
Author Name

Book title goes here

Contents

1 A P2P Search Framework for Intelligent Mobile Crowdsourcing . . . 1
Andreas Konstantinidis and Demetrios Zeinalipour-Yazti
1.1 Introduction . 2
1.2 Background And Related Work 3

1.2.1 Mobile Crowdsourcing . 3
1.2.2 Mobile P2P Search . 5
1.2.3 Multi-Objective Optimization 6

1.3 System Model And Problem Formulation 7
1.3.1 System Model . 7
1.3.2 Optimization Problem Formulation 9

1.4 The SmartOpt Framework . 10
1.4.1 The Optimizer Module . 10
1.4.2 The Decision Maker Module 14
1.4.3 The P2P Search Module 14

1.5 The Smartphone Prototype System 15
1.5.1 The SmartLab Programming Cloud 17

1.6 SmartP2P Prototype Evaluation On SmartLab 18
1.6.1 Experimental Setup . 18
1.6.2 Experimental Results . 21

1.7 Conclusions And Potential Applications 25

References . 27

iii

Chapter 1

A P2P Search Framework
for Intelligent Mobile
Crowdsourcing

Andreas Konstantinidis
Department of Computer Science,University of Cyprus, Nicosia, Cyprus

Demetrios Zeinalipour-Yazti
Department of Computer Science,University of Cyprus, Nicosia, Cyprus

CONTENTS
1.1 Introduction . 2
1.2 Background And Related Work . 3

1.2.1 Mobile Crowdsourcing . 3
1.2.2 Mobile P2P Search . 5
1.2.3 Multi-Objective Optimization . 6

1.3 System Model And Problem Formulation . 7
1.3.1 System Model . 7
1.3.2 Optimization Problem Formulation . 9

1.4 The SmartOpt Framework . 10
1.4.1 The Optimizer Module . 10
1.4.2 The Decision Maker Module . 14
1.4.3 The P2P Search Module . 14

1.5 The Smartphone Prototype System . 15
1.5.1 The SmartLab Programming Cloud . 17

1.6 SmartP2P Prototype Evaluation On SmartLab . 18
1.6.1 Experimental Setup . 18
1.6.2 Experimental Results . 20

1

2 � Book title goes here

1.7 Conclusions And Potential Applications . 25

1.1 Introduction
The advent of social networks and the widespread deployment of smartphone de-
vices have brought a revolution in location-aware social-oriented applications and
services on mobile phones. A Smartphone Social Network is a structure made up
of individuals carrying smartphones, which are used for sharing and collabora-
tion [1] (i.e., content, interests, comments and places.) For example, Google Latitude,
Foursquare and Facebook Places enable users to check-in to favorite places, provide
their location history, as well as numerous other functions. Smartphones can also
unfold the full potential of crowdsourcing allowing users to transparently contribute
to complex and novel problem solving. A crowd of smartphone users that is con-
stantly moving and sensing providing large amounts of opportunistic/participatory
data [4, 9, 3] can offer optimality to location-aware search and similarity services [5].
There is already a proliferation of innovative applications founded on opportunis-
tic/participatory crowdsourcing that span from assigning tasks to mobile nodes in a
given region to provide information about their vicinity using their sensing capabil-
ities (e.g., noise-maps [38]) to estimating road traffic delay [41] using WiFi beams
collected by smartphones rather than invoking expensive GPS acquisition and road
condition (e.g., PotHole [17].)

Currently, the bulk of social networking services, designed for smartphone com-
munities, rely on centralized or cloud-like architectures. In particular, in order to
enable content sharing and community search over crowdsourced data, the smart-
phone clients upload their captured objects (e.g., images uploaded to Twitter, video
traces uploaded to Youtube, etc.) to a central entity that subsequently takes care of
the content organization and dissemination tasks. Although certain types of objects,
such as text-based micro-blogs, will behave reasonably well under this model, signif-
icant challenges arise for captured multimedia and sensor data (e.g., data captured by
the camera, microphone, WiFi RSS readings, etc.) We claim that the centralization
of these object types will be severely hampered in the future due to several con-
straints including, (i) data-disclosure: continuously disclosing user-captured objects
to a central entity might compromise user privacy in very serious ways and (ii) en-
ergy consumption: smartphones have asymmetric communication mediums with a
slow up-link, thus by continuously transferring massive amounts of data to a query
processor, through WiFi/3G/4G connections, can deplete the precious smartphone
battery faster, increase query response time and quickly degrade the network health.

In this book chapter, we present a P2P search framework for intelligent crowd-
sourcing in Mobile Social Networks. Our framework uses mobile crowdsourcing
primitives, which are expected to unveil the full potential of this novel computa-
tion model [5]. Additionally it uses a P2P search approach, coined SmartOpt [25],
where captured objects remain local on smartphones and searches take place over an
intelligent multi-objective lookup structure we compute dynamically, since the ob-
jectives to be optimized conflict with each other. In particular, the Multi-Objective

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 3

Optimization (MOO) approach utilizes the information contributed by the registered
crowd to obtain a diverse and high quality set of near optimal solutions (i.e., Pareto
Front) to benefit the decision making process. The book chapter also demonstrates
our implemented work over SmartLab1, which is a programming cloud of 40+ smart-
phones [26, 30].

The remainder of this book chapter is organized as follows: Section 1.2 provides
the background and overviews the related work. Section 1.3, provides our system
model and defines the problem in a rigorous manner. Section 1.4 introduces the Smar-
tOpt framework and its internal modules composed of various operators. Section 1.5
details our SmartP2P prototype system and protocol as well as introduces Smart-
Lab, our programming cloud of 40+ Smartphones. Our experimental methodology
and results are presented in Section 1.6, while Section 1.7 concludes the paper and
introduces potential applications of SmartOpt.

1.2 Background And Related Work
In this section, we provide background information and related research work that
lies at the foundation of the SmartOpt framework with crowdsourcing. Initially, we
introduce several taxonomies and applications of crowdsourcing, followed by re-
search studies on Mobile P2P search and Query Routing Trees. Finally, this sections
revisits the area of MOO and introduces the Multi-Objective Evolutionary Algo-
rithms (MOEAs).

1.2.1 Mobile Crowdsourcing

Crowdsourcing refers to a distributed problem-solving model in which a crowd of
undefined size is engaged to solve a complex problem through an open call. Crowd-
sourcing has still not fully penetrated the mobile workforce, which will eventu-
ally unfold the full potential of this new problem-solving model. This is true due
to the smartphones’ usage characteristics and unique features. Smartphones are in
widespread, everyday use and are always connected. Therefore, they offer a great
platform for extending existing web-based crowdsourcing applications to a larger
contributing crowd, making contribution easier and omnipresent. Furthermore, the
multi-sensing capabilities (geo-location, light, movement, audio and visual sensors,
among others) of smartphones, provide a new variety of efficient means for oppor-
tunistic data collection enabling new crowdsourcing applications.

Crowdsourcing applications on smartphones can be classified into extensions of
web-based applications or as new applications. The former class expands to users
that do not have access to a conventional workstation and adds the dimension of real-
time location-based information to the service. Instances of such applications are

1Available at: http://smartlab.cs.ucy.ac.cy/

4 � Book title goes here

Gigwalk2, Jana3 and the work of Ledlie et al. [31]. The latter class includes applica-
tions for crowdsourced traffic monitoring (e.g., Waze4) and road traffic delay estima-
tion (VTrack [41]); constructing fine-grained noise maps by letting users upload data
captured by their smartphone microphone (Ear-Phone [38], NoiseTube [40]); identi-
fying holes in streets by allowing users to share vibration and location data captured
by their smartphone (PotHole [17]); location-based games that collect geospatial data
(CityExplorer [33]); and real-time fine-grained indoor localization services exploit-
ing the Radio Signal Strength (RSS) of WiFi access points (Airplace [29]).

Another key characteristic of mobile crowdsourcing is whether the crowd’s con-
tribution is participatory or opportunistic. Generally speaking, computations per-
formed by users and user generated data is the input for participatory crowdsourc-
ing, while the input for opportunistic crowdsourcing is data generated from sensors
and computations performed by the crowd’s devices automatically — i.e., trajectory
matching, positional triangulation. The classical crowdsourcing services on the web
are participatory, since they require the active participation of the users. The crowd-
sourcing tasks of the second category are transparent to the user as they usually run
in the background using the sensors to collect readings from the environment.

