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ABSTRACT

The majority of smartphone localization systems useAssisted-
GPS for fine-grained localization in outdoor spaces or WiFi-
based RSS (Received Signal Strength) technologies for coarse-
grain positioning in indoor and outdoor spaces. The former
consumes precious energy from mobile devices, is strictly af-
fected by the environment (e.g., cloudy day, forests, etc.)
and does not work in indoor spaces. The latter collects RSS
from WiFi beams within a user’s vicinity and transfers an
RSS vector to the server for localization, in which the posi-
tion of the user is disclosed possibly violating users’ privacy.
In this paper, we present BloomMap, an innovative and effi-
cient algorithm that conducts a localization process without
unveiling the user’s location to the localization service, min-
imizing the energy consumption of the mobile unit and also
minimizing the network traffic by not transferring large po-
sitioning structures to the client (i.e., known as radiomap).
Our framework is designed for planet-scale RSS localization
scenarios, which are expected to emerge in the near-future.
In particular, a user may localize itself using a subset of a
vast data repository of RSS signals that is updated in real
time by smartphone wardrivers. Our preliminary evaluation
shows that our propositions can localize a device without un-
veiling its location in approximately 80% less time, energy
and network resources than competitive approaches. We
also describe our WiFi-based prototype system developed
on the Android OS.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: General

Keywords
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1. INTRODUCTION
The widespread deployment of smartphone devices has

brought a revolution in location-aware applications and ser-
vices for mobile phones [20]. By using a tracking mechanism
available on smartphones, such as the iPhone, Blackberry
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and Android, users are able to post social media updates
with text, pictures, and even video, tagged with specific lo-
cations in real time. For example, Google Latitude [6] en-
ables users to track the places they and their friends have
visited. Similarly, location-aware mobile social networking
applications like Foursquare, Gowalla and Loopt enjoy enor-
mous success in the Smartphone community and academic
efforts in this direction are also underway [3, 10].

Currently, most localization services designed for smart-
phone devices rely on positioning techniques such as A-GPS
and Centralized RSS (Received-Signal-Strength) Radiomap
services. A-GPS localization is carried out with the assis-
tance of beams transmitted from satellites. These beams
are negatively affected from the environment (e.g., cloudy
days, forests) and they do not work in indoor spaces. The
Centralized RSS Radiomap localization is carried out by col-
lecting RSS values from WiFi Access Points (APs) in the
vicinity of the user and transferring an RSS vector to a cen-
tralized server that subsequently derives the user’s location
(e.g., Google Geolocation, Skyhook, etc.) We claim that
the A-GPS services and the Centralized RSS Radiomap ap-
proaches will be severely hampered in the future due to the
following constraints:

i. A-GPS Drawback: GPS suffers from a high-energy
drain on mobile devices, thus it is expected that its
utilization will be limited to spaces where other means
are not available.

ii Centralized RSS Drawback: Continuously disclos-
ing the RSS vector to a centralized authority means
disclosing the user’s location that might compromise
user privacy in very serious ways.

The transmission of complete Radiomaps to the user, to
avoid compromising its privacy, means continuously trans-
ferring massive amounts of planet-scale data through WiFi /
3G / 4G connections, which can deplete the precious smart-
phone battery faster, increase query response times and quickly
degrade the network health. In this paper, we present a
planet-scale data collection storage and dissemination frame-
work that enables smartphone users to find their location
without disclosing location-context meta-data to a central
authority, offering energy-efficiency, high performance in terms
of retrieval time and network resource conservation, simul-
taneously. Notice that the centralized RSS radiomap might
be infinitely large as every discrete point on the planet has a
different RSS vector and the given vector changes over time



Figure 1: The architecture of the Centralized RSS (left), Decentralized RSS (center) and BloomMap (right)
positioning approaches.

