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ABSTRACT
The bulk of indoor localization applications currently rely on either
server-side, cloud-based services that raise critical data-disclosure
concerns (e.g., reveal user’s location to a central entity), or client-side
services that introduce serious performance concerns (e.g., consum-
ing precious smartphone battery and network bandwidth during
content uploads). In this paper, we present a novel Multi-objective
Indoor Localization Service (MILoS) that provides a fine-grained,
energy-efficient indoor localization using only a subset of WiFi-
based localization data on the client-side, maintaining user’s pri-
vacy at the same time. MILoS follows a fingerprinting-based indoor
localization model that concurrently optimizes several conflicting
objectives (i.e., minimizes the smartphone’s energy consumption
and maximizes the area coverage induced by WiFi fingerprints im-
portance), using a Multi-Objective Evolutionary Algorithm based
on Decomposition (MOEA/D). To the best of our knowledge this
is the first time that the WiFi fingerprinting approach is used in a
Multi-Objective Optimization setting for indoor localization. We
assess our proposed model using real datasets and realistic mobility
scenarios.
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1 INTRODUCTION AND RELATED WORK
Technological advances and the widespread use of smartphone de-
vices led to a surge of location-aware applications and services for
mobile phones [1]. Users can now, for example, employ their smart-
phones to post content to social media such as text, selfies/photos,
or videos tagged with their location in real time (Google Latitude,
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Facebook Places, etc.). Indoor localization systems, in particular,
have been gaining relevance as people tend to spend a consider-
able amount of their daily lives in indoors environments (shopping
centres, universities, libraries, museums, hospitals, etc.), and the
demand for various indoor location based services, such as, inven-
tory management, in-building guidance and navigation has been
growing [2, 3].

The satellite-based Global Positioning System (GPS), uses radio
signals from satellites to offer super fine accuracy outdoors; more-
over, the localization is performed directly on the smartphone, so
location-sensitive information is not shared. But, it requires consid-
erable energy, and its accuracy depends on additional factors, such
as atmospheric conditions and signal blockage, making it unsuitable
for indoor spaces [4].

Numerous other solutions for indoor localization, including Ul-
trasound, Bluetooth, LiFi and Infrared technologies can be found
in the literature [5]. Although these can achieve location-accurate
results, most of them carry a high cost in dedicated equipments and
installation. The most common and cost-effective infrastructure that
is already in place today in many buildings and can be used for
indoor localization on users smartphones is Wi-Fi.

Various cloud-based Indoor Positioning Services (IPS), such
as Skyhook, Google Indoor Maps, Navizon, Infsoft, IndoorAtlas,
MazeMap, Indoo.rs and Anyplace [6] enable indoor location based
applications by offering indoor models comprising of floors/buildings
digital maps and Points-Of-Interest (POIs), along with cloud-based
geolocation databases of radio signal intensities from mobile Cell
Towers and WiFi Access Points (APs).

The so called WiFi Fingerprint, is an array of values of the Re-
ceived Signal Strength (RSS) of nearby WiFi APs at a specific
location of the indoor area. The WiFi Fingerprints measured at
a dense set of points of the indoor digital map are recorded and
then, in offline mode, joint into a matrix, that is known as the WiFi
RadioMap. Subsequently, a user that wishes to perform indoor local-
ization can employ a smartphone to capture the RSS fingerprint of
his/her current position and transfer it to the server, where it can be
compared against the RadioMap, in order to find the best approxi-
mation, using, for example, the K-Nearest-Neighbour (KNN), or the
Weighted K-Nearest-Neighbour (WKNN) [2] algorithms. The idea
behind the KNN approach is to calculate the Euclidean distances
between the user’s currently observed fingerprint and all fingerprints
in the RadioMap and select the K nearest ones. The user’s location
is then estimated as a convex combination of the locations of these
K selected fingerprints. This method assigns the same importance to
all K selected fingerprints regardless of their distance to the user’s
observed fingerprint. By assigning a different weight to each of the
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K selected fingerprints based on this distance, the WKNN method
obtains improved location accuracy results [6].

