Chapter 1
Nearest Neighbor Queries on Big Data

Georgios Chatzimilioudis and Andreas Konstantinidis and Demetrios
Zeinalipour-Yazti

Abstract The proliferation of communication and positioning technologies in com-
bination with the trend to share such information resulted in an explosion of geo-
tagged temporal data. This opened an era of intelligent Big Data management for
near real-time spatio-temporal applications as its sheer volume (i.e., millions of
users world-wide) can not be processed in due time using conventional solutions.
Followed by the emergence of location-aware social services, a new challenging
kNN task arose, namely allowing mobile users to identify their k geographically
closest neighboring nodes at all times. We analyze models and metrics that are
the foundation of efficient solutions for near real-time processing Big Data in such
spatio-temporal scenarios. In this book chapter, we study the problem of efficiently
processing such a query in a cellular or WiFi network, both of which are ubiquitous.
We present an algorithm, coined Proximity, which does not require any additional
infrastructure or specialized hardware and its efficiency is mainly attributed to a
smart search space sharing technique we present and analyze. Its implementation is
based on a novel data structure, coined k™ -heap. Proximity, being parameter-free,
performs efficiently in the face of high mobility and skewed distribution of users
(e.g., the service works equally well in downtown, suburban, or rural areas).

Key words: k nearest neighbors; big data; distributed computing

1.1 Introduction

Big data refers to data sets whose size and structure strains the ability of commonly
used relational DBMSs to capture, manage, and process the data within a toler-
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able elapsed time [29]. The volume-velocity-variety of information in this kind of
datasets give rise to the big data challenge, which is also known as the 3V challenge.

The volume of such datasets is in the order of few terabytes (TB) to petabytes
(PB) that are often of high information granularity. Examples of such volumes are
the U.S. Library of Congress that in April 2011 had more than 235 TB of data
stored and the World of Warcraft online game using 1.3 PB of storage to maintain
its game, the German Climate Computing Center (DKRZ) storing 60 PB of climate
data. An example of high granularity is our Rayzit platform [44], where the level of
detail goes as deep as a second in the temporal dimension and as a single location
(longitude, latitude) in the space dimension per user.

The velocity of information in social media applications (such as photovoltaic,
traffic and other monitoring apps) can grow exponentially as users join the commu-
nity. Such growth can produce unprecedented volumes of data streams. For example,
Ontario’s Meter Data Management and Repository (MDM/R) [39] stores, processes
and manages data from 4.6 million smart meters in Ontario, Canada and provides
hourly billing quantity and extensive reports counting 110 million meter reads per
day on an annual basis that exceeds the number of debit card transactions processed
in Canada.

Furthermore, the variety of data can be anything from structured (relational or
tabular) to semi-structured (XML or JSON) or even unstructured (Web text and log
files) data and combination thereof. For example, Google’s experimental robot cars
[25], which have navigated thousands of miles of California roads, use an artificial-
intelligence technique tackling big data challenges, parsing vast quantities of data
and making decisions instantaneously.

Due to the high demand for big-data management, the literature witnessed an
emergence of new techniques and tools for taming big data. For example, new data
management related mechanisms are proposed [63, 36] such as Hadoop [26], i.e., a
popular tool for analyzing data on racks of servers and NoSQL databases.

Furthermore, Computational Intelligence techniques [52, 47, 9] such as fuzzy
logic, evolutionary computation, neurocomputing and other machine learning tech-
niques provide us with complementary searching and reasoning means to bring for-
ward solutions to the big data challenges. The computational intelligence techniques
are traditionally used for Knowledge Discovery in Databases (KDD) since the evo-
lution of soft computing, which according to Zadeh [61] is tolerant of imprecision,
uncertainty, and partial truth. In [8], Brachman and Anand mentioned that KDD pro-
cess requires several steps and different computational intelligence technologies [2]
such as fuzzy models of the Takagi-Sugeno type for developing and understand-
ing the application domain, the relevant prior knowledge, and identifying the goal
of the KDD process. Neural networks [37], cluster analysis [1], decision trees [12],
evolutionary computing [13] and neuro-fuzzy systems for data reduction and projec-
tion. Data mining related algorithm(s) for searching for patterns in the data include
neuro-fuzzy methods [40], Genetic-Algorithms (GA) [30, 45], hybrid combination
of GA and neural learning [3] and fuzzy clustering in combination with GA [48, 4].