(thus, need to be updated by a process known as wardriv-
ing, i.e., the act of a person in a moving vehicle search-
ing for WiFi networks using a portable computer or PDA.)
In our framework, a Smartphone user runs our BloomMap
algorithm that anonymously forwards a bloom filter repre-
sentation of its RSS vector to a server. Bloom filters were
proposed by Burton Howard Bloom, in 1970 [2], as space-
efficient probabilistic data structures that are used to answer
set-membership queries efficiently. The server subsequently
utilizes the filter to identify the row(s) from the complete
Radiomap that are necessary for the user to localize itself.
The server forwards these rows to the user conserving both
energy and network traffic and helps the user to localize
itself without revealing its real position.
In [11], we presented our decentralized RSS localization

architecture for Android smartphones, coined Airplace, which
follows a mobile-based network-assisted architecture that
has two highly desirable properties. A typical positioning
scenario comprises of three steps: (i) a user enters an indoor
environment, such as a University campus or a shopping
mall, covered by several WiFi APs; (ii) the user’s smart-
phone obtains the RSS Radiomap and parameters from the
local distribution server in a single communication round;
and (iii) the client positions itself independently using only
local knowledge, i.e., the downloaded Radiomap and the cur-
rently observed RSS fingerprint, and more importantly with-
out revealing its personal state. The system architecture is
illustrated in Fig. 1 (center) and consists of the RSS Logger,
the Find Me application and the Distribution Server that
are detailed in Section 5.1.
We start this paper out with a description of our pro-

posed system model and problem formulation in Section 2.
In Section 3 we introduce some background information on
the major concepts of the BloomMap approach followed by
a presentation of the proposed algorithm that aims to mini-
mize the smartphones’ energy consumption and the retrieval
time as well as to reduce the network traffic without disclos-
ing the user’s position in Section 4. In Section 5, we present
our preliminary experimental study, starting with a descrip-
tion of our RSS prototype localization platform, coined Air-
place1 and discussing its limitations with respect to dealing
with a large-scale Radiomap. Subsequently we provide the
experiments in evaluating the performance of the BloomMap
approach using several radiomap datasets collected locally
at the University of Cyprus.

1Screenshots and a video presentation of our basic
positioning system (without BloomMap) is available at:
http://www2.ucy.ac.cy/~laoudias/pages/platform.html

2. PROBLEM FORMULATION
We shall now formalize the operation of the distribution

server, which disseminates an RSS Radiomap to a client
that seeks to localize itself. Let a server S maintain a 2-D
matrix MATRIX[N][M], which records the RSS value of M
APs at N geo-locations (x,y). For example, the Radiomap
MATRIX can be of the following format:

Radiomap (MATRIX)

AP1, AP2, .... APM => x1,y1

AP1, AP2, .... APM => x2,y2

AP1, AP2, .... APM => x3,y3

...

AP1, AP2, .... APM => xN,yN

MATRIX is typically constructed by centrally overlaying
several RSS vectors:

AP1, AP2, .... APl => xi,yi (l<<M),

which are recorded by users using wardriving, i.e., the act of
searching for Wi-Fi wireless networks by a person in a mov-
ing vehicle, using a portable computer or PDA. Additionally,
MATRIX is extremely large in respect to N, as the M di-
mension is usually small and can be represented efficiently
with adjacency-matrix structures. For ease of exposition, let
MATRIX be denoted as a 2-D matrix where most points are
null, e.g., NaN (i.e., a sparse matrix).

Current techniques conduct fine-grained positioning us-
ing a number of techniques executed on the server (e.g.,
Skyhook, Google, etc). For instance, Google’s Geolocation
API behind Google’s web and mobile positioning features
allows a user to ship the user’s RSS vector (“AP1, AP2,
· · ·APl”, l << M) to a server, where the server derive (or
approximate) the (x,y) coordinates of the user using its MA-
TRIX structure. This can be realized as follows:
Centralized Radiomap Algorithm (CRA): One could fill
an XML (JSON) request with as much info as available from
the user’s current location, ship it over to the server and re-
trieve back the location of the user as accurately as possible.
In this case, a user ships the MAC address and RSS value
of the cell towers in its vicinity having the following charac-
teristics:

• Energy Consumption (Good): CRA is an energy
efficient approach, since the server performs all calcu-
lations conserving the mobile user’s battery energy.