Further crowdsourcing taxonomies are proposed by Geiger et al. [19] and Quinn
et al. [35]. Both studies recognize that the value of the input can lie either in the
individual or the collective contribution, where “the crowdsourcing system strives to
benefit from each contribution in isolation or from an emerging property resulting
from the system of stimuli”, respectively. Furthermore, [19] divides applications re-
garding the contribution quality, which can be homogeneous or heterogeneous. In
the former, each contribution has the same weight, whereas in the latter, each con-
tribution is evaluated and can be compared to, compete against or complete other
contributions. In [35], the incentives used for the crowd are also studied, which can
be one or more from: pay, altruism, enjoyment, reputation, among others. Finally,
[35] further classifies applications according to the human skill that is exploited in-
cluding visual recognition, language understanding and communication. Notice that
human skill is only required in applications with participatory contribution.

Smartphones feature different Internet connection modalities that provide inter-
mittent connectivity (e.g., WiFi, 2G/3G/4G), as well as peer-to-peer connection ca-
pabilities that provide connectivity to nodes in spatial proximity (e.g., Bluetooth,
Portable WiFi or the new generation NFC). Notice that each of these connection
modalities comes at different energy and data transfer rate characteristics. In par-
ticular, smartphones have typically energy-expensive communication mediums with
asymmetric upload/download links, both in terms of bandwidth and energy consump-
tion, with the upload link being the weaker link.

Classical crowdsourcing applications are developed in a centralized or a decen-
tralized manner. Centralized methods would ship the data generated and collected
from the crowd to a server where the answer would be computed. Centralized meth-
ods are currently utilized by all social networking sites (such as Twitter, Youtube,

2Gigwalk Inc., May 2012, http://www.gigwalk.com/
3Jana, May 2012, http://www.jana.com/
4Waze Ltd., April 2012, http://www.waze.com/

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 5

Facebook, etc.) Continuously transferring data from the smartphone to the query pro-
cessor can deplete the smartphone battery, increase user-perceived delays and quickly
degrade the network health. In addition, it demands users to disclose their personal
data with a central authority. On the other hand, decentralized methods would send
the query to the smartphones, where all computations and communications would
be performed locally. This approach might also perform poorly in terms of energy
consumption if it invokes expensive computation tasks on all participants.

For location-dependent crowdsourcing applications, localization is usually either:
i) GPS-only (fine-grained positioning, i.e., a few meters), ii) WiFi-only (semi-fine-
grained, i.e., tens of meters), iii) Cellular-only (coarse-grained, i.e., tens to hundreds
of meters). The latter two methods, which can be combined, require transmitting
Cellular Tower and/or WiFi Received Signal Strength values over the Internet (via
WiFi or 3G connection) to the localization server. GPS does not need to communicate
any information over the Internet to a localization server.

1.2.2 Mobile P2P Search
Mobile Peer-to-Peer/MANET search can be roughly classified into: i) Blind
Search [20, 32, 44], where mobile peers propagate the query using an unsophisti-
cated (e.g., random, TTL property) approach to as many nodes in the network as
possible, and ii) Informed Search [6, 23, 24, 34, 39], where mobile peers use seman-
tic or location information to forward queries to specific nodes in the network. The
proposed search approach presented in this chapter belongs to the latter class with
the difference that we utilize a centralized approach where mobile peers (i.e., smart-
phone devices) subscribe to a centralized registry. Similar to [39], we utilize a content
summary mechanism (i.e., profile) for discovering mobile peers that will participate
in a query Q by the centralized node. However, in our setting, the content summary
of each mobile peer is stored at the centralized node upon its registration thus allow-
ing multiple query users to use this information without requiring the retransmission
of the content summary to each mobile peer. In PeerDB [34], the authors propose
an agent-assisted query processing approach that has the ability to reconfigure the
network based on optimization criteria (e.g., channel bandwidth). Although, this can
increase the performance of the system (e.g., minimize energy cost, increase time
performance), it imposes a high cost for maintaining the agents at each mobile node.
In Location-Aided Routing (LAR) [24], the authors take into account the physical lo-
cation of a destination mobile node, reaching in this way only a set of nodes close
to the query user, which maximizes the performance of a query (i.e., time, energy).
In SmartOpt, we additionally augment each mobile node with a social profile, which
further decreases the number of participating nodes as only nodes that support a given
query will contribute to the results.

Query Routing Trees (QRTs) in smartphone networks have recently received at-
tention in the context of people-centric applications [4]. Such applications feature
continuous sharing of data that can be utilized to create a number of collaborative
scenarios (e.g., BikeNet [16]). A central component to realize such scenarios is the

6 � Book title goes here

availability of some high-level communication structure, such as QRTs. In [42], the
authors present a technique that profiles the activities of the user in order to mini-
mize the number of communication packets transmitted in the smartphone network.
In contrast to [42], which focuses on a single objective of energy, our proposed tech-
nique focuses on two additional objectives: time overhead and recall. In [18], the
authors form QRTs using flooding in order to continuously track mobile events and
relay data to the query user. Similarly to the BFS algorithm, presented earlier, this
approach suffers from significant energy waste as all nodes continuously and actively
participate in the smartphone network. QRTs have also been extensively studied in
the context of unstructured P2P system (e.g., IS, >RES, RBFS, Random Walkers,
APS, etc. [45]), yet none of these was taking into account the resource-constrained
nature of smartphone networks. Similarly query routing structures proposed for Sen-
sor Networks, such as TAG, ETC and MHS [2], focus on building routing trees that
are near-optimal (with respect to a single objective) but expose good aggregation
and data synchronization properties during continuous data percolation to a central-
ized sink. On the other hand, our setting deals with snapshot query cases and multi-
objective query optimization for smartphone social networks.

1.2.3 Multi-Objective Optimization
Multi-Objective Optimization (MOO) (a.k.a. multi-criteria or multi-attribute opti-
mization) [8, 13] is the process of simultaneously optimizing two or more conflicting
objectives subject to certain constraints and can be mathematically formulated as

minimize F(x) = (f1(x), . . . , fm(x))T (1.1)
subject to x ∈ Ω

where Ω is the decision space and x ∈ Ω is a decision vector. F(x) consists of m
objective functions fi : Ω → ℜ, i = 1, . . . ,m, where ℜm is the objective space.

The objectives in (1.1) often conflict with each other and an improvement on one
objective may lead to deterioration of another. Thus, no single solution exists that
can optimize all objectives simultaneously. In that case, the best trade-off solutions,
called the set of Pareto optimal (or non-dominated) solutions, is often required by a
decision maker. The Pareto optimality concept is formally defined as,

Definition 1. A vector u = (u1, . . . ,um)
T is said to dominate another vector v =

(v1, . . . ,vm)
T , denoted as u ≺ v, iff ∀i ∈ {1, . . . ,m}, ui ≤ vi and u ̸= v.

Definition 2. A feasible solution x∗ ∈ Ω of problem (1.1) is called Pareto optimal
solution, iff @y ∈ Ω such that F(y) ≺ F(x∗). The set of all Pareto optimal solutions
is called the Pareto Set (PS), denoted as,

PS = {x ∈ Ω| ̸ ∃y ∈ Ω,F(y)≺ F(x)}.

The image of the PS in the objective space is called the Pareto Front (PF),

PF = {F(x)|x ∈ PS}.

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 7

Table 1.1: Table of Symbols
Symbol Description of Symbols

C (Centralized) Social Networking Service
U Users of the Social Network (i.e., {u1,u2, ...,uM})
P User Profiles stored by C for Us (i.e., {p1, p2, ..., pM})
oik Object k (images, videos, etc.) recorded by user i.
G Conceptual Graph connecting the users in U .
G′ Social Neighborhood of some arbitrary user.
Q Query conducted in social neighborhood G′ (G′ ⊆ G).
U ′ Users that are connected to C during the execution of Q.
X Query Routing Tree constructed to answer Q.

MOO has numerous applications in virtually all domains of sciences, engineer-
ing and economics. MOO is a relatively new area in mobile/wireless networks, in
general, and in Smartphone Networks in particular. In MOO, it is difficult to apply
an existing linear/single objective or systematic method to effectively tackle a Multi-
objective Optimization Problem (MOP), giving a set of non-dominated solutions.
This is mainly due to the increased complexity and high dimensionality of the search
(or decision) space. Our optimizer borrows ideas from Multi-Objective Evolutionary
Algorithms (MOEAs), which have been shown effective in obtaining a set of non-
dominated solutions in a single run. In the literature, several MOPs were proposed
in the content of Wireless Sensor Networks and Mobile Networks [22, 27, 28, 37],
tackled in most cases by Pareto-dominance based MOEAs (e.g., the state-of-the-art
Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) [14]) and in few cases by
decompositional MOEAs (e.g., Multi-Objective Evolutionary Algorithms based on
Decomposition (MOEA/D) [46]).