As we enter the age of big data, many different evolutionary computation and
machine learning techniques have been modified, combined, extended and inves-
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tigated for their ability to extract insights in an actionable manner. In [34], Stan-
ford and Google researchers developed a deep learning based approach to build an
online face detector by training a model on a large dataset of Youtube images (a
model with 1 billion connections and a dataset with 10 million 200x200 pixel im-
ages downloaded from the Internet). The network is trained using model parallelism
and asynchronous SGD on a cluster with 1,000 machines (16,000 cores) for three
days. Furthermore, Hall. et al. [27] introduced a Decision tree approach for analyz-
ing big data, which was extended in [42] by combining the Decision Trees with GAs
for further improving their performance. Moreover in [35], Lu and Fahn proposed a
hierarchical artificial neural network for recognizing high similar large data sets.

Evolutionary Computation (EC) techniques are mainly used for optimization
tasks, such as finding the parameters/models that optimize some pre-specified eval-
uation criteria given some observed data and can be utilized for dealing with both
single and Multi-objective Optimization Problems (MOPs) [20]. The former aims
at finding a single solution that maximizes/minimizes an objective function in a sin-
gle run and the latter aims at optimizing two or more often conflicting objectives
simultaneously, in a single run. MOPs, however, cannot be time-sensitive and they
are often tackled offline, since Multi-Objective EC techniques [20] (such as NSGA-
II[21], MOEA/D [64], etc.,) combined with machine learning techniques [31] (e.g.,
Genetic Programming [32]) are slow and require many computational resources to
obtain high quality solutions.

On the other hand, the wealth of new data accelerates advances in computing
- a virtuous circle of big data. Machine-learning algorithms, for example, learn on
data, and the more data, the more the machines learn. Consider Siri [50], the talking,
question-answering application in iPhones, which Apple introduced in April 2010.
Its origins go back to a Pentagon research project that was then turned to a Silicon
Valley start-up. Apple bought Siri in 2010, and kept feeding it more data. Now,
with people supplying millions of questions, Siri is becoming an increasingly adept
personal assistant, offering reminders, weather reports, restaurant suggestions and
answers to an expanding universe of questions.

The k Nearest Neighbor (kNN) search [46] is one of the simplest non-parametric
machine learning approaches mainly used for classification [18] and regression [6].
kNN aims at finding k objects that are the most similar to another object. Extensions
of kNN include the Condensed nearest neighbor (CNN, the Hart algorithm) algo-
rithm that reduces the data set for kNN classification [28] and the fuzzy-kNN [49]
that deals with uneven and dense training datasets. KNN finds applicabilities in
several domains such as computational geometry [16], [23], [10], image process-
ing [55], [33], spatial databases [62], [14], and recently in social networks [9].

The proliferation of smartphone devices and the emergence of location-aware
social services emits a new challenging kNN task, namely allowing smartphones
to identify their k geographically closest neighboring nodes at all times. We term
this task Continuous All-kNN (CAKNN) queries. Applications of this neighborhood
“sensing” capability could enhance public emergency services like E9-1-1 [22] and
NG9-1-1 [41], and facilitate the uptake of location-based social networks (e.g.,
Rayzit [44], Waze [56]).
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Fig. 1.1 (a) A snapshot of a cellular network instance, where the 2-nearest neighbors for ug are
{w1,u2}. Similarly for the other users: u1 — {ug,u2}, us — {us,uo}, uz = {u2,uo}, ua —
{u2,us3}, ug — {uo,wu1}. (b) Rayzit [44], an example application of a proximity-based micro-
blogging chat.

Consider a set of smartphone users moving in the plane of a geographic region.
Let such an area be covered by a set of Network Connectivity Points (NCP) (e.g.,
cellular towers of cellular networks, WiFi access points of wireless 802.11 networks
etc.) Each NCP inherently creates the notion of a cell. Without loss of generality, let
the cell be represented by a circular area! with an arbitrary radius. A mobile user
u is serviced at any given time point by one NCP, but is also aware of the other
NCPs in the vicinity whose communication range reach u (e.g., cell-ids of different
providers in an area, or MAC addresses of WiFi hot-spots in an area.)