• Retrieval Time (Good): The processing power of
the server is much higher than the user’s device making
the process faster. Moreover, by transmitting just the
result to the user consumes minor network resources.

http://www2.ucy.ac.cy/~laoudias/pages/platform.html


• Privacy (Bad): Disclosing the APs (i.e., RSS vector)
to the server, as an input to the localization process,
means disclosing coarsely the user’s position.

In order to tackle the privacy concern of the CRA tech-
nique the following alternative approach may be developed:

Distributed Radiomap Algorithm (DRA): Ship the MA-
TRIX to the client and have the client perform the mapping
using one known algorithm e.g., KNN, WKNN, MAP, RBF,
SNAP, etc., which will be explained in Section 5.1, having
the following characteristics:

• Energy Consumption (Bad): The MATRIX is huge
for both receiving as well as searching and finding the
coordinates. This is not an efficient approach from a
smartphone user’s point of view.

• Retrieval Time (Bad): The transmission of a huge
MATRIX is time consuming and also consumes more
network resources.

• Privacy (Good): The user’s position is not disclosed
since the server knows nothing about the users’ RSS
vector.

Although the DRA approach, which is currently the under-
lying technique in our basic Airplace architecture, improves
the data-disclosure drawback of the CRA approach, it is
quite inefficient in terms of energy consumption and retrieval
time in planet-scale localization scenarios. The major goal of
the proposed approach is to keep the RSS vector in-situ for
data-disclosure, offering at the same time high performance.

3. PRELIMINARIES
Before we present our BloomMap Algorithm (BMA), which

combines the advantages of the CRA and DRA, both of
which are underlying elements of our localization proposi-
tion, we provide background knowledge about cloaking used
in location privacy and Bloom filters.

3.1 Location privacy techniques
Privacy-preserving techniques for location services are based

on one of the following concepts: (i) dummy locations; (ii)
spatial cloaking; and (iii) space transformations. When us-
ing dummy locations the user protects their location privacy
by reporting a set of fake locations termed dummies [9, 18].
In (ii), the locations of users are transformed into another
space in which their exact [5, 17] or approximate [8] spatial
relationships are maintained. The main idea in concept (iii)
is to blur a user’s exact location into a cloaked area that
satisfies the user’s privacy requirements [4, 7].
As for user identification privacy, k-anonymity guarantees

that the querying user is indistinguishable from at least k-1
others [15,16]. In user location privacy k-spatial anonymity
is achieved by obfuscating the location of a querying user so
that it cannot be identified with a probability higher than
1/k. This can straightforwardly be achieved using k dummy
locations, assuming that the locations of a user has uniform
probability over the space.
We will use dummy locations to achieve k-spatial anonymity

and we will also cloak the user’s location by sending only
partial information to the server.

3.2 Bloom filters
Bloom filters were proposed by Burton Howard Bloom in

1970 [2], as space-efficient probabilistic data structures that

are used to answer set-membership queries efficiently. The
idea is to allocate a vector of b bits, initially all set to 0, and
use h independent hash functions to hash an element to h
positions in the vector with a uniform random distribution.

To create a Bloom filter for an element we feed the element
to each of the h hash functions to get h vector positions and
set them to 1. To test whether an element is a member of a
set, we need to compare the vector of the query to the vector
of the set, i.e., the Bloom filter vector created by hashing
all set elements into the vector. If a single non-zero position
in the query vector does not match to a non-zero position
in the set vector, then the query element certainly does not
exist in the set. If all non-zero positions match, then the
element might be a member of the set, since Bloom filters
do not prevent false positives.

The most significant feature of Bloom filters is that there
is a clear tradeoff between b and the probability of a false
positive. Given h optimal hash functions, b bits for the
Bloom filter and the number M of elements we can calcu-
late the amount of false positives produced by the Bloom
filter, as this will be explained in the next section.

4. BLOOMMAP ALGORITHM
In this section, we outline our BloomMap Algorithm (BMA),

which minimizes energy consumption and time overhead while
guaranteeing location privacy. Instead of sending its RSS
vector, the user forwards a Bloom filter, constructed from
one Access Point (AP) in its vicinity, and its corresponding
RSS value to the server. The server uses this Bloom filter to
find a small number (r << M) of MATRIX rows that will
allow the user to identify its location.