1.3 System Model And Problem Formulation
In this section, we outline our system model and formulate the MOP SmartOpt aims
to solve. A table of respective symbols is shown in Table 1.1.

1.3.1 System Model

Overview: Let C, denote a social networking service that maintains centrally the
social profiles P = {p1, p2, ..., pM}, for each of its M subscribed mobile users (i.e.,
a crowd U = {u1,u2, ...,uM}). The profiles record basic user details, authentication
credentials, the user interests (e.g., traveling, sports, music, etc.) and friendship rela-
tions that define the conceptual social network graph G among the M users. In our
setting, a user ui (i ≤ M) uses a smartphone (or tablet) device to both perform its day-

8 � Book title goes here

to-day activities but also to opportunistically capture objects of interest at arbitrary
moments (e.g., “take a picture of the Liberty Statue”). Each object oik might be tenta-
tively “tagged” with GPS information and other user tags (e.g., “lat: 40.689201355,
long: -74.0447998047, tags: “Statue Liberty Ellis Island”).

Connection Modalities: Each ui features different Internet connection modalities
that provide intermittent connectivity to C (e.g., WiFi, 2G/3G/4G). Each ui also fea-
tures peer-to-peer connection modalities that provide connectivity to nodes in spatial
proximity (e.g., Bluetooth, Portable WiFi or upcoming NFC available in Android)[5].
We assume that when ui is connected to C, then C is aware of ui’s absolute location
(e.g., GPS) or ui’s relative location (e.g., the cell-ids within ui’s range, WiFi RSSI
indicators within ui’s range or other means utilized for geo-location). Notice that
each of the connection modalities comes at different energy and data transfer rate
characteristics. For example, we’ve profiled an Android-based HTC Hero and found
that WiFi consumes 39mW/byte, 3G consumes 24mW/byte and Bluetooth consumes
14mW/byte. Additionally, Bluetooth had a symmetric data rate of 864kbps, while
WiFi an asymmetric data rate of 123Kbps (up) and 2Mbps (down) and 3G an asym-
metric data rate of 2.7Mbps (up) and 7.2Mbps (down). The nominal data rates for the
aforementioned modalities might differ significantly, as this is also validated in [21],
mainly due to the deployment environment. Moreover, while the power consumption
on the different kinds of radios can be comparable, the energy usage for transmitting
a fixed amount of data can differ an order of magnitude because the achievable data
rates on these interfaces differ significantly [36]. Finally, the availability characteris-
tics of these kinds of modalities can vary significantly. The penetration of some form
of cellular availability (e.g., WiFi or 3G) is significantly higher than Bluetooth, on
average. Thus, uploading or downloading large data items using Bluetooth can be
more energy-efficient than using a radio network, but Bluetooth may not always be
available and it is often slower.

Search Techniques: Let an arbitrary user u j (j ≤ M), be interested in answering
a query5 Q over its social neighborhood (i.e., nodes connected to u j either directly
or through intermediate nodes) G′ (G′ ⊆ G). For instance, let Q be a depth-bounded
breadth first search query over u j’s neighbors in the G graph (i.e., in G′). This kind
of conceptual query can be realized in the following manners:

1. Centralized Search (CS): This algorithm assumes that the multimedia objects
and tags are all uploaded to C prior query execution. Once Q is posted, C
can locally derive the answers (using its local tag database) and return the an-
swers to u j. This model, which is currently utilized by all social networking
sites (such as Twitter, Youtube, Loopt, etc.), performs well in terms of query
response time but performs poor both in terms of data disclosure (i.e., oik ob-
jects and tags need to be continuously disclosed to C) and performance (i.e.,
data transmission of large objects over radio links is both energy demanding
and time consuming.)

2. Distributed Breadth-First-Search (BFS): This algorithm assumes that the ob-

5Without loss of generality we assume simple Boolean keyword queries over tags.

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 9

jects and tags are all stored in-situ (on their owner’s smartphones.) In order to
realize the search task, a querying node u j downloads from the query processor
the addresses (e.g., IP:PORT address) of its first line neighboring nodes (i.e.,
G′′ ⊆G′). u j then contacts the nodes in G′′ in order to conduct a depth-bounded
breadth first-search in a P2P fashion (i.e., using a pre-specified Query Time-
To-Live QT T L > 0). Once some arbitrary node ux ∈G′ receives Q, it both looks
at its local tags, in order to identify an answer and also forwards the request
further until QT T L becomes zero.

Although the BFS approach improves the data-disclosure drawback of the CS
approach, it is quite inefficient during search. In particular, Q has to go over a random
neighborhood rather than a neighborhood that is contextually related to the query. For
instance, in our Liberty Statue query example, we would have preferred querying a
friend living in lower Manhattan rather than a person living in California (as the
former would have a higher probability of capturing the statue). Also, if u j had two
friends, ux and uy, both living in lower Manhattan, with ux being in spatial proximity
to u j during the query (i.e., within a few meters), while uy being far away, would
have made ux a better choice for posting the query (as ux could have been queried
through a local link such as Bluetooth).

1.3.2 Optimization Problem Formulation
The Multi-Objective Query Routing Tree (MO-QRT) structure in this chapter, im-
proves the search operation of the BFS algorithm by optimizing the neighbor se-
lection process. In particular, a node downloads from C a QRT X that is optimized
according to the following formulation: Given a social network of users U, a list of
active users U ′ and their coordinates, the profiles P of these users and a query Q,
posted by an arbitrary user u j, the query processor aims to optimize an X structure
using the following objectives:

Objective 1: Minimize the total Energy consumption of X

Energy(X) = min ∑
∀(ua,ub)∈X(X⊆U ′)

e(ua,ub) (1.2)

where, e(ua,ub) denotes the energy consumption for transmitting one bit of data over
the respective edge (WiFi, Bluetooth and 3G).

Objective 2: Minimize the Time overhead of X

Time(X) = min(max(ua,ub)∈X t(ua,ub)) (1.3)

where, t(ua,ub) denotes the delay in transmitting one bit of data over the respective
edge.

Objective 3: Maximize the Recall rate of X

Recall(X ,Q) = max(
Relevant(Q)∩Retrieved(X ,Q)

Relevant(Q)
) (1.4)

10 � Book title goes here

where Relevant(Q) denotes the set of all objects in U ′ that are relevant to Q, formally

as:
Relevant(Q) =

∪
∀ua∀k(ua∈U ′)

(oak)),

given that ua’s profile (denoted as pa) contains terms found in Q. On the other hand,
Retrieved(X,Q) denotes the set of objects that have been retrieved in response to Q
over structure X , formally as:

Retrieved(X ,Q) =
∪

∀ua∀k(ua∈X)

(oak)),

again given that pa contains terms found in Q.
In a MOP, there is no single solution X that optimizes all objectives simultane-

ously, but a set of trade-off candidates. The set of trade-off solutions, commonly
known as the Pareto Front (PF), is often defined in terms of Pareto Optimality.
That is, considering a maximization MOP with n objectives: a solution X∗ is con-
sidered non-dominated or Pareto optimal with respect to another solution Y , iff
∀i ∈ {1, ...,n},Xi ≥ Yi ∧∃i ∈ {1, ...,n} : Xi > Yi, this is denoted as X ≻ Y .

1.4 The SmartOpt Framework
In this section, we present the SmartOpt framework (see Figure 1.1) that is composed
of three modules: i) the Optimizer Module, which identifies a set of non-dominated
QRTs (i.e., Pareto Front) based on geolocated information and social data contributed
by the crowd (i.e., a social community of smartphone users); ii) the Decision Maker
module, which selects a non-dominated QRT X based on some user-preference cri-
teria from the Pareto Front; and iii) the Search Module, which propagates the QRT X
to the P2P network to retrieve the objects of interest.

1.4.1 The Optimizer Module
The SmartOpt optimizer is founded on a MOEA, during which a population of candi-
date solutions (a.k.a. chromosomes), evolve into better solutions (w.r.t. the objective
functions), by utilizing a set of operators (e.g., selection, crossover and mutation)
that are inspired by natural evolution. The given application of operators is inherently
stochastic, but applications to numerous domains such as bioinformatics, computa-
tional science, engineering, economics and other fields, have shown that MOEAs
can be more effective to difficult multi-objective optimization problems when do-
main knowledge is incorporated to the operators [27]. In the context of SmartOpt,
we introduce both domain expertise into our operators as well as utilize well-known
operators that have been proven accurate over the years.

