may be different in different running states. To overcome
the shortcomings of offline parameter tuning strategies, many research turn to
set algorithm parameters adaptively online [2].

Most of widely adaptively parameter tuning methods could be classified into
the following categories.

– Randomly selecting parameters: The idea is not to fix the parameters
but to select the parameters in a given set [3].

– Adaptively tuning by feedback: By this strategy, the parameters will
be adaptively adjusted by heuristic rules with take feedbacks from previous
parameter changes [4].

– Encoding parameters into chromosomes: The parameters are incorpo-
rated into the chromosomes and evolve with decision variables [5].
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– Parameter evolving: Cooperating with the main algorithm, another EA
works on the parameters and its optimal solutions, i.e. the best parameters,
are used in the main algorithm [6].

In this paper, we follow the idea of parameter evolving strategy. An estima-
tion of distribution algorithm (EDA) [7] [8] is applied to tune the parameters
of a particle swarm optimization (PSO) [9] [10]. In each generation, the EDA
maintains a multivariate histogram probabilistic model of PSO parameters. To
generate a new particle, the parameters are sampled from the probability model
thus built. After generating all particles, the probability model is updated ac-
cording to the performances of the sampled parameters.

The rest of the paper is organized as follows. The next section introduces the
problems and PSO model which are used in the paper. Section 3 presents the de-
tails of the proposed method. Section 4 describes and analyzes the experimental
results. The final section concludes the paper and outlines future research work.

2 Particle Swarm Intelligence

In this paper, we consider the following global optimization problems.

min f(x)
s.t x ∈ Ω

(1)

where Ω ⊂ Rn is the decision space and x = (x1, · · · , xn)T is the decision variable
vector. f : Ω → R is a continuous objective function and R is the objective space.

Among various techniques for global optimization, particle swarm optimiza-

tion (PSO) is a promising one. PSO is a population based stochastic optimization
technique developed by Eberhart and Kennedy in 1995 [9] [10], inspired by social
behavior of bird flocking or fish schooling. Mathematically, the ith particle at
generation t, xi(t), is updated as,















vi(t + 1) = wvi(t)
+c1r1,i(x

G(t) − xi(t))
+c2r2,i(x

L
i (t) − xi(t))

xi(t + 1) = xi(t) + vi(t + 1)

, (2)

where v denotes the volocity, xG(t) is the global best particle, xL
i (t) is the local

best particle found so far, w is the inertia weight, c1, c2 are the acceleration con-
stants, r1,i, r2,i are two dialog matrix of which the dialog elements are uniformly
randomly sampled from [0, 1].

Let αi(t) = (wi(t), c1,i(t), c2,i(t))
T be the parameter vector for generating the

itsh particle at generation t, the above generation procedure could be denoted
as

(vi(t + 1), xi(t + 1)) := generate(vi(t), xi(t), x
L
i (t), xG(t), αi(t)). (3)
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3 Evolving PSO Parameters

3.1 Algorithm Framework

Estimation of distribution algorithms (EDA) are a new evolutionary computa-
tion paradigm [7] [8]. A major difference between EDAs and traditional EAs is in
the offspring reproduction procedure. There is no crossover or mutation in EDAs.
Instead, they build a probability model of promising solutions by extracting the
global population distribution information and sample new solutions from the
model thus built. To adaptively set the PSO parameters, we use an EDA to
evolve these parameters with the main PSO procedure.

In each generation t, our approach, named parameter evolution based particle

swarm optimization (PEPSO), maintains

– a set of particles: {xi(t), i = 1, · · · , N},
– a set of velocity vectors: {vi(t), i = 1, · · · , N},
– a set of local best particles: {xL

i (t), i = 1, · · · , N},
– a global best particle: xG(t), and
– a probability distribution model of parameters: P (α(t)).

where N is the population size, and α(t) = (w(t), c1(t), c2(t))
T denotes the

parameter vector.
The main framework of PEPSO is as follows.

Step 0 Initialization: Set t := 0. Uniformly randomly generate a set of par-
ticle {xi(t), i = 1, · · · , N}, a set of velocity vectors {vi(t), i = 1, · · · , N} in
the search space Ω. Evaluate these particles by (1) and find the global best
particle xG(t). Let {xL

i (t) = xi(t), i = 1, · · · , N}. Initialize the parameter
distribution model P (α(t)).