To illustrate our abstraction, consider the example network shown in Figure 1.1,
where we provide a Rayzit micro-blogging chat channel between each user v and
its kK = 2 nearest neighbors. In the given scenario, each user concurrently requires a
different answer-set to a globally executed query, as shown in the caption of Figure
1.1. Notice that the answer-set for each user w is not limited within its own NCP and
that each NCP has its own communication range. Additionally, there might be areas
with dense user population and others with sparse user population. Consequently,
finding the k-nearest neighbors of some arbitrary user u could naively involve from
a simple lookup in the NCP of u to a complex iterative deepening into neighboring
NCPs, as we will show in Figure 3(b).

The remaining of this book chapter is as follows: Section 1.2 defines our system
model and the problem. Section 1.3 provides the related work necessary for under-
standing the foundations of this work. Section 1.4 presents the Proximity framework
and a breakdown of our data structures and algorithms. Section 1.5 finally summa-
rizes and concludes the knowledge acquired from existing research and discusses
our future plans.

! Using other geometric shapes (e.g., hexagons, Voronoi polygons, grid-rectangles, etc.) for space
partitioning is outside the scope of this paper.
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Table 1.1 Notation used throughout this work

| Notation |Description

NCP  |network connectivity point
c,C single NCP, set of all NCPs
radius. |range of NCP ¢

A the maximum number of users an NCP can serve

u, U a single user, set of all users in the network

n number of users in the network (|U|)
U. set of users of NCP ¢
r R a single user report, all user reports for a single timestep

loc(u)  [location of user u

ncp(u) |the NCP that a user is registered to

nepyic(u) |list of NCPs whose range cover user u
Se the search space of NCP ¢
de distance of kt" nearest user to the border of NCP ¢

kNN(u) |the set of k-nearest neighbors of user u

kthe the k" nearest outside user to the boundary of cell ¢

1.2 System Model and Problem Formulation

This section formalizes our system model and defines the problem. The main sym-
bols are summarized in Table 1.1.

Let U denote a set of smartphone users moving in the plane of a geographic re-
gion. Let such an area be covered by a set of Network Connectivity Points (NCP)
(e.g., cellular towers found in cellular networks, WiFi access points found in wire-
less networks etc.) Each NCP inherently creates the notion of a cell, defined as c;.
Without loss of generality, let the cell be represented by a circular area with radius
radius.. The number of users A serviced by an NCP is a network parameter (cell
capacity). A mobile user « is serviced at any given time point by one NCP, but is
also aware of the other NCPs that are in its vicinity and whose communication range
cover it (e.g., cell-ids of different providers in an area, or MAC addresses of WiFi
hot-spots in an area, etc.)

Assume that there is some centralized (or cloud-like) service, denoted as QP
(Query Processor), which is accessible by all users in user set U. Allow each user
u to report its positional information to Q)P regularly. These updates have the
form 7, = {u, loc(u),nep(u), ncpyic(u)}, where loc(u) is the location of user u?,
nep(u) is the NCP user u is registered to and nepy;e(u) is a list of NCPs in the
vicinity of u.

The problem we consider in this work is how to efficiently compute the k-nearest
neighbors of all smartphones that are connected to the network, at all times. We
consider a timestep that defines rounds where we need to recompute the kNNs of

2 The location of a user can be determined either by fine-grain means (e.g., AGPS) or by coarse-
grain means (e.g., fingerprint-based geo-location [24]).
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Fig. 1.2 The search space of cell c is the big circle with the dotted outline. Any user inside this
circle is a kNN candidate for any user inside c.

the users. Depending on the application, this can take place either at a preset time
interval or whenever we have a number of new user location updates arriving at the
server. Formally, we aim to solve a problem we coin the CAKNN problem.

Definition 1 (CAKNN problem). Given a set U of n points in space and their loca-
tion reports r; ; € R at timestep t € T', then for each object w; € U and timestep
t € T, the CAKNN problem is to find the k objects Us,; C U — u; such that for all
other objects u, € U — Usgop — uy, dist(ug, u;) < dist(u,, u;) holds.

In order to better illustrate our definition, consider Figure 1.2, where we plot a
timestep snapshot of 7 users uy — ug moving in an arbitrary geographic region.
The result for this timestep to a k = 2 query would be kNN(ug) = {u1,us},
kNN (u1) = {ug,us}, kNN(uz) = {us,up}, kNN(u3) = {ua,uo}, kNN(uy) =
{UQ, U()}, kNN(UG) = {U77 Ul}.