Specifically, we have implemented and specialized the MOEA/D frame-
work [46], which is the state-of-the-art of the decompositional MOEAs and the win-
ner of the Unconstrained Multi-Objective Evolutionary Algorithm competition in

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 11

Figure 1.1: The SmartOpt framework: (*) The crowd continuously contributes so-
cial data (i.e., text, images, videos etc.) to the optimizer. (a) A mobile social network
user posts a query to the optimizer. (b) The optimizer obtains a set of non-dominated
solutions (PF) and send it back to the user. (c) The user (decision maker) chooses a
Pareto-optimal solution based on instant requirements and preferences. (d) The op-
timizer forwards the selected Pareto-optimal QRT to the user. (e) The user searches
the P2P social network for objects of interest.

the Congress of Evolutionary Computation, 2009. We initially proposed a tree-based
encoding representation suitable for the MO-QRT problem and we then designed
a MOEA/D composed of our M-tournament selection approach and the two-point
crossover and random mutation genetic operators as originally proposed by Zhang
and Li in [46]. Furthermore, we hybridized MOEA/D with a problem-specific repair
heuristic for identifying infeasible solutions generated by the genetic operators and
converting them to feasible. Note that the SmartOpt framework can adopt any MOEA
as its Optimizer module (such as NSGA-II [14]) with minor modifications.

MOEA/D requires some pre-processing steps, which consists of representing a
QRT and decomposing the problem into a set of scalar sub-problems, before execut-
ing its main part that is outlined in Algorithm 1.

Representation: In our approach, a solution6 X is a QRT with |G′| active smartphone
users that can participate in the resolution of Q. Without loss of generality, let X be
represented as a vector in which each index i corresponds to a user ui and the value
of that position corresponds to ui’s parent. The root of the tree is the query user (for
simplicity noted as u1). A negative value −1 in any position indicates that the given
user is not currently selected in the query routing tree X .

Decomposition: Initially, the MOP should be decomposed into m subproblems by
adopting any technique for aggregating functions, e.g., the Tchebycheff approach

6The terms “solution”, “vector” and “QRT” are utilized interchangeably.

12 � Book title goes here

Algorithm 1 The SmartOpt Optimizer
Input:
• network parameters (e.g., Q, P, U , G);
• m : population size and number of subproblems;
• T : neighborhood size;
• weight vectors (w1

j , ...,w
m
j), j = 1,2,3;

• the maximum number of generations, genmax;

Output: set of non-dominated QRTs, known as the Pareto Front (PF).

Step 0 (Setup): Set PF := /0; gen := 0; IPgen := /0;

Step 1 (Initialization): Uniformly randomly generate an initial set of QRTs IP0 =
{X1, · · · ,Xm}, known as the initial internal population;

Step 2:For i = 1, . . . m do

Step 2.1 (Genetic Operators): Generate a new solution (i.e., QRT) Y using
the genetic operators.

Step 2.2 (Local heuristic): Apply a problem-specific repair heuristic on Y to
produce Z.

Step 2.3 (Update Populations): Use Z to update IPgen, PF and the T closest
neighbor solutions of Z.

Step 3 (Stopping criterion): If stopping criterion is satisfied, i.e., gen= genmax, then
stop and output PF , otherwise gen = gen+1, go to Step 2.

used here. In this case, the ith subproblem is in the form

maximize gi(X |wi
j,z

∗) = max{wi
j| f j(X)− z∗j |} (1.5)

where f j, j = 1,2,3, are the objectives of our MOP formulated earlier in Subsec-
tion 1.3.2, z∗ = (z∗1,z

∗
2,z

∗
3) is the reference point, i.e., the maximum objective value

z∗j = max{ f j(X) ∈ Ω} of each objective f j, j = 1,2,3 and Ω is the decision space.
For each Pareto-optimal solution X∗ there exists a weight vector w such that X∗ is the
optimal solution of (1.5) and each solution is a Pareto-optimal solution of the MOP
in Subsection 1.3.2. For the remainder of this chapter, we consider a uniform spread
of the weights wi

j, which remain fixed for each subproblem i for the whole evolution
and ∑3

j=1 wi
j = 1.

Initialization Step 1: In Step 1 of Algorithm 1, we adopt a random method to
generate m QRT solutions for the initial Internal Population (i.e., IP0). Namely, a
QRT solution X is initiated by setting each smartphone user ui, i = 1 . . .M as a parent.
Then, mobile users u j, j = 1 . . .M are uniformly randomly selected, and ui is set as
u j’s parent iff i ̸= j and ui is either the root or has already a parent. If u j has already a
parent then we stop and we set as parent the user ui+1. This continues until all users
ui are set as parents once. Then, the IPgen is used to store the best QRT X i found for
each subproblem gi during the search, i.e., at each generation gen.

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 13

Genetic Operator Step 2.1: The genetic operators (i.e., selection, crossover and
mutation) are then invoked on IP for offspring reproduction, i.e., generate a new
QRT solution Y i for each subproblem gi, i = 1 . . .m. The following steps summarize
the details of each operator:

� Selection: We utilize our M-Tournament tree selection [28] for selecting the
M closest individual QRTs from the neighborhood of each subproblem gi,
which are then added in a tournament and the two QRTs with the best fitness
are selected as parents for crossover. The given selection operator allows
to easily adjust the selection pressure, is simple to implement and works in
constant time.

� Crossover (a.k.a. reproduction or recombination): allows our algorithm
to generate new solutions that share many of the characteristics found in
parents, yet are different QRTs. In particular, the 2x-point tree crossover op-
erator takes as an input two parent QRTs, Pr1 and Pr2, and subsequently
generates two new QRTs O1 and O2, the offspring. The best offspring O is
finally selected as follows:

� Two crossover points x1 and x2 are uniformly randomly selected from
numbers 1 to M-1, where x1 < x2.

� The pieces of the parents Pr1 and Pr2 falling within x1 and x2 are ex-
changed to produce two offspring, e.g., O1,O2.

� The best offspring O is then forwarded to the mutation operator, where
O = O1 if gi(O1,wi

j)< gi(O2,wi
j) and O = O2 otherwise.

� Swap Mutation: modifies an offspring O to a solution Y with a probability
rm by uniformly randomly swapping the values of two indexes j,z in O.

Repair Step 2.2: In Step 2.2 of Algorithm 1, a problem-specific local search heuris-
tic checks a QRT solution Y and calculates a QRT Z iff:

� Case #1: there is a disconnected user ui in QRT Y (i.e., ui with or without
children that does not have a parent);

� Case #2: two or more user ids i of user ui are the same in QRT Y ;

� Case #3: there is an infinite loop in QRT Y ;

In all cases, the solution Y is considered infeasible. An infeasible solution can be
generated during reproduction (i.e., genetic operation). A local heuristic repairs the
QRT solution Y to Z by: uniformly randomly generating a parent for the disconnected
user ui in Case #1, replacing the duplicate user ui with another user u j in Case #2,
breaking the loop by connecting a random user of the loop with another user out
of the loop in Case #3. The repair heuristic continuously repairs solution Y until it
does not fall in any of the Cases #1, #2 or #3. In particular, Step 2.2 is repeated

14 � Book title goes here

after each repair to check for further infeasibility, i.e., wether a new discontinuity, a
duplication or a loop appears in the solution. If this is the case then the solution is
repaired as before, otherwise the feasible Solution Z is used to update the populations
of MOEA/D as follows.

Population Update Step 2.3: In Step 2.3, the update phase of Algorithm 1 is
processed in three steps. (1) Update IP, IP/{X i} and IP∪ {Zi} if gi(Zi|wi,z∗) <
gi(X i|wi,z∗), otherwise X i remains in IP. (2) Update the neighborhood of Zi, i.e., the
solutions of the T closest subproblems of i in terms of their weights {w1, · · · ,wm} are
updated. If g j(Zi|w j,z∗)< g j(X j|w j,z∗), then IP/{X j} and IP∪{Zi}, otherwise X j

remains in IP, where j ∈ {1, ...,T}. (3) Update the Pareto Front (PF), which stores
all the non-dominated solutions found so far during the search. PF = PF ∪{Zi} if Zi

is not dominated by any solution X j ∈ PF and PF = PF/{X j}, for all X j dominated
by Zi. The search stops after a pre-defined number of generations, genmax.