Step 1 Stopping Condition: If stopping condition is met, stop and return
xG(t).

Step 2 Reproduction: For each particle i = 1, · · · , N , sample a parameter
vector αi(t) from P (α(t)), generate a new particle xi(t + 1) by (3), and
evaluate this particle.

Step 3 Particle Updating: Update the global best particle xG(t + 1) and
local best particle xL

i (t + 1), i = 1, · · · , N .
Step 4 Model Updating: Update the probability model P (α(t + 1)) by the

improvements of the particles.
Step 5 Set t := t + 1 and go to Step 1.

In the following, we discuss the probability model definition and implementation.

3.2 Probability Distribution Model of Parameters

Since the algorithm parameters may correlate with each other, we use a mul-
tivariate histogram probabilistic model to model the distribution of continuous
parameters. Let the boundaries of the parameter vector α = (α1, · · · , αm)T be
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[αL
1 , αU

1 ]× · · · × [αL
m, αU

m], and each dimension be divided into D subranges, the
parameter search space is thus divided into Dm grids.

The multivariate histogram probabilistic model is defined as

P (α(t)) = (p1(t), · · · , pDm(t))T (4)

where 0 ≤ pi(t) ≤ 1 denotes the probability of a parameter vector from the ith

grid, and
∑Dm

i=1 pi(t) = 1.
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Fig. 1. Illustration of multivariate histogram probabilistic model in the case of 2-
dimensional parameter vector.

Fig.1 shows a multivariate histogram probability model in the case of 2-
dimensional parameter vector. The search space is divided into 52 = 25 grids,
and the hight of each bar denotes the probability of a parameter vector is from
that grid.

3.3 Model Sampling and Updating

Let qi(t) > 0 denotes a frequency of the ith grid to be used in generation t, then

the probability pi(t) = qi(t)
∑

j
qj(t)

. Instead of maintaining a probability vector, we

maintain a frequency vector qi(t), i = 1, · · · , Dm in the running process.
In the initialization step, the frequency vector is set to qi(0) = 5.0, i =

1, · · · , Dm.
In generating the ith particle, a parameter vector αi(t) is sampled as follows.

Firstly, we randomly select a grid index Ii(t) according to the probability distri-
bution model P (α(t)). We then uniformly randomly sample a vector αi(t) from
the Ii(t)th grid.
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Define the improvement of the ith particle as

∆i(t) =

{

f(xi(t)) − f(xi(t + 1)) if f(xi(t)) < f(xi(t + 1))
0 otherwise

.

Let

ai,j(t) =

{

1 if Ii(t) = j

0 otherwise
.

The contribution of parameters from the jth grid is defined as

Cj(t) =

N
∑

i=1

ai,j(t)
∆i(t)

maxk ∆k(t)
.

We then update the frequency vector as follows,

qj(t) =















1.0 if (1 − β)qj(t) +
Cj(t)

maxj Cj(t)
< 1

10.0 if (1 − β)qj(t) +
Cj(t)

maxj Cj(t)
> 10.0

(1 − β)qj(t) +
Cj(t)

maxj Cj(t)
otherwise

where β is an algorithm parameter and it is set to be 0.75 in the experiments.
The frequency is fixed in the range of [1.0, 10.0].

4 Experimental Results and Analysis

4.1 Test Instances

We use 13 test instances in the experiments. They are Sphere function, Schwefel
2.22 function, Schwefel 1.2 function, Schwefel 2.21 function, Rosenbrock fuction,
Step function, Noisy Quartic function, Schwefel 2.26 function, Rastrigin function,
Ackley function, Griewank function, and two Penalized functions. Each of these
functions has a global minimum value of 0. The details of these functions could be
found in [11]. For simplicity, we rename these functions as f1 to f13 respectively.