Obviously, the solution for a user u will not always reside inside the same NC'P
cell ¢, but might reside in neighboring cells or even further (e.g., if neighboring
cells do not have any users). Computing a separate search space for every user is
very expensive. On the other hand, search space sharing is achieved when the same
search space is used by multiple users and it guarantees the correct kNN solution for
all of them. If we apply this reasoning for all users U, in ¢, then the common search
space S. for U, would be defined as the union of the individual search spaces of
every user in U.. We efficiently build .S, with the assistance of complementary data
structures we devise in this work and explain next. In Figure 1.2, the search space
constructed by our framework for users ug and ug is the largest dotted circle.
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1.3 Related Work

In this section we provide an extensive coverage of the k nearest neighbor related
work tackling static data, continuous data and distributed data.

1.3.1 kNN Queries on Static Data

For applications where data is represented by a linear array, constant time algorithms
have been proposed to solve the All Nearest Neighbor (ANN) and All k-Nearest
Neighbor (AkNN) problems. There has been extensive work in the field of image
processing and computational geometry (e.g., [55, 33]).

In Euclidean space (and general metric spaces), there has been also extensive
work on solving the ANN and AkNN problems. For large datasets residing on disk
(external memory), works like Zhang et al. [62] and Chen et al. [14] exploit possible
indices on the datasets and propose algorithms for R-tree based nearest neighbor
search.

For small ANN and AKNN problems in Euclidean space, where data fits inside
main memory, early work in the domain of computational geometry has proposed
solutions. Clarkson et al. [16] was the first to solve the ANN problem followed by
Gabow et al. [23], Vaidya [54] and Callahan [10]. Given a set of points, [16, 23]
use a special quad-tree and [54] use a hierarchy of boxes to divide the data and
compute the ANN. The worst case running time, for both building the needed data
structures and searching in these techniques, is O(nlogn), where n is the number of
points in the system. For the AKNN problem works [16] propose an algorithm with
O(kn + nlogn) and [54] an algorithm with O(knlogn) time complexity.

For multi-dimensional disk-resident data kNN Joins have been optimized in [9,
57, 60, 58, 36]. Works [9]-[58] propose centralized solutions. [62, 14, 9, 57, 60, 58,
36, 63]. Zhang et al. [62] index the disk-resident data using an R-tree and develop
an efficient depth-first traversal algorithm and a hash based algorithm. In [14] the
authors propose the minimum bounding rectangle enhanced quadtree as well as a
new distance measure for pruning as many distance comparisons as possible. In [9],
a specialized index together with an optimal page loading strategy were proposed to
reduce both CPU and I/O cost for disk-resident data. Xia et al. [S7] optimizes KNN
Joins for high dimensional data by hashing points into blocks and sorting the blocks
for a nested loop join. [60, 58] similarly propose efficient indexing techniques for
avoiding scanning the whole dataset repeatedly and for pruning as many distance
computations as possible.
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1.3.2 Continuous kNN Queries

When it comes to streaming updates of object attributes, main memory process-
ing is usually mandatory for spatio-temporal applications, where objects are highly
mobile.

Yu et al. [59] followed by Mouratidis et al. [19] optimize Continuous kNN
queries. Objects are indexed by a grid in main memory given a system-defined pa-
rameter value for the grid size. For each query they both use a form of iteratively
enlarging a range search to find the kNN. For small object speeds and/or low object
agility, both propose a stateful technique to incrementally compute the result of a
query of the current timestep using the result of the previous timestep. They define
an influence region for the query inside the grid and depending on what happens
in this region, the new result is computed using the previous result, minimizing the
search space. Whenever the query object moves or the agility and speed of the ob-
jects is high, both fall back to their slower stateless version where at each timestep
the result of the query is computed from scratch.

Chatzimilioudis et al. [11] is the only work that optimizes Continuous All-kNN
queries, termed Continuous-AkNN, in a centralized environment. The core intu-
ition behind this work is geographically partitioning the object space based on the
transmission radius of the network connectivity points (e.g., WiFi router, cellular
base-station, etc.) and determining a candidate set for each network connectivity
point. Then, each object v only scans the candidate set of its connectivity point and
determines its kKNN.

1.3.3 All-kNN Queries in Distributed Systems

The high information granularity of the location updates is very restrictive for
disk-based storage and indexing. Therefore, distributed and parallel techniques for
memory-resident data is desirable and demands optimization in respect to the CPU
time.

Callahan’s [10] main contribution is a parallel algorithm that solves the AKNN
problem in O(logn) using O(n) processors with shared-memory. Given a set of
points, Callahan use a special quad-tree to divide the data. His algorithm has O(kn+
nlogn) time complexity.