1.4.2 The Decision Maker Module
In the decision making module, the query user u j is prompt to decide its prefer-
ence in terms of Time (i.e., Objective 2 calculated by Equation 1.3) and Recall (i.e.,
Objective 3 calculated by Equation 1.4) of the query response to receive from the
Smartphone P2P Network. The decision maker module of SmartOpt then finds the
QRT solution X of the PF that best satisfies the user’s decision and it is also the most
Energy efficient (i.e., Objective 1 calculated by Equation 1.2) at the same time. In
this way, u j is responsible to decide the user-oriented objective values (i.e., time and
recall) and the decision maker module the system oriented objective value (i.e., en-
ergy), since it is assumed that Smartphone users will not be interested in conserving
the overall system energy of the network. Here it is important to notice that we pro-
posed a posterior approach for giving the opportunity to the user to visually choose
a QRT, from the set of Pareto-optimal QRTs obtained by the MOEA/D, based on in-
stant requirements and preferences; instead of choosing a QRT a priori, without any
knowledge on the obtained Pareto Front, or interactively that consumes additional
time and energy from the Smartphone users.

1.4.3 The P2P Search Module
In the final phase, the query user u1 receives the Pareto-optimal tree X from the
decision maker module of SmartOpt and proceeds with a recursive execution of Al-
gorithm 2 on all smartphone devices participating in the tree X . Recall that X is a
vector in which each index i corresponds to a user ui (IP address and port) and the
value of that position corresponds to ui’s parent (IP address and port).

As soon as a smartphone device u j receives Q it creates a set O j of all objects
o ji that satisfy Q (line 4). Immediately then, u j transmits these objects to the query
user u1 (line 6) using the most efficient communication technology (i.e., bluetooth,
3G). In the final step, the smartphone device u j forwards Q to all its child nodes
(lines 8-14). This is done by checking each parent entry in X with its own (line 11).

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 15

Algorithm 2 : Search Phase
Input: The Query User u1, A Pareto-optimal Query Routing Tree X , A Query Q
Output: A set of objects O j = {o j1 . . .o jk}.

1: procedure SEARCH(u1,X ,Q)
2: if (j ̸= 1) then
3: //Step 1: Find a set of local objects O j that satisfy Q
4: O j =

∪
∀i o ji,satis f y(o ji,Q)

5: //Step 2: Send local objects O j to query user u1
6: Send(O j,u1);

7: end if

8: //Step 3: Forward query u1 to all children smartphone devices
9: for i = 1 to |X | do

10: //if j is the parent of i
11: if (X[i] == j) then
12: Search(u1,X ,Q);
13: end if
14: end for
15: end procedure

If a match ui is found, u j transmits Q and X to ui (line 12). This process executes
recursively until all smartphone devices in X receive the query.

1.5 The Smartphone Prototype System
In this section, we provide an overview of our prototype system, coined SmartP2P7,
developed for the ubiquitous Android Operating System to demonstrate the applica-
bility of the SmartOpt framework. We particularly evaluated SmartP2P on our pro-
gramming cloud of Smartphones, coined SmartLab testbed.

Our client-side software is developed around the SDK Tools r12 of Android 2.2
and its installation package (i.e., APK) has a size of 327KB. Our code is written in
JAVA and consists of around 7500 lines of code. In particular our server-code (i.e.,
optimizer) uses 5000LOC and runs over JDK 6 and Ubuntu Linux, our smartphone
code uses 1600 LOC plus 250 lines of XML elements. The server side also includes
a Microsoft SQL server R2 and utilizes the JMATH-PLOT package for drawing the
Pareto Front images.

The Graphical User Interface of our system provides a primitive interface for
a user to query the active users in the community. Initially, the SmartP2P allows a
user to formulate a query in order to find objects of interest. Then the user is pro-
vided a group of algorithmic choices including (i) two simple distributed choices,

7Available at: http://smartp2p.cs.ucy.ac.cy/

16 � Book title goes here

i.e., Random Search and Breadth-First Search, as well as (ii) two MOO choices,
i.e., the MOEA based on Decomposition (MOEA/D) and the Non-Dominated Sort-
ing Genetic Algorithm II (NSGA-II). The user selects an algorithm and the optimizer
calculates a QRT in case (i) or a Pareto Front in case (ii). In both cases, the result is
returned to the query user. Note that alternative approaches can be easily utilized by
our framework with minor modifications. For example, the results can be aggregated
at each node and returned back to the user following a reverse path of the same QRT,
which is called an aggregation tree [15].

The decision maker is only enabled when the query user selects an algorithm
from case (ii) to perform the search. In this case, the Pareto Front is forwarded and
displayed to the query user. Then the query user makes use of a slide bar below the
Pareto Front image to set a desired level of time and recall of the search to be initiated.
Note that if the user does not choose a desired level of those two objectives, the
solution with the minimum energy consumption is automatically chosen. In any case,
the decision maker finds the QRT that is closer to the user’s choice and downloads
it from the optimizer to the user’s smartphone. Finally, the query user initiates the
search using a P2P protocol and the results of the search as well as the selected QRT
are both displayed on the user’s smartphone.

The peer-to-peer protocol that lies at the foundation of our prototype system
is a text-based protocol, as opposed to a binary protocol, for portability (i.e., en-
dianness) reasons. We also did not chose an XML-based protocol implementation
for performance reasons (i.e., minimize annotations.) At a high level, a smartphone
user, denoted as QP, starts out by registering its obfuscated location (e.g., vector
of intercepted cell tower IDs or MAC addresses of WiFi access points) to a well-
known host-cache (i.e., the SmartOpt SERVER in our case.) After this exchange,
the client is considered to be ”connected” to the service for a pre-specified amount
of time (i.e., k seconds in our setting, after which the lease can be renewed). Now
assume that a ”connected” client QP wants to query the active nodes in the net-
work. QP first issues a GET command to the SERVER in order to obtain a tree T
that captures its optimization criterions (with respect to time, energy and recall.) No-
tice that the SERVER is already aware of the social graph and other statistics used
in the optimization process. The issued command is supplemented by a token re-
turned during the registration. The returned tree is serialized in the following format
‘‘NodeIP:NodePort(ParentIP:ParentPort)’’, with -1 denoting no-parent but
is shortened below for ease of exposition. Once T is obtained by QP, QP connects
to P0=root(T) and submits its query Q (i.e., {k1,k2,...,kn}), its HOME ADDR ad-
dress (i.e., IP:PORT) as well as a hop count parameter. P0 then forwards these pa-
rameters to its own children (e.g., P10 and P15), in a recursive manner for N levels
(using a predetermined Time-To-Live (TTL) value enforced by the hop count.) Any
peer receiving Q, conducts a local search and informs QP directly on HOME ADDR
about possible answers. If a peer in T is not responding for whatever reason the
given branch of the tree is disregarded. The fact that the query tree is optimized for
minimum delay, minimum energy and maximum recall provides an advantage of our
approach compared to other approaches for unstructured P2P search, like Breadth-
First-Search, Random Walks [32], as this is presented in our experimental evaluation.

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 17

In particular, we found that the MO-QRT structure can greatly reduce the number of
search nodes, by exploiting meta-relations captured in the social networking graph
and the user interests matrix.

Figure 1.2: Subset of the SmartLab Programming Cloud: Smartphone fleet con-
nected locally to our datacenter. There are additional devices connected both re-
motely and wirelessly to our datacenter.9

1.5.1 The SmartLab Programming Cloud
Experimenting with a large number of devices can be a tedious process as each de-
vice needs to be connected to the programming station, the application needs to be
installed separately and the operator needs to manually launch the instances on each
device and collect the results. In order to overcome the inherent problems of this
setup we have implemented SmartLab [26, 30], an innovative programming cloud of
approximately 40+ Android smartphones and tablets, which is deployed at the Uni-
versity of Cyprus (see Figure 1.2). SmartLab is inspired by both PlanetLab [7] and
MoteLab [43]. Its intuitive web-based interface is easy to use and provides the ability
to reserve and use Android devices for a desired amount of time. Users are able to

9Available at: http://smartlab.cs.ucy.ac.cy/

18 � Book title goes here

reboot, list, transfer and remove files, change Android device settings by using the
interactive Android Debugging (ADB) shell session. Additionally, registered users
can upload and install executable APK files on their reserved Android devices simul-
taneously. The SmartLab users are also able to extract application data, output and
results automatically from all reserved devices, take screenshots as well as watch the
display of all reserved devices during runtime. Users are also granted access to log
files for error and exception handling.