4.2 Experimental Parameter Setting

In the experiments, we compare the proposed PEPSO with a general PSO. The
parameters for PSO are w = 0.5, and c1 = c2 = 2.05 as used in most PSO
algorithms. The parameter for PEPSO are as follows: the search range of w is
[0.25, 0.75] and the search range of c1 and c2 is [1.5, 2.5]; each range is divided
into 20 subranges; to reduce the computational cost, we set c1 = c2 in the
experiments and thus the parameter space is divided into 202 = 400 grids.

The population size for both PSO and PEPSO is 200 and the algorithms
will stop after 5000 generations. The decision vector dimensions of all the test
problems are set to be n = 30. Each algorithm is executed independently for
each instance for 50 times.
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Table 1. The statistical results (mean ± std.) of PSO and PEPSO on the 13 test
instances over 50 runs after 1000, 3000 and 5000 generations.

1000 3000 5000

f1 PSO 1.5484e-12±2.6930e-12 5.5303e-45±1.8732e-44 1.4706e-77±6.4683e-77
PEPSO 9.5868e-17±1.6225e-16 1.7562e-56±3.4047e-56 1.3978e-95±7.9066e-95

f2 PSO 1.0859e-08±3.6020e-08 3.4331e-30±9.2315e-30 1.8235e-51±6.5272e-51
PEPSO 1.4287e-11±4.2595e-11 7.4762e-38±1.3983e-37 1.2631e-63±5.0738e-63

f3 PSO 6.2080e+02±2.9164e+02 4.6415e+00±3.9078e+00 8.1142e-02±9.7379e-02
PEPSO 2.1178e+02±1.0667e+02 4.9468e-01±4.7038e-01 2.5498e-03±2.8807e-03

f4 PSO 4.0730e+00±1.2577e+00 1.9888e-01±1.0895e-01 1.3121e-02±1.2501e-02
PEPSO 1.3437e+00±4.4686e-01 8.8128e-03±6.9937e-03 6.4241e-05±7.2307e-05

f5 PSO 1.1944e+02±4.2427e+02 1.0790e+02±4.2487e+02 1.0148e+02±4.2516e+02
PEPSO 5.4165e+01±3.9157e+01 3.9412e+01±3.0257e+01 3.4770e+01±2.9120e+01

f6 PSO 0.0000e+00±0.0000e+00 0.0000e+00±0.0000e+00 0.0000e+00±0.0000e+00
PEPSO 0.0000e+00±0.0000e+00 0.0000e+00±0.0000e+00 0.0000e+00±0.0000e+00

f7 PSO 2.0433e-02±6.1907e-03 6.8519e-03±2.3983e-03 4.2024e-03±1.5614e-03
PEPSO 1.3839e-02±4.7925e-03 5.2176e-03±1.8849e-03 3.1133e-03±1.0175e-03

f8 PSO 1.4163e+03±3.4863e+02 1.4116e+03±3.4684e+02 1.4116e+03±3.4684e+02
PEPSO 1.5723e+03±3.9155e+02 1.5699e+03±3.9137e+02 1.5699e+03±3.9137e+02

f9 PSO 4.2079e+01±1.8540e+01 3.4745e+01±1.9708e+01 3.4088e+01±1.9313e+01
PEPSO 3.4998e+01±2.0242e+01 2.8398e+01±1.6218e+01 2.7282e+01±1.6447e+01

f10 PSO 1.8034e-07±1.5886e-07 8.4199e-15±1.7046e-15 7.9226e-15±5.0243e-16
PEPSO 5.6148e-09±1.3713e-08 7.8515e-15±7.0325e-16 7.7094e-15±9.7361e-16

f11 PSO 8.3678e-03±1.0734e-02 7.9278e-03±9.8584e-03 7.9278e-03±9.8584e-03
PEPSO 1.4288e-02±2.0182e-02 1.3650e-02±2.0097e-02 1.2182e-02±1.7700e-02

f12 PSO 2.0734e-03±1.4661e-02 1.5705e-32±5.5294e-48 1.5705e-32±5.5294e-48
PEPSO 4.1463e-03±2.9319e-02 4.1463e-03±2.9319e-02 4.1463e-03±2.9319e-02

f13 PSO 3.3020e-09±1.8370e-08 1.3498e-32±1.1059e-47 1.3498e-32±1.1059e-47
PEPSO 2.1011e-13±8.9573e-13 1.3498e-32±1.1059e-47 1.3498e-32±1.1059e-47