Recently, solutions utilizing large-scale distributed data processing have been
proposed by Lu et al. [36] optimized for exact kNN Joins and Zhang et al. [63]
optimized for approximate kNN Joins.

Zhang et al. [63] give a MapReduce technique that optimizes AKNN queries. It
splits A into equally-sized \/m disjoint subsets, i.e., A = |J, <;< /s Ai, creating m
distinct combinations of 2 subsets { A;, Ay, }. In a first parallel phase, each server is
assigned one such pair of subsets and scans Ay, to find the kNNs for each object in
A;. All intermediate answers are then collected and distributed in a second parallel
phase to compute the top-k neighbors for each object in A.
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@ (b)

Fig. 1.3 (a) In Proximity the search space is pre-constructed for all users of the same cell (e.g., u1
and uz); whereas (b) for existing state-of-the-art algorithms the search space needs to be iteratively
discovered by expanding a ring search for each user separately into neighboring cells.

Lu et al [36] propose a 2-job Map-Reduce solution for optimizing AKNN queries
on static datasets. In a centralized pre-processing step a set of optimal pivot points
are carefully selected. In the first Map-Reduce job, the mappers split set A into m
disjoint subsets A; based on the Voronoi cells generated by the selected pivots, and
record the maximum and minimum distance between each pivot and its subset. Each
area A; and corresponding set O; is mapped to a server s;. There is no reduce step in
their first Map-Reduce job. In the second Map-Reduce job, for each A; a candidate
set C'S; C Ais computed that guarantees to include all kNN for the subset A;. Each
A; is mapped to its candidate set C'S;. The reducer s; then computes the kNNs for
each point o € O; using C'S;.

1.3.4 Shortcomings Of Existing Work

Techniques that optimize disk I/O are unattractive for solving CAKNN queries, since
the CPU latency is the actual bottleneck as shown by Chen et al. [14]. Moreover,
tree-based techniques proposed for ANN queries require super-linear time for their
structure build-up phase (as [16, 23, 54, 10]) and need to be updated or re-built in
every timestep, which is inefficient.

No previous work tackles the problem of continuous all k-nearest neighbor
(CAKNN) queries specifically. In smartphone network applications the users are
highly mobile with hard-to-predict mobility patterns and their location distribution
is far from uniform [43]. This makes stateful techniques inefficient as shown in
[59, 19], since keeping previous answers (states) of the query becomes more of a
burden than a help for faster query evaluation. Furthermore, in proximity applica-
tions considered in this paper, smartphone users are moving and are both the objects
of interest and the focal points of queries.

Our framework, Proximity, is main-memory based and stateless, i.e., no previ-
ous data/calculation of the previous evaluation round is used in the current round. A
stateless CAKNN solution would solve an AKNN problem at each timestep. In [11],
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we compare Proximity analytically to the early work of computational geometry
[16, 23, 54, 10] and show that the running time complexity of our framework is
better (i.e., O(n(k + X)) as opposed to O(knlogn)). We compare Proximity exper-
imentally against an adaptation of state-of-the-art CkNN solution [59, 19]. Due to
the agility of the realistic mobile datasets used, these works can only make use of
their stateless algorithm, which solves a kNN query in every timestep. Thus, such
adaptations can only optimize a kNN query for each timestep separately and for
each user separately, building a new search space for each user. We show that our
specialized Proximity framework performs better, mainly due the batch processing
capability of the AkNN queries. The most significant difference is that the Proximity
framework groups users of the same cell together and uses the same search space
for each group (search space sharing).

1.4 The Proximity Framework

We start out outlining of the Proximity framework and the intuition behind its oper-
ation. We then describe in detail how the search space is built-up using our kT -heap
data structure and its associated insertion and update algorithms.

1.4.1 Outline Of Operation

The Proximity framework is designed in such a way that it is: i) Stateless, in order to
cope with transient user populations and high mobility patterns, which complicate
the retrieval of the continuous kNN answer-set. In particular, we solve the CAKNN
problem for every timestep separately without using any previous computation or
data; ii) Parameter-free, in order to be invariant to parameters that are network-
specific (such as cell size, capacity, etc.) and specific to the user-distribution; iii)
Memory-resident, since the dynamic nature of mobile user makes disk resident pro-
cessing prohibitive; iv) Specially designed for highly mobile and skewed distribu-
tion environments performing equally well in downtown, suburban, or rural areas;
iv) Fast and scalable, in order to allow massive deployment; and v) Infrastructure-
ready since it does not require any additional infrastructure or specialized hardware.