IPS often rely on one of the following RadioMap based ap-
proaches: (i) the WiFi RadioMap Server-Side approach, in which
the smartphone user senses and uploads its current observed RSS
fingerprint to the server, which is responsible to forward to the user
the calculated location, and (ii) the WiFi RadioMap Client-Side
approach, in which the whole RadioMap is downloaded to the smart-
phone and the localization takes place in-situ. In the former case, the
user’s smartphone requires minimal energy and network communi-
cation with the server, but privacy issues might arise, as the location
of the user is revealed to the server. Moreover, the wireless network
topology design of the building might lead to intermittent internet
connectivity [7, 8], leading to communication breakdown between
user and server. In the Client-Side case, although the user’s location
privacy is guaranteed, there is high battery consumption and network
bandwidth overhead, as the user needs to download, albeit once, the
whole WiFi RadioMap (which, in most cases, can be huge), and also
performs all the localization calculations on the smartphone.

Various privacy-enhancing localization techniques that appear
in the literature are based on the following concepts: (i) sanitized
locations [9, 10], where a set of fake locations (sanitized) of a user
is also reported; (ii) spatial cloaking [11, 12], which tries to blur a
user’s exact location into a cloaked area that satisfies the user’s pri-
vacy requirements; and (iii) space transformations [3, 13, 14], where
the location of a user is transformed into another space in which
his/her exact or approximate spatial relationships are maintained.
These techniques try to mislead the server about the user’s actual
location by providing and requesting, so called, noisy data which
guarantee more privacy, in the expense though, of increased resource
consumption in terms of the smartphones battery power and network
bandwidth.

In the literature, there are several techniques for dealing with
intermittent connectivity [7]. One of the most popular is prefetch-
ing [8], that is, downloading and locally storing data, so that future
requests for that data can be served in the event of a network failure.
But again, the cost of prefetching in terms of increased energy and
network bandwidth can be substantial.

From the user’s point of view, it would be desirable to (i) maxi-
mize the accuracy of the indoor localization without (ii) deteriorating
the resources of the smartphone device. The main idea put forward in
this paper is to follow the paradigm of the Client-Side approach, but
instead of the user downloading the whole RadioMap (as discussed
above) from the IPS, the user just downloads a partial RadioMap
pRM that is calculated offline through a fingerprint selection op-
timization process. The selected pRM is representative enough to
"cover" the indoor area in order to provide the required localization
accuracy, as well as minimize the energy consumption at the same
time and inherently maintain the user privacy. These two objectives,
however, are conflicting with each other and the respective prob-
lem must be therefore treated within the context of Multi-Objective
Optimization.

A Multi-Objective Optimization Problem (MOP) can be mathe-
matically formulated as

min F (X ) = (f1(X ), . . . , fk (X )), subject to X ∈ Ω, (1)

where Ω is the decision space and X ∈ Ω is a decision vector. F (X )

consists of k objective functions, and ℜk is the objective space. Im-
proving on one objective may lead to deterioration of another, thus,
no single solution exists that can optimize all objectives simultane-
ously. The best trade-off solutions, called the set of Pareto optimal
(or non-dominated) solutions, is often required by a decision maker.

A vector u = (u1, . . . ,uk ) is said to dominate another vector
v = (v1, . . . ,vk ), denoted as u ≺ v, iff ∀i ∈ {1, . . . ,k}, ui ≤ vi and
u , v. A feasible solution X ∈ Ω of problem (1) is called Pareto
optimal solution, iff @Y ∈ Ω such that F (Y ) ≺ F (X ). The set of all
Pareto optimal solutions is called the Pareto Set, denoted as

PS = {X ∈ Ω |@Y ∈ Ω, F (Y ) ≺ F (X )}.