4.1 Outline of Operation
The basic BloomMap steps are the following:

1. The user selects a single AP-id from its vicinity to cre-
ate a Bloom filter with user-defined redundancy k, ac-
cording to the trade-off between the performance (i.e.,
size of the answer set) and privacy it chooses.

2. The user forwards the Bloom filter to the server.

3. The server finds the (k) AP-ids that could have been
used to create this Bloom filter and retrieves the rows
of the MATRIX, for which the RSS values are non-
zero.

4. The server sends the resulting rows to the user in order
to locally perform the localization process using the
partial Radiomap of Step 3.

As discussed in the preliminaries, the user can define the
redundancy of the Bloom filter and thus the number k of
AP-ids it will map to, by selecting the number of bits b it
will encode the AP-id in. We assume that the user knows
a good approximation of the number M of AP-ids in the
system and the h hash functions (e.g., these can be shipped
from the server over initialization). In this way, we can en-
sure k-spatial anonymity, since the server will not be able to
distinguish what APs the user can really listen to. The false
positive ratio (fpr) is approximately given by the equation

fpr = (1− e−hM/b)h, (1)

which means that given h, M and the user-defined k we can
determine the number b of bits to use in the Bloom filter.



Figure 2: An example of a user’s RSS vector V.

It is important to note that only one AP-id from the APs
in the user’s vicinity is used to create the Bloom filter. If
more than one AP-id are used then the server will be able
to identify the false positives (dummy AP-ids) given by the
Bloom filter, since it will know the number of AP-ids used
to create the Bloom filter and the random false positives will
most likely not overlap. Thus, it would be impossible for a
user to hear both APs.
The answer set can be further reduced with a slight trade-

off in the amount of cloaking achieved. Together with the
Bloom filter, the user can also forward some RSS informa-
tion to the server in order to match less rows from the
radiomap. The amount of RSS detail corresponds to the
amount of cloaking the users wish to have. Furthermore,
the process on the server side can be speeded up by employ-
ing a variety of techniques, such as, an index on the AP-ids
to the rows that have non-zero RSS values for the AP-id, or
even low level bit operators to conduct the matching faster.
These alternatives have not been exploited in this paper, but
will be considered in the future when we deal with larger sce-
narios.

4.2 Running Example for BMA
As shown in Figure 2, consider a user at position (x, y)

where signals of three different APs can be received. These
APs have ids AP1, AP2 and AP3, and their signal strength
is 20%, 50% and 70%, respectively. Given a total number of
M = 100 APs, a predefined set of h = 3 hash functions and a
user’s RSS vector V = {AP1 : 20%, AP2 : 50%, AP3 : 70%},
assume that a user wants to use k = 3 spatial anonymity.
The user first calculates the needed size b of the Bloom

filter that will ensure k−1 false positives on the server-side.
With k = 3 and M = 100, the false positive ratio of the
Bloom filter is calculated to fpr = k/M = 0.03. Using the
following false positive ratio equation,

b =
−hM

ln(1− h
√
fpr)

, (2)

the user calculates b ≈ 12.5 and sets b = 12 to ensure
at least k − 1 false positives. Then the user chooses an
APid from the RSS vector, e.g., AP2, and feeds it to the
predefined hash functions of the Bloom filter to generate
a vector of size b = 12 with some bits turned to 1, e.g.,
{0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0}. It then sends the Bloom filter
(or a lossless compression thereof) and the RSS value of AP2

(RSS = 50) to the server.

Figure 3: Identifying MATRIX rows using the
bloom filter at the server side.