For every timestep Proximity works in two phases (Algorithm 1): In the first
phase one k™ -heap data structure is constructed per NCP, using the location reports
of the users (lines 1-8). In the second phase, the k-nearest neighbors for each user
are determined by scanning the respective kT -heap and the results are reported back
to the users (lines 9-19).

At each timestep the server QP initializes our k™ -heap for every NCP in the
network. The k™ -heap integrates three individual sub-structures that we will explain
next. The user location reports are gathered and inserted into the kT -heap of every
NCP. After all location reports have been received and inserted, each NCP has its
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Algorithm 1 . Proximity Outline

Input: User Reports R (single timestep), set C of all NCPs
QOutput: kNN answer-set for each user in U
1: forallc € C do

2: initialize k. > Initialize our £+ -heap
3: end for

4: forall r € R do > Phase 1: build £+ -heap
5: for all c € C do

6: insert(r,kt¢)

7 end for

8: end for

9: U « users(R)

10: for all uw € U do > Phase 2: scan kT -heap
11: kNN, =0 > Conventional k-max heap
12: C 4 ry.ncp
13: forallv € kt. do
14: if v is a kNN of u then
15: update(kNNy,, v)
16: end if
17: end for
18: report kNN to node u
19: end for

search space stored inside its associated kT -heap. After the build phase, each user
scans the kT -heap of its NCP to find its k-nearest neighbors.

1.4.2 Constructing The Search Space

Here we describe the intuition behind our search space sharing concept. Every user
covered by an NCP uses the same search space to identify its kNN answer-set.

In order to construct a correct search space for each NCP, we need to be able
to identify nodes that might be part of the kNN answer-set for any arbitrary user of
a given NCP. For instance, consider two users ug and ug, in Figure 1.2, which are
positioned on the perimeter of their NCP c. Also, consider user uy being outside ¢
and close to ug. In such a scenario, the search space for ¢ must obviously include us,
as it is a better kNN candidate to ug than ug. However, even if we were aware of the
k closest users to c (besides the users in ¢), would not allow us to correctly determine
the kNN for any arbitrary user in c. To understand this, consider again Figure 1.2
with a 2NN query. u; and us are the two closest outside nodes to the border of c.
Yet, we can visually determine that u7 is a more appropriate 2NN candidate for ug
than all aforementioned nodes, i.e., ug, U1, Us.

To overcome this limitation, we define a prune-off threshold, denoted as kth.,
which determines the size of the search space of c. kth, is the k" closest outside
user to the border of ¢, which determines the width d. of the search expansion
(striped ring as seen in Figure 1.4). Inside this ring there are k users by definition.
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These k users form the K -set. In our running example kth, = us. This guarantees
that the search space will have at least k users. All users at distance less that 2 x
radius. + d. from ¢’s border, are also part of the search space. This guarantees that
each user inside ¢ will find its actual kNN inside the search space.

The size of each NCP search space depends on the communication area of the
NCP and the k" closest outside user to the border of its communication area. The
users inside ¢ comprise set U, and the users that are at distance greater than d. and
less than 2xradius.+d. from the cell’s border comprise set B, (grey ring in Figure
1.4). Set K, set B, and the users U, inside ¢ form the search space S, of c.

Definition 2 (K -set). Given a set of users u € U — U, outside NCP cell c that is
ordered with ascending distance dist(u, ) to the border of ¢, set K. consists of the
first k elements of this set (striped ring in Figure 1.4).

Definition 3 (k" outside neighbor of the NCP cell). Given K. (ordered as in Def-
inition 2), the kM user is called the kt" nearest neighbor of ¢ and denoted kth..

Definition 4 (B, Boundary Set). Given an NCP denoted as ¢ and its k" out-
side neighbor kth., set B, consists of all users u € U — (U, U K) with dis-
tance dist(u,c) < dist(kthe,c) + 2 * radius. from the border of c. In other
words B, consists of all users v € U with distance dist(kth.,c) < dist(u,c) <
dist(kthe,c) + 2 * radiuse.

Definition 5 (S, Search Space set). Given an NCP ¢ and its K, set, the search space
S, of c consists of all users u € U, UK .UB, (big circle with dotted outline in Figure
1.4).