The image of the PS in the objective space is called the Pareto Front
PF = {F (X )|X ∈ PS}.

Multi-Objective Evolutionary Algorithms (MOEAs) can obtain
an approximate PF of a MOP in a single run by using various op-
erators to iteratively generate a population of such solutions. The
aim is to produce a diverse set of non-dominated solutions that is as
close as possible to the real PF. Several techniques were proposed
for improving their performance, such as nithcing techniques for
improving diversity and/or local search methods for improving con-
vergence [21]. For example, MOEAs, such as, NSGA-II [17] are
based on Pareto Dominance, while Multi-Objective Evolutionary
Algorithm based on Decomposition (MOEA/D) [18] is an example
of a decompositional MOEA, that relies on conventional aggre-
gation approaches to decompose a MOP into a number of scalar
Single-Objective Optimization sub-problems, which are then solved
simultaneously using neighborhood information, each time a new
solution is generated. For recent surveys on the state of the art of
MOEAs please refer to [19]. Finally, the decision maker chooses the
single preferred solution from the PF, according to some external
information relevant to the user’s preferences, e.g., the user might
be willing to sacrifice location accuracy in order to spend only a
specified low percentage of battery power.

To the best of our knowledge there is no prior work that solves an
indoor localization based on WiFi fingerprints problem in a Multi-
Objective Optimization setting using MOEA.

In this paper, we define and formulate the Multi-Objective Fin-
gerprint Selection Optimization Problem (MO-FSOP) for indoor
localization that aims to optimize the area coverage and the smart-
phone’s energy consumption, simultaneously, by calculating an of-
fline selected partial RadioMap . We propose a novel Multi-objective
Indoor Localization Service (MILoS) that adapts the well-known
MOEA/D to solve the proposed MOP. We provide a series of experi-
mental studies to evaluate the effectiveness of our proposal and in
particular, to verify that as energy consumption / area coverage of the
selected partial RadioMap increases, so does the localization accu-
racy calculated by the user’s smartphone in-situ, given an observed
fingerprint on the fly. Let us note, that once the user downloads from
the server the selected partial RadioMap (corresponding to some
chosen solution of the output PF of the MOEA/D), there is no further
communication with the server. In particular, no information on the
user’s location is shared with the server.

The rest of the paper is organized as follows. The System Model
and the definition and formulation of MO-FSOP, are presented next
in Section 2. The main steps of the proposed MILoS approach are
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explained in Section 3. In Section 4, the performance of the proposed
method is evaluated on real datasets with mobility scenarios and
compared against NSGA-II, the state-of-the-art in MOEAs based
on Pareto-dominance. Finally, Section 5 concludes the paper and
discuss possible future research directions.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

In this section, we first outline the adopted system model and then
formulate the MOP. The adopted symbol notations is summarized in
Table 1.

2.1 System Model
We assume that a weighted graph G = (P, E) representing the con-
nectivity of the building I is available on IPS s. The set of nodes P
comprises of the POIs, which refer to rooms, offices, toilets, inter-
sections, elevators, staircases, hallways etc., in the building as these
have been provided by architects or crowdsourcers and the set of
edges E comprises of the corridors, physical pathways, etc., aligned
to floors inside the building, linking these POIs between them. The
weight on each edge represents the distance of the physical transi-
tion between two nodes. The graph will allow us to compute and
assign degrees of importance to each POI and also calculate shortest
paths between any two of them. We note that paths between nodes
are calculated using the graph-distance cost [15, 16], which reflects
the topological constraints and physical entities of a building (e.g,
elevators, corridors, walls, etc.), given that the Euclidean distance
between two POIs may not always be appropriate to use.