7

0 1000 2000 3000 4000 5000
10

−100

10
−50

10
0

10
50

generations

th
e 

av
er

ag
e 

fu
nc

tio
n 

va
lu

e

Function f1

 

 
PSO
PEPSO

(a)

0 1000 2000 3000 4000 5000
10

−80

10
−60

10
−40

10
−20

10
0

10
20

generations

th
e 

av
er

ag
e 

fu
nc

tio
n 

va
lu

e

Function f2

 

 
PSO
PEPSO

(b)

0 1000 2000 3000 4000 5000
10

−4

10
−2

10
0

10
2

10
4

10
6

generations

th
e 

av
er

ag
e 

fu
nc

tio
n 

va
lu

e

Function f3

 

 
PSO
PEPSO

(c)

0 1000 2000 3000 4000 5000
10

−6

10
−4

10
−2

10
0

10
2

generations

th
e 

av
er

ag
e 

fu
nc

tio
n 

va
lu

e

Function f4

 

 
PSO
PEPSO

(d)

0 1000 2000 3000 4000 5000
10

0

10
2

10
4

10
6

10
8

generations

th
e 

av
er

ag
e 

fu
nc

tio
n 

va
lu

e

Function f5

 

 
PSO
PEPSO

(e)

0 1000 2000 3000 4000 5000
10

−2

10
0

10
2

10
4

10
6

generations

th
e 

av
er

ag
e 

fu
nc

tio
n 

va
lu

e

Function f6

 

 
PSO
PEPSO

(f)

0 1000 2000 3000 4000 5000
10

−3

10
−2

10
−1

10
0

10
1

10
2

generations

th
e 

av
er

ag
e 

fu
nc

tio
n 

va
lu

e

Function f7

 

 
PSO
PEPSO

(g)

0 1000 2000 3000 4000 5000

10
3.2

10
3.4

10
3.6

10
3.8

generations

th
e 

av
er

ag
e 

fu
nc

tio
n 

va
lu

e

Function f8

 

 
PSO
PEPSO

(h)

Fig. 2. The mean fitness values versus generations over 50 runs on f1-f8.
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Fig. 3. The mean fitness values versus generations over 50 runs on f9-f13.
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4.3 Results and Analysis

Table 1 shows the means and standard devisions of PSO and PEPSO on the
13 problems over 50 runs after 1000, 2000, and 3000 generations. Figs 2 and 3
illustrates the mean fitness values versus generations over 50 runs on all the test
problems.

From the results, we can see that

– For f1 - f5, f7, and f9, PEPSO outperforms PSO not only on the converge
speed but also on the quality of the obtained solutions.

– For f6, f10, and f13, both PSO and PEPSO obtain similar results. However,
PEPSO converges faster than PSO.

– For f8, f11, and f12, PSO shows better performance than PEPSO.

The only difference between PSO and PEPSO is that PEPSO adaptively
tunes its parameters in (3). The results indicate that for most of the test in-
stances, adaptively online tuning strategy is better than setting the parameters
offline. However, for some problems, PEPSO works worse than PSO. The rea-
son might be that the probability model in PEPSO converges to local optimal
solutions, i.e., the probabilities of some bad parameter vectors are much higher
than those of good parameter vectors.

5 Conclusion and Future Work

In this paper, we proposed a PSO algorithm with adaptively parameter tuning
strategy by an EDA. The proposed algorithm, PEPSO, was compared with a
general PSO algorithm on 13 widely used test instances. The preliminary results
indicated that for most of the test problems, PEPSO performed better than
PSO, either in convergence speed or in both convergence speed and solution
quality. Although the adaptive strategy (EDA) still needs some parameters, it
leads to the improvements of solution quality and convergence speed.

The research on adaptively tuning EA parameters is still in its very infancy
and our work presented in this paper is also rather preliminary. Much work
remains to be done in the future, for example, designing more efficient prob-
ability model update strategies and comparing PEPSO with other PSO algo-
rithms [12] [13] [14].
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