In our Figure 1.4 example, at the end of the build phase, the k*-heap of ¢ includes
users {ug, o, U1, g, Ug, Uq, us }. This is the common search space S, for all users
U, = {up, ug} of ¢, which guarantees to include their exact k-nearest neighbors.

1.4.3 Specialized Heap: The k*-heap

Computing the search space for each cell inefficiently might be prohibitive for the
application scenarios we envision as detailed in the introduction. In this section, we
show in detail how the search space for an NCP is constructed using our k™ -heap
data structure. Recall that as user reports arrive at the server QP they are inserted
into each kT -heap. A user report either stays inside a k™ -heap or eventually gets
evicted using a policy that we will describe later. After all user reports have been
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Fig. 1.4 An example of the common search space for the users inside cell ¢ (white circle) for
k = 2. The search space S. of ¢ is {uo,u1,u2,us, us,us,us} and is represented by the big
circle with the dotted outline. Set S¢ includes all users inside ¢ (set U.), the striped ring (set K.)
and the grey ring (set B¢). Any node outside S. (e.g., user x) is guaranteed NOT to be a kNN of
any user inside cell c. The 2-nearest neighbors for the nodes in ¢ are kNN(ug) = {u1,u2} and
kNN (ug) = {uo, u1}.

probed through the k-heap of every NCP, each k*-heap contains the actual search
space of its NCP. Consequently, the build phase takes a total of n * |C| insertions.

The k™ -heap consists of three separate data structures: a heap for the set K. and
two lists for Boundary set B, and the set U,.. The heap used for set K is a conven-
tional k-max-heap. It stores only the k users outside ¢ with the minimum distance
dist(u, ¢) from the border of c. Thus, the heap K has always kth, at its head. The
boundary list is a list ordered by dist(u,c), which stores set B. Its elements are
defined by kth, (see Definition 4). Similarly, we use a list to store the users U, C U
of c. Notice that some NCP cells will be overlapping, so there are areas where users
are inside multiple cells. Such users are inserted into all lists U; of ¢; € C that
cover them. The kT -heap has O(1) lookup time for the k* nearest neighbor of c. It
has worst case O(log(k = |B|)) insertion time and contains |S.| = k + |B.| + |U,|
elements.

1.4.4 Insertion Into The k™ -Heap (Algorithm 2 and 3)

When inserting a new element ,,.,, into the k™ -heap of ¢, we distinguish among
four cases (see Algorithm 2): i) uyeq, 1S covered by ¢ and belongs to set U, (line
2), 1) Upeq belongs to set K. (line 4), iii) wyeq belongs to set B, (line 11), or iv)
Unew does not belong to the search space S, = U, U K. U B, of NCP c¢ (line 13).
In case (i) the element is inserted into the U, list. In case (ii) we need to insert ,,¢q,
into heap K (line 5) and move the current head kth. from K to the boundary list B
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Algorithm 2 . kT -heap: Insert(t,,c.,)

Input: upew, ¢ of Unew
Output: k1.
1: kthe < head(K.)
if dist(unew, c) < radius. then
3 insert(Unew, Ue)
4: else if dist(unew, c) < dist(kthc,c) then
5: insert(Unew, Kc)
6: if K heap has more than & elements then
7.
8

kthe < pophead(K.)
: insert(kthe, Be)
9: Update_boundary(head(K.))

10: end if

11: else if dist(unew, ¢) < dist(kthe,c) + 2 * radius. then
12: insert(Unew, Be)

13: else

14: discard unew

15: end if

Algorithm 3 . k™ -heap: Update_boundary(kth..)

Input: kth. (the k*" outside neighbor of NCP c)

Output: B, updated
1: d < dist(kthe,c) + 2 * radiusc
2: 4 + element with the max. distance smaller than d using binary search
3: remove(Bc,i+ 1, end)

(lines 7-8). This yields a new head kth., in K (line 9). Every time the kth,. changes,
the boundary list B needs to be updated, since it might need to evict some elements
according to Definition 4. In case (iii) we insert u,,, into the ordered boundary list
B (line 12). Note that the sets K. and B, are formed as elements are inserted into
the k*-heap. The first k elements inserted in the empty k*-heap define the K. set.
In case (iv) the element is discarded.

1.4.5 Running Example

Using Figure 1.4 as our network example in timestep ¢ we will next present the
Proximity framework step-by-step.