We also assume that the indoor area I contains a finite set Q of
N locations that are partially covered by a set {ap1, ap2, · · · , apM }

of Wi-Fi APs. Each api has a unique ID (i.e., MAC address) that is
publicly broadcasted and passively received by anyone moving in
I . The signal intensity at which the ID of api is received at location
q ∈ Q is called the RSS of api at q, with the value −110 indicating
that api is out of reach. The set of all offline measured RSS values
and the AP-IDs captured at each point q is the fingerprint Vq . The
N ×M matrix of RadioMap (RM) comprises of all fingerprints Vq
measured at all locations q ∈ Q and is stored on IPS s.

We further assume that a pre-processing offline procedure is
available so that any selected subsetX ⊂ P of POIs can be associated
with a subset of rows of the RM matrix, i.e., a partial RadioMap
(pRM). This can be achieved, for example, by linking each WiFi
fingerprintVq in RadioMap (RM) to its closest (in terms of Euclidean
distance) POI. Moreover, the user u has to have installed on the
smartphone a localization function loc().

To perform localization at current position l in the indoor area
I , user u employs a smartphone to capture the observed RSS fin-
gerprint Vl and then calculates loc() with input a partial RadioMap
(pRM) that u has downloaded once from IPS s and the observed
fingerprint Vl . We define the Localization Error LocEl for location l
to be the distance between the outcome of the localization functions
loc(RM,Vl ) and loc(pRM,Vl ).

2.2 MO-FSOP Formulation
Given the representation graph G = (P, E) of a building I , the Ra-
dioMap RM from IPS s, and a procedure to associate subsets of P

Table 1: Notation used throughout this work

Notation Description
s , u Indoor Positioning Service, smartphone user

P , X , n set of all POIs in digital map, subset of P , |X |

E set of physical pathways between neighbouring POIS
I , Q Indoor area, pre-defined set of N points in I

api , AP , M Access Point i , set of all api , |AP |
Vq offline recorded fingerprint at point q ∈ Q

(MAC and RSS of its covering AP)
RM N ×M RadioMap matrix of all Vq (q ∈ Q ), stored on s
pRM N ′ ×M partial RM associated with X ,

selected to be downloaded by u
Vl observed fingerprint by u at current location l ∈ I

loc( ∗ ,Vl ) localization output for location l ∈ I , for some ∗ ⊆ RM
LocEl localization error for location l ∈ I , i.e., distance between

points loc(RM ,Vl ) and loc(pRM ,Vl ))

with partial RadioMaps, the Multi-Objective Fingerprint Selection
Optimization Problem (MO-FSOP) can be stated as follows: select
a subset X ⊂ P of POIS with associated partial RadioMap pRM ,
such that

• pRM maximizes the area coverage of I , so that a smartphone
user u located at any point l ∈ I , maximizes the obtained
localization accuracy, i.e., minimizes the localization error
LocEl , and at the same time,

• minimizes the energy required to download the partial ra-
diomap pRM associated with X from s, .

Given any two nodes r and t in P , let D(r , t) denote the length of
the shortest path between them, i.e., the distance between r and t in
I . Denote bymaxD, the maximum such length of the shortest path
between any pair of nodes in P . Let X be the selected subset of n
POIs in I . The spread of X within I is expressed as the normalized
average distance between all possible pairs of nodes of X and is
denoted by

Spread(X ) =
DX

maxD
(2)

where,

DX =

∑
r,t ∈X

D(r , t)

n(n − 1)
.

Let σr ,t denote the total number of shortest paths from node r to
node t and σr ,t (p) the number of those paths that pass through node
p. We will use the Betweenness Centrality measure B(p) to denote
the importance of a POI p. This measures the extent to which p lies
on paths between other POIs and is defined as the number of shortest
paths in G from all vertices to all others that pass through p, i.e.,

B(p) =
∑

r,p,t ∈P

σr ,t (p)

σr ,t
.

Denote by maxB and minB, the maximum and minimum values
respectively of the Betweenness function B over all nodes in P .
The Normalized Betweenness Centrality value NB(p) for node p is
defined as

NB(p) =
B(p) −minB

maxB −minB
.