SmartLab implements several modes of user interaction with connected devices
using either Websocket-based interactions (for high-rate utilities) or AJAX-based in-
teractions (for low-rate utilities). In particular, SmartLab supports: i) Remote Con-
trol Terminals (RCT), a Websocket-based remote screen terminal that mimics touch-
screen clicks and gestures among other functionalities; ii) Remote File Management
(RFM), an AJAX-based terminal that allows users to push and pull files to the de-
vices; iii) Remote Shells (RS), a Websocket-based shell developed in-house enabling
a wide variety of UNIX commands issued to the Android Linux kernels of allocated
devices; iv) Remote Scripting Environment (RSE), a Websocket-based RCT record-
ing utility that translates user clicks into automation scripts for repetitive tasks; v)
Remote Debug Tools (RDT), a Websocket-based debugging extension to the debug-
ging information available through the Android Debug Bridge (ADB); and vi) Re-
mote Mockups (RM), a Websocket-based mockup subsystem for feeding ARDs and
AVDs with GPS or sensor data traces encoded in XML, in cases we want to carry
out trace-driven experiments with those measurements. A more detailed description
of SmartLab can be found in [30].

1.6 SmartP2P Prototype Evaluation On SmartLab
1.6.1 Experimental Setup
Our experimental methodology relies on a Trace-driven Real Deployment, during
which we deploy our SmartP2P real prototype system implemented in Android over
up to 138 users using SmartLab and the traces described next.

Datasets and Queries: In our experimental studies, we have constructed two mobile
social scenarios from the following three real datasets:

GeoLife [47] (mobility): This real dataset by Microsoft Research Asia includes 1,100
trajectories of a human moving in the city of Beijing over a life span of two years
(2007-2009). The average length of each trajectory is 190,110 ± 126,590 points,
while the maximum trajectory length is 699,600 points. Notice that 95% of the Ge-
oLife dataset refers to a granularity of 1 sample every 2-5 seconds or every 5-10
meters.

DBLP [10] (social): This real dataset by the DBLP Computer Science Bibliogra-
phy website, includes over 1.4 million publications in XML format. In particular,
the dataset records the paper titles, paper urls, co-authors, links between papers and

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 19

authors and other useful semantics. In order to map this dataset to our problem, we
assume that each object is an author’s paper. We also assume that each object is
“tagged” by the keywords found in the paper title.

Pics ‘n’ Trails [12, 11] (mobility and social): This is a real dataset composed of
around 75 GPS traces of a user moving in Tokyo, Japan during 2007 and a collection
of geotagged photos taken along with a short description. In particular, the dataset
is comprised of 4179 photos in Japan as well as trajectories with a granularity of 1
sample every 10-15 seconds.

In order to link the above datasets we have constructed two mobile social scenarios:

Mobile-Social Scenario 1 (MSS-1): uses the DBLP social dataset and GeoLife mo-
bility dataset. The DBLP dataset is used to construct a social graph G of authors
that are related based on their research interests (i.e., keywords of their articles’ ti-
tles) as well as their co-authorships that are attributes of the DBLP dataset. Then
we have mapped each DBLP author to a trajectory of the Geolife dataset. Particu-
larly, we have extracted 1,100 authors from the DBLP dataset and we have mapped
them to the 1,100 trajectories of the Geolife dataset using a 1:1 correspondence. This
resulted in a social graph with 1,100 mobile DBLP authors moving in the city of
Beijing, China.

Mobile-Social Scenario 2 (MSS-2): uses the Pics ‘n’ Trails social and mobility
dataset. The Pics ‘n’ Trails dataset is initially used to construct a social graph G
of 75 users that are connected based on their interest in taking photos of sightseeing
in Japan (i.e., similar tags on their photos taken). Each user is, therefore, carrying a
random number of photos tagged with a short description that describes a particular
sightseeing in Japan and is associated with a GPS trajectory from the Pics ‘n’ Trails
dataset. This resulted in a social graph with mobile users that carry photos with tags
and move in the city of Tokyo, Japan.

In our experiments, we utilize the following three queries:
-- Query 1

SELECT S.title, S.url

FROM SmartphoneUsers S, Query Q

WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)

AND S.Title LIKE ’%optimization%’;

-- Query 2

SELECT S.title, S.url

FROM SmartphoneUsers S, Query Q

WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)

AND S.Title LIKE ’%networks%’;

-- Query 3

SELECT S.title, S.url

FROM SmartphoneUsers S, Query Q

WHERE (distance(S.x,S.y,Q.x,Q.y) < 10 KM)

AND S.Title LIKE ’%Kyoto%’;

20 � Book title goes here

where “S.x,S.y” represent the (x,y) coordinates of a Smartphone user in S and
“Q.x,Q.y” represent the (x,y) coordinates of the query user.
We execute nine different test instances using the two Mobile-Social Scenarios and
the three queries, Query 1, Query 2 and Query 3 as shown on Table 1.2. Our scenarios
are executed for various time periods (i.e., during the morning, during noon and
during night), in order to capture different mobility patterns that are inherent in the
GeoLife and Pics ‘n’ Trails datasets.

Table 1.2: Experimental Execution Scenarios and Test Instances.
Scenario Test# Q Time G′ # of Objects Relevant Objs.

T1 Query1 Morning 49 3877 82
T2 Query1 Noon 58 5504 73

MSS-1 T3 Query1 Night 95 8884 121
T4 Query2 Morning 49 3877 319
T5 Query2 Noon 58 5504 477
T6 Query2 Night 95 8884 695
T7 Query3 Morning 26 744 43

MSS-2 T8 Query3 Noon 66 1877 115
T9 Query3 Night 47 1456 92

Search Algorithms: We have implemented and evaluated the following search algo-
rithms: i) the Centralized Search algorithm (CS), presented in Section 1.3.1, which
collects all data and metadata tags at the centralized query processor prior query exe-
cution; ii) the Distributed Breadth-First-Search Search (BFS), which conducts a dis-
tributed search using a random tree that is generated with a BFS process which visits
all nodes in the network, as presented in Section 1.3.1; iii) the Random Walker (RW)
Search [32], which conducts a distributed search using a list structure that captures
a randomly chosen neighbor on each step but that eventually visits all nodes in the
network and iv) the SmartOpt Search, which conducts a distributed search using an
optimized QRT obtained from the application of ideas presented in this paper. Smar-
tOpt trees are inherently smaller in size, than their other alternatives, as this structure
visits with a higher probability the nodes having more relevant objects (i.e., based on
the social graph and the metadata stored for each node.) We evaluate the search algo-
rithms using the following metrics: Time, Energy and Recall, as these were defined
in Section 1.3.2 by using wall clock time along with the PowerTutor power (energy)
measuring tool by the University of Michigan, USA. In particular, PowerTutor is a
component power management and activity state introspection based tool that uses an
automated power model construction technique for accurate online power estimation
in Android.

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 21

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

20 40 60 80 100

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Time Instance

Energy Consumption

 CS
 BFS
 RW

 SmartOpt

(a)

 0.001

 0.01

 0.1

 1

20 40 60 80 100

T
im

e
O

ve
rh

ea
d

(s
)

Time Instance

Time Overhead

 CS
 BFS
 RW

 SmartOpt

(b)

0%

20%

40%

60%

80%

100%

20 40 60 80 100

R
ec

al
l (

%
)

Time Instance

Recall

 CS
 BFS
 RW

 SmartOpt

(c)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
Recall

Energy-Time-Recall
 CS

 BFS
 RW

 SmartOpt

Energy (mJ) Time (s)

Recall

(d)

Figure 1.3: Evaluation of the CS, BFS, RW and SmartOpt search algorithms using
the energy, time and recall performance. The bottom/right figure shows SmartOpt
compared to the solutions of CS and BFS in the objective space at timestamp ts=70
of Mobile-Social Scenario-1 (MSS-1).

1.6.2 Experimental Results

Initially, we evaluate the performance of the SmartOpt against the CS, BFS and RW
on 100 consecutive timestamps in Mobile-Social scenario 1 (GeoLife+DBLP) using
our model-driven simulator. At each timestamp (ts) we compare the energy consump-
tion, time overhead and recall of all algorithms.