Server QP initiates a k*-heap for every NCP in C. The kT-heap consists
of heap K, ordered list B, and list U. The reports that arrive at QP are R =
T0,T1,T2,73,T4,T5, 6, Tx. Bvery report is inserted into every k™ -heap on the QP
(see Algorithm 1, lines 1-5). The order in which the reports are inserted into a k™ -
heap does not affect the correctness of the search space.

For our example, assume that the reports are inserted in the order seen in the first
column of Table 1.2. For every insertion we can see the contents of k. in the same
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Table 1.2 Build-up phase of the kT -heap of NCP c as user location reports are inserted.

Arriving |Structure |Structure |Structure |line in
Reports |Kc B. Ue Algorithm 2
T4 {ra} {} {} 1,4,5

e {re,ra} |{} {3 145

r2 {ra,ro} {rz} {} 1,4-11

r3 {rs,ra} |{ra,rz} [{} 1,4-11

r1 {ra,r1} {ra,ra} {} 1,4-11

s {ro,r1} |{r3,ra,rs5}|{} 1,12,13

T6 {r2,m1} {rs,ra,75}|{re} 1-3

ro {ra,r1} {ra,ra,r5}|{re,70} 1-3

Table. For simplicity we will only follow the operation for the k*-heap of NCP
c. When report 74 is inserted into k™, it ends up inside heap K, since user uy4 is
not inside NCP cell ¢ (condition line 2) and heap K. is empty. Next, report r,, is
inserted into kT and it also ends up inside heap K. since this is not full yet. When
ro 18 inserted, it ends up inside heap K. (line 5) and it becomes the new head of the
heap kth.. The old head of the heap was r, and is popped out of K and is inserted
into the B, list (lines 7-8). The update on the B, list is triggered (line 9) which, in
this case, does not affect the list. Similarly, when r3 is inserted the same operations
(lines 5-10) take place as with the insertion of 5. Next, r; is inserted with the same
effect, only this time the B, list is altered during its update (line 9). ro is the new
head of heap K, and according to Definition 5 defines a new search space radius
d = dist(usg, ¢) + 2 x radius,. (line 1 of Algorithm 3). The report r,, inside list B,
has dist(u,, c) > d, thus it belongs to the tail of the list that is discarded in line 3 of
Algorithm 3. When rj is inserted it ends up directly inside list B, (line 12), since it
is outside ¢, further away than kth, but closer than dist(kth.,c) + 2 * radius,. to
the border of c. Reports r¢ and rg both end up directly inside list U, (line 3), since
they are covered by c, satisfying the condition in line 2.

After all reports are inserted into the k" -heaps phase 1 of Algorithm 1 is com-
pleted and the search space is ready. For the second phase of Algorithm 1 the server
scans a single k™ -heap for each user. The server can scan the kT -heap of any NCP
that covers a user u to get the k neighbors of u. In our Algorithm 1 the server scans
the NCP that actually services the user ncp(u) (lines 12). For users ug and ug, the
server @ scans k*. = wg,uy, us, uq, us, ug and finds nearest neighbors {uo,u;}
and {ug, u1 } for user ug and ug respectively.

1.5 Summary and Future Work

We have presented Proximity, an algorithm for continuously answering all k-nearest
neighbor queries in a cellular network. It is based on a division of the search space
based on the network connectivity points and exploiting search space sharing among



16 Georgios Chatzimilioudis and Andreas Konstantinidis and Demetrios Zeinalipour-Yazti

users of the same connectivity point. The Proximity framework has a better time
complexity compared to solutions based on existing work. Our experiments verify
the theoretical efficiency and shows that Proximity is very well suited for large scale
scenarios.

Proximity is easily adaptable to provide some location privacy in terms of spatial
cloaking. Tt is naturally extendible to the scenario where users report to the server
using spatial cloaking [15]. The location of a user is represented by an area, instead
of a simple point. We will further investigate privacy extensions for our algorithms
aiming towards strong privacy in future work. Existing work towards this direction
has been published by Papadopoulos et al [51], where they answer a single snapshot
of a kNN query guaranteeing strong privacy.

Extensions and future plans for this work are also placed in parallelizing the
Proximity algorithm, specializing it for cloud environments and adapt our search
space sharing for user-defined k values, instead of a system-defined global k value.
This allows for scalability in the face of the Big Data era. Lastly, kNN on Big Data
can benefit further by combining it with Computer Intelligence techniques, such as
neural networks.
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