On the server side, see Figure 3, the Bloom filter is used
to identify the AP-ids that would produce the same Bloom
filter and according to the chosen fpr it will match with at
least k = 3 AP-ids on the server. One of those AP-ids, i.e.,
AP2, is the actual AP-id that the user has in its RSS vector,
see Figure 2. The other two, i.e., AP13 and AP65, are the
dummy elements that guarantee k-spatial-anonymity, let-
ting the server know only with a probability of 1/k that the
user is in the proximity of one of the matched APs. No-
tice that cloaking is also achieved, since the server does not
just need to distinguish between k = 3 specific locations but
k = 3 areas, where the user has equal possibility to be at
any point inside those areas. Even if the server uses the RSS
given by the user it will only be able to narrow down these
areas, but not get 3 specific locations.

The server now retrieves for each matched AP the rows
that contain a non-zero RSS value for the matched AP (de-
noted as shaded rows in Figure 3). The retrieved rows are
finally send back to the user, who can now find its loca-
tion by performing the mapping using one known algorithm
e.g., KNN, WKNN, MAP, RBF, SNAP, etc., as in the DRA
approach.

4.3 Discussion
The characteristics of the BloomMap algorithm are:

• Energy Consumption (Good): Only a very small
subset of MATRIX rows are sent to the to user, (r <<
N).

• Retrieval Time (Good): Transmitting a small part
of the radiomap ensures a fast reception of the results.

• Privacy (Good): Simple cloaking and k-spatial anonymity
ensure that the server can only identify a wider area
of the user’s location with a probability less than 1/k.

The user can choose the amount of RSS details to send to
the server. The more details the server receives the smaller
the cloaking, but the fewer the resulting MATRIX rows will
be. The user can choose to send just a range in which one or
more of its RSS values lie, or the actual value of one or more
of its RSS, and denote whether the RSS value or range cor-
responds to the AP-id inside the Bloom filter. Remember,



that the amount of RSS details sent to the server does not af-
fect the k-spatial anonymity guarantee. Regarding updates,
our algorithm applies the same k-anonymity principle in the
temporal dimension in order to provide additional cloaking,
preventing the server to derive the user’s location.

5. EXPERIMENTAL EVALUATION
In this section, we present a preliminary experimental

evaluation of the BloomMap algorithm. We start-out with a
description of our RSS prototype localization approach, i.e.,
Airplace. We then describe our experimental methodology
and we finally proceed with the presentation of our results.

5.1 Our Airplace Localization System
The Airplace prototype architecture (see Fig. 1 (center))

consists of the RSS Logger, the Find Me application and
the Distribution Server. These modules do not currently
integrate BloomMap but presenting them allow us to put
the BMA ideas in a real context.

Airplace RSS Logger Application: This application is
developed around the Android RSS API for scanning and
recording data samples in specific locations at predefined
intervals. These samples contain the MAC addresses and
RSS levels (in dBm) of all neighboring WiFi APs, as well as
the coordinates of the location where the user initiated the
recording.

Airplace Find Me Application: This is a client that
runs on Android smartphones and connects to the server in
order to download the Radiomap and algorithm-specific pa-
rameters in a single communication, thus enabling the user
to self-locate independently thereafter. The interface of the
Find Me application is shown in Fig. 4 (left), where the user
can set the preferences (i.e., floorplan map, Radiomap down-
load settings, etc.) and select any of the available position-
ing methods from the Algorithms configuration panel, which
includes the deterministic K-Nearest Neighbor (KNN) and
Weighted K-Nearest Neighbor (WKNN) algorithms [1], as
well as the probabilistic Maximum A Posteriori (MAP) and
Minimum Mean Square Error (MMSE) algorithms [19]. The
Airplace platform additionally supports two state-of-the-art
methods developed in-house, namely the Radial Basis Func-
tion (RBF) networks [12] and the Subtract on Negative Add
on Positive (SNAP) [13] approaches.

Distribution Server: This server is mainly responsible
for the construction and distribution of the RSS Radiomap
by listening for connections from clients that either con-
tribute the collected RSS data (wardriving) or request the
Radiomap and algorithm parameters to start positioning.
To create the radiomap file the server parses all available
RSS log files, which may be contributed by several users,
and calculates the mean RSS value per MAC address by av-
eraging over all samples collected at each distinct location.
Finally, all averaged values are merged and stored in a sin-
gle Radiomap file so that each line corresponds to the mean
RSS values at a specific location and each column to the
respective MAC address.