Figure 1.3 illustrates the results of our experiment for all performance metrics. In
Figure 1.3 (top/left) we observe that the energy consumption of SmartOpt is one to
two orders of magnitude smaller than its competitor CS, BFS and RW in all times-
tamps. BFS seems more efficient than CS as it does not communicate all metadata
to the centralized query node. On the other hand, RW is worse than all approaches
as the sequential visit to all nodes in the network drains considerable energy (i.e., in
each communication only 1 message is sent, as opposed to the rest of the techniques
that communicate with several nodes in a single round.) Similar observations apply

22 � Book title goes here

Figure 1.4: A screenshot of SmartP2P on SmartLab using real-time screen capture

for Figure 1.3 (top/right) where we demonstrate the time overhead for all algorithms.
This happens as the energy is proportional to the time interval the communication
transceiver is in active mode. Moreover in Figure 1.3 (bottom/left), we show that the
recall rate for the SmartOpt framework is close to 95%, consistently. The slight de-
crease of recall with respect to the increase of timestamp is due to the variations in
the network. In particular, we noticed an increase of the number of users in the last
timestamps, which increase the complexity of the search space, making it harder to
find the solutions with maximum recall without increasing the computational effort
of the algorithm. In conclusion, the SmartOpt framework consumes less time and less
energy and it is able to identify most expected answers at the same time. In Figure 1.3
(bottom,right), we demonstrate the results for a single timestamp (ts=70) for all al-
gorithms. The various solutions generated by SmartOpt optimizer are represented by
open squares. The single solutions supplied by the CS, RW and BFS algorithms are
represented by a solid triangle, a solid square and a solid circle, respectively. We ob-
serve that the solution provided by the CS algorithm is the worst w.r.t. BFS and RW
in all three performance metrics. However, the CS algorithm demonstrates higher
recall (10%) than all solutions provided by the SmartOpt framework. This occurs
because, CS dictates global participation by all smart objects in the network (i.e.,
all smart objects forward their results to the query user). However, this has a signif-
icantly negative impact on both energy and performance. Specifically, compared to

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 23

the SmartOpt best solutions, CS, BFS and RW feature an increase of two orders of
magnitude in energy and one order of magnitude in time.

 0

 2000

 4000

 6000

 8000

 10000

 12000

20 49 58 95 138

R
es

po
ns

e
T

im
e

(m
s)

Network Size

Response Time vs Network Size
 (Scenario: MSS-1, Max. Recall)

 BFS
 RW

 SmartP2P

(a) SmartP2P (time) in MSS-1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

20 49 58 95 138

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Network Size

Energy Consumption vs. Network Size
 (Scenario: MSS-1, Max. Recall)

 BFS
 RW

 SmartP2P

(b) SmartP2P (energy) in MSS-1

 0

 2000

 4000

 6000

 8000

 10000

 12000

20 35 50 61 75

R
es

po
ns

e
T

im
e

(m
s)

Network Size

Response Time vs Network Size
 (Scenario: MSS-2, Max. Recall)

 BFS
 RW

 SmartP2P

(c) SmartP2P (time) in MSS-2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

20 35 50 61 75

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Network Size

Energy Consumption vs. Network Size
 (Scenario: MSS-2, Max. Recall)

 BFS
 RW

 SmartP2P

(d) SmartP2P (energy) in MSS-2

Figure 1.5: Evaluating our SmartP2P prototype system in Android using the Smart-
Lab Testbed for different network sizes in both Mobile Social Scenarios 1 (Geo-
Life+DBLP) and Mobile Social Scenarios 2 (Pics ‘n’ Trails) with respect to time and
energy.

Finally, we evaluate our SmartP2P prototype Android implementation, presented
in Section 1.5, over our distributed SmartLab infrastructure as illustrated in Fig-
ure 1.4. For the evaluation, we focus only on the distributed search algorithms: BFS,
RW and SmartP2P. We present the query response time, measured in seconds and en-
ergy consumption, measured with PowerTutor in Watts and presented in Joules. We
utilize five different network sizes in Mobile Social Scenario 1 (MSS-1): 20, 49, 58,
95 and 138 and five different network sizes in Mobile Social Scenario 2 (MSS-2): 20,
35, 50, 61 and 75 to show the scalability aspects of the different search algorithms.
In order to accommodate these instances over a physical infrastructure, which was
considerably smaller (i.e., 40+ smartphones), we had to run several instances on each
of the available physical smartphones (using separate socket servers). For example,

24 � Book title goes here

an HTC Desire smartphone could easily host tens of instances without any particular
performance penalty (recall that these are 1GHz smartphones with 512MB of RAM)
while the lower-end HTC Hero devices (with a 512MHz processor and 288MB of
RAM) were excluded from our experiments as they were considerably slower and
could not host tens of instances. For practical reasons we did not utilize the Blue-
tooth connection between instances and considered as a local link the socket com-
munication of instances on the same physical smartphone host.

Figure 1.5 (a), presents the response time for the different executions given that
all algorithms obtain the complete result set (i.e., maximum recall) in mobile-social
scenario 1. We observe that SmartP2P obtains the expected answer in little anywhere
between 1.5 seconds and 6 seconds while both BFS and RW require in many cases
as much as 10 seconds. The competitive advantage of SmartP2P over both BFS
and RW is considerably better for larger network sizes. This is very encouraging
as Smartphone Networks might consist of thousands of nodes in an area of interest
(i.e., within the spatial boundary of a query.) Figure 1.5 (b), presents the energy con-
sumption in mobile-social scenario 1 as this was measured by PowerTutor (i.e., only
the energy related to CPU and Networking without taking into account costs related
to LCD utilization.) The given figure shows that SmartP2P manages to locate the
complete answer set utilizing 25% and 33% less energy than RW and BFS, respec-
tively. We also noticed that by bringing down the recall expectation to ≈80%, would
allow us to obtain great energy savings considerably faster (≈50%). Similarly, Fig-
ures 1.5 (c) and (d) show that the SmartP2P search approach is more efficient than
the BFS and the RW in MSS-2 as well. In particular, SmartP2P conserves up to 30%
time and 25% energy for max recall. Here it is important to notice that the relative
performance of the algorithms in terms of energy is the same in both the simula-
tions and the testbed experiments (i.e., SmartP2P consumes less energy than both
BWS and RW), although the actual values in the real setting is lower than that of
the simulations. This is mainly due the fact that the algorithms are implemented in
different computational platforms using different network parameter settings (e.g.,
the network sizes) with additional constraints of the physical infrastructure.

A P2P Search Framework for Intelligent Mobile Crowdsourcing � 25

1.7 Conclusions And Potential Applications
In this book chapter, we present the SmartOpt framework for searching objects cap-
tured by the users in a mobile social community. Our framework, is founded on an
in-situ data storage model and searches then take place over the MO-QRT structure
we present in this chapter. Our structure concurrently optimizes several conflicting
objectives (i.e., energy, time and recall). Our experimental assessment uses a trace-
driven experimental methodology with mobility and social patterns derived by Mi-
crosoft’s Geolife project, DBLP and Pics ‘n’ Trails using our real SmartP2P system
developed in Android and deployed over our SmartLab testbed of 40+ smartphone
devices. Our study reveals that our framework yields high query recall rates and
consumes less energy than its competitors. Additionally, our study reveals that the
MO-QRT structure is highly appropriate for content search and retrieval in Mobile
Social Networks.

The SmartOpt framework can be easily adapted and used for several real-life
crowdsourcing applications. For example, it can be used as a recommender sys-
tem where the social crowd of smartphones generates instant information for certain
events/places. A querying user can then use SmartOpt to generate a query routing tree
to retrieve accurate and spatially proximate information about an event/place of in-
terest (e.g. concert, football match, hospital, police station). Furthermore, SmartOpt
can be utilized for crowdsourcing call assignment tasks, in which the crowd shares
its area of expertise as well as technical skills and a query user may retrieve an op-
timal tree of close-by users that can perform the task more quickly and efficiently.
Finally, it can be used as an instant emergency/news system. For example, consider-
ing recent disasters such as the Sandy hurricane in New York or the earthquake (and
consequently the tsunami) in Japan, the users would have preferred querying and re-
trieving instant information from the crowd near the areas of disaster than reading
arbitrary (and maybe out-dated) information on the web.

References

[1] S. M. Allen, G. Colombo, and R. M. Whitaker. Cooperation through self-
similar social networks. ACM Transactions on Autonomous and Adaptive Sys-
tems (TAAS), 5(1), 2010.

[2] P. Andreou, D. Zeinalipour-Yazti, A. Pamboris, P.K. Chrysanthis, and G. Sama-
ras. Optimized query routing trees for wireless sensor networks. Information
Systems (InfoSys), 36(2):267–291, 2011.

[3] M. Azizyan, I. Constandache, and R.-R. Choudhury. Surroundsense: mobile
phone localization via ambience fingerprinting. In MobiCom, 2009.

[4] A.T. Campbell, S.B. Eisenman, N.D. Lane, E. Miluzzo, R.A. Peterson,
X. Zheng H. Lu, M. Musolesi, K. Fodor, and G.S. Ahn. The rise of people-
centric sensing. In IEEE Internet Computing, 12(4):12–21, July-August 2008.