5.2 Methodology
Datasets: We used the following two representative datasets
of local sizes for our preliminary evaluation:

Figure 4: The Airplace positioning application.

i) UCY RadioMap: This radiomap is designed by data col-
lected in a typical building at the Computer Science (CS)
department of the University of Cyprus. We used three An-
droid smartphone devices (HTC Hero, HTC Desire, Sam-
sung Nexus S) to collect 30 RSS fingerprints (i.e., RSS val-
ues of APs at a reference location) at 1500 distinct locations
for a total of 45,000 reference fingerprints. There are 120
WLAN APs installed in the four (4) floors of this building
including the APs of neighboring buildings that can be par-
tially detected in different sections of the CS building. On
average, 10.6 APs are detected per location. We collected
our data by walking over a path that consists of 2900 loca-
tions.
ii) KIOS RadioMap: We collected the RSS data inside a typ-
ical office environment at the KIOS Research Center, Uni-
versity of Cyprus. The total area is around 560m2 and the
floor consists of several open cubicle-style and private offices,
labs, a conference room and corridors. We have installed 9
APs that use the IEEE 802.11b/g standard to provide full
coverage throughout the floor. In addition, there are several
neighboring APs that can be partially detected in different
sections of the floor. We used 3 devices running Android
(HTC Desire, HTC Flyer, Samsung Nexus S) to collect RSS
measurements from all available APs at 105 distinct refer-
ence locations. These locations are separated by 2-3 meters
and form a grid that covers all public places. A total of
2100 training fingerprints, corresponding to 20 fingerprints
per reference location, were collected at the rate of 1 sam-
ple/sec. For testing purposes, we have also collected 960
fingerprints at 96 locations (10 fingerprints per location) in-
side the experimentation area.

Algorithms and Metrics: We compare the BloomMap
(BMA), DRA and CRA approaches, under a variety of set-
tings using the datasets described earlier. Our cost metrics
are: Time (T), Number of Messages (NoM) and Energy (E).
All measurements are averaged over 10 consecutive runs.

Network and Energy Model: In our setting, a simple
CRA REQ message is 4 bytes, a DATA message (i.e., a
radiomap line) consists of each AP’s MAC address that oc-
cupies 17 bytes and a 6-bytes field of it’s RSS value, a DRA
response that includes the client’s actual location is of 10
Bytes. The communication between the smartphone and the
server is performed under a 802.11b network link that has a
TCP downlink of 1022kbps and a TCP uplink of 123kbps, a
237ms TCP handshake latency and application handshake
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Figure 5: Preliminary evaluation of BloomMap algorithm on UCY and KIOS datasets.

latency of 493ms. Our energy profile has been derived by
running test instances using PowerTutor [14]. In particular,
CPU Idle (OS running) = 175mW, CPU Busy (Processing)
= 369mW, WiFi Idle (Connected) = 38mW and WiFi Busy
(Uplink 123Kbps, -58dBm) = 600mW.

5.3 Preliminary Results
Figure 5 shows the results of the three approaches in

terms of Energy, Time and NoM for localization at a sin-
gle reference location using the UCY and KIOS datasets
described earlier. In the UCY dataset, the BloomMap al-
gorithm improves the performance of the DRA approach
(currently used in Airplace) by 80% in terms of time, 83%
in terms of energy consumption and utilizes 80% less net-
work resources. Similarly in the KIOS dataset, BloomMap
algorithm provides 60% less time overhead and 60% less en-
ergy consumption and utilizes 80% less network resources.
The CRA approach outperforms the BloomMap algorithm
in both datasets. However, the CRA approach violates the
user’s privacy, where the BloomMap approach guarantees
localization without revealing the user’s real position.

6. FUTURE WORK
We are in the process of collecting larger-scale Radiomaps

to test the scalability and robustness of our approach. Sub-
sequently, we are going to exhaustively evaluate our algo-
rithm in terms of other performance metrics (e.g., scalabil-
ity) and compare it with other approaches.
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