[5] G. Chatzimiloudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-Yazti.
Crowdsourcing with smartphones. IEEE Internet Computing, 2012.

[6] S.-K. Chen and P.-C. Wang. Design and implementation of an anycast services
discovery in mobile ad hoc networks. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 6(1):2, 2011.

[7] B. N. Chun, D. E. Culler, T. Roscoe, A. C. Bavier, L. L. Peterson, M. Wawr-
zoniak, and M. Bowman. Planetlab: an overlay testbed for broad-coverage ser-
vices. Computer Communication Review, 33(3):3–12, 2003.

[8] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems, volume 5. Kluwer Academic
Publishers, 2002.

[9] T. Das, P. Mohan, V.N. Padmanabhan, R. Ramjee, and A. Sharma. Prism: plat-
form for remote sensing using smartphones. In MobiSys, 2010.

27

28 � References

[10] DBLP. DBLP Computer Science Bibliography, http://dblp.uni-trier.de/xml/,
2010.

[11] G. C. de Silva and K. Aizawa. Retrieving multimedia travel stories using lo-
cation data and spatial queries. In The 17th ACM International Conference on
Multimedia, pages 785–788. ACM, 2009.

[12] G. C. de Silva, T. Yamasaki, and K. Aizawa. Sketch-based spatial queries for re-
trieving human locomotion patterns from continuously archived gps data. IEEE
Trans. on Multimedia, 11(7):156–166, 2009.

[13] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley
and Sons, 2002.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[15] A. Deligiannakis, Y. Kotidis, V. Stoumpos, and A. Delis. Building efficient
aggregation trees for sensor network event-monitoring queries. In GeoSensor
Networks, volume 5659 of Lecture Notes in Computer Science, pages 63–76.
Springer Berlin Heidelberg, 2009.

[16] S. Eisenman, E. Miluzzo, N. Lane, R. Peterson, G. Seop-Ahn, and A.T. Camp-
bell. Bikenet: A mobile sensing system for cyclist experience mapping. ACM
Transactions on Sensor Networks (TOSN’09), 6(1), December 2009.

[17] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan.
The pothole patrol: using a mobile sensor network for road surface monitoring.
In MobiSys, pages 29–39, 2008.

[18] A. Gahng-Seop, M. Musolesi, H. Lu, R. Olfati-Saber, and A.T. Campbell.
Metrotrack: Predictive tracking of mobile events using mobile phones. In
DCOSS, pages 230–243, 2010.

[19] D. Geiger, M. Rosemann, and E. Fielt. Crowdsourcing information systems :
a systems theory perspective. In 22nd Australasian Conference on Information
Systems (ACIS’11).

[20] Gnutella. Gnutella peer-to-peer network, 14 March 2000.
http://gnutella.wego.com.

[21] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov. TCP over
Second (2.5G) and Third (3G) Generation Wireless Networks. RFC 3481 (Best
Current Practice), February 2003.

[22] J. Jia, J. Chen, G. Chang, Y. Wen, and J. Song. Multi-objective optimization
for coverage control in wireless sensor network with adjustable sensing radius.
Computers and Mathematics with Applications, 57(11–12):1767–1775, 2009.

References � 29

[23] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A local search mecha-
nism for peer-to-peer networks. In 11th International Conference on Informa-
tion and Knowledge Management (CIKM’02), pages 300–307, McLean, Vir-
ginia, USA, 2002.

[24] Y. Ko and N. H. Vaidya. Location-aided routing (lar) in mobile ad hoc networks.
Wirel. Netw., 6(4):307–321, 2000.

[25] A. Konstantinidis, C. Aplitsiotis, and D. Zeinalipour-Yazti. Multi-objective
query optimization in smartphone social networks. In 12th International Con-
ference on Mobile Data Management (MDM’11).

[26] A. Konstantinidis, C. Costa, G. Larkou, and D. Zeinalipour-Yazti. Demo: A
programming cloud of smartphones. In 10th International Conference on Mo-
bile Systems, Applications, and Services (MobiSys’12).

[27] A. Konstantinidis and K. Yang. Multi-objective energy-efficient dense deploy-
ment in wireless sensor networks using a hybrid problem-specific MOEA/D.
Applied Soft Computing, 11(6):4117–4134, 2011.

[28] A. Konstantinidis, K. Yang, Q. Zhang, and D. Zeinalipour-Yazti. A multi-
objective evolutionary algorithm for the deployment and power assignment
problem in wireless sensor networks. New Network Paradigms, Elsevier Com-
puter Networks, 54:960–976, 2010.

[29] C. Laoudias, G. Constantinou, M. Constantinides, S. Nicolaou, D. Zeinalipour-
Yazti, and C. G. Panayiotou. The airplace indoor positioning platform for an-
droid smartphones. In 13th International Conference on Mobile Data Manage-
ment (MDM’12).

[30] G. Larkou, C. Costa, P. Andreou, A. Konstantinidis, and D. Zeinalipour-Yazti.
Managing smartphone testbeds with smartlab. In Proceedings of the 27th
USENIX Large Installation System Administration Conference, LISA‘13, 2013.

[31] J. Ledlie, B. Odero, E. Minkov, I. Kiss, and J. Polifroni. Crowd transla-
tor: on building localized speech recognizers through micropayments. ACM
SIGOPS’10 Operating Systems Review.

[32] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in
unstructured peer-to-peer networks. In 16th international conference on Super-
computing (ICS’02), pages 84–95, New York, USA, 2002.

[33] S. Matyas, C. Matyas, C. Schlieder, P. Kiefer, H. Mitarai, and M. Kamata. De-
signing location-based mobile games with a purpose: collecting geospatial data
with cityexplorer. In International Conference on Advances in Computer En-
tertainment Technology, 2008.

[34] W. S. Ng, B. C. Ooi, K.-L. Tan, and A. Zhou. Peerdb: A p2p-based system
for distributed data sharing. Data Engineering, International Conference on,
0:633, 2003.

30 � References

[35] A. Quinn and B. B. Bederson. Human computation: a survey and taxonomy of a
growing field. In Annual Conference on Human Factors in Computing Systems
(CHI’11).

[36] M. Ra, J. Paek, A. Sharma, R. Govindan, M. H. Krieger, and M. J. Neely.
Energy-delay tradeoffs in smartphone applications. In MobiSys, pages 255–
270, 2010.

[37] R. Rajagopalan, C. K. Mohan, P. K. Varshney, and K. Mehrotra. Multi-objective
mobile agent routing in wireless sensor networks. In Proc. IEEE CEC’05, Ed-
inburgh, Scotland, September 2005.

[38] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu. Ear-phone: an
end-to-end participatory urban noise mapping system. In IPSN, pages 105–116,
2010.

[39] T. Repantis and V. Kalogeraki. Data dissemination in mobile peer-to-peer
networks. In 6th International Conference on Mobile Data Management
(MDM’05), pages 211–219, Ayia Napa, Cyprus, 2005.

[40] M. Stevens and E. D. Hondt. Crowdsourcing of pollution data using smart-
phones. Ubiquitous Computing (UbiComp’10).

[41] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan,
S. Toledo, and J. Eriksson. Vtrack: accurate, energy-aware road traffic delay
estimation using mobile phones. In SenSys ’09: Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems, pages 85–98, New York,
NY, USA, 2009. ACM.

[42] H. Tomiyasu, T. Maekawa, T. Hara, and S. Nishio. Profile-based query routing
in a mobile social network. In Mobile Data Management, 2006. MDM 2006.
7th International Conference on, pages 105 – 105, May 2006.

[43] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: a wireless sensor
network testbed. In Information Processing in Sensor Networks, 2005. IPSN
2005. Fourth International Symposium on, pages 483 – 488, april 2005.

[44] B. Xu, O. Wolfson, and C. Naiman. Machine learning in disruption-tolerant
manets. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(4),
2009.

[45] D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos. Exploiting locality
for scalable information retrieval in peer-to-peer systems. Information Systems
(InfoSys), Elsevier, 30(4):277–298, 2005.

[46] Q. Zhang and H. Li. MOEA/D: A multi-objective evolutionary algorithm
based on decomposition. IEEE Transactions on Evolutionary Computation,
11(6):712–731, 2007.

References � 31

[47] Y. Zheng, L. Liu, L. Wang, and X. Xie. Learning transportation mode from raw
gps data for geographic applications on the web. In WWW, 2008.