The importance of the selected subset X within I is expressed as
the average of the Normalized Betweenness Centrality value NB(p)
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over all nodes p in X and is denoted by

Importance(X ) =
1
n

∑
p∈X

NB(p). (3)

A representative Area Coverage measurement of the selected
subset X of POIs with respect to the indoor space I , is expressed as
a weighted combination, with weight γ ∈ (0, 1), by

AreaCoveraдe(X ) = γ Spread(X ) + (1 − γ ) Importance(X ). (4)

This Area Coverage definition aims to capture the most frequent user
mobility patterns, by selecting the nodes that have higher probability
to be visited (as represented by the use of the Betweenness function
in Eq. 3), and at the same time, incorporate a dispersion factor (as
represented by the Spread function used in Eq. 2 to account for more
irregular mobility patterns.

The Energy consumption of downloading from s, the partial
radiomap pRM associated with selected set X of POIs, is defined as

Enerдy(X ) =
N ′

N
(5)

where N ′ is the number of Wifi Fingerprints in pRM and N the total
number of registered fingerprints in RM .

The fingerprint selection optimization process then aims to:

minimize F (X ) = (f1(X ), f2(X )), subject to X ⊆ P, (6)

with objective functions

f1 = Enerдy(X ), f2 = −AreaCoveraдe(X ), (7)

defined above in Equations 5 and 4, respectively.

3 PROPOSED APPROACH
In this section we present MILoS, our proposed Multi-Objective In-
door Localization Service. First we explain how to utilize MOEA/D
to solve the Multi-Objective Fingerprint Selection Optimization
Problem (MO-FSOP) formulated in Section 2.2 above.

3.1 Multi-Objective Optimization Module
MOEA/D accepts as input a representation graph G = (P, E) of
an indoor area I , the registered RadioMap RM , and a procedure of
associating subsets of P with partial RadioMaps pRM . It outputs a
set of trade-off candidate solutions, i.e., points of the Pareto Front
PF, that concurrently optimize the problems objectives (Energy and
Area Coverage). Each solution X is a subset of the set P of POIs and
is associated to a partial Radiomap pRM .

MOEA/D requires first some pre-processing procedures at Step
0, before initiating the main part of the algorithm. The main steps
are briefly summarized and discussed next.
Encoding Representation: A solution X of MO-FSOP is repre-
sented by a a binary vector of size equal to the number |P | of POIs,
whose components signify whether a POI is included in X or not.
Decomposition: Initially, the MO-FSOP is decomposed into a num-
ber of N scalar subproblems using the Tchebycheff approach as
originally proposed in [18]. Given the objective vector F (X ) =

(f1(X ), f2(X )) of Equation 6, weight vector λi , (1 ≤ i ≤ N ), that
remains fixed for each subproblem for the whole evolution and a
reference point z∗ = (z1, z2), which is a vector with all the best

Algorithm 1 Solving MO-FSOP using MOEA/D

Input:
• an instance of MO-FSOP (see Section 2.2);
• the number N of decomposed subproblems = population size;
• uniformly spread weight vectors {λ1, . . . , λN };
• the size of the neighbourhood T of each subproblem;
• tournament size t , crossover rate cr and mutation rate mr ;
• a termination criterion: max number of generations = дenm ;
Output: a set of non-dominated solutions PF .
Step 0 - Pre-processing:

Decomposition: into a set of N single-objective subproblems
having weights {λ1, . . . , λN } respectively;
Neighborhoods: Define Bi for the ith subproblem to include the
T closest weight vectors of λi .
Setup: Set PF := ∅; дen := 0; I Pдen := ∅;

Step 1 - Initialization: Set Pareto Front PF = ∅ and reward vectors
Ri = 0. For each subproblem, umniformly randomly generate and
evaluate an initial internal population I P0 = {X 1, · · · , XN }. Set
дen = 1.
Step 2: For i = 1, . . . N do

Step 2.1 - Genetic Operators: For ith subproblem, generate new
solution Y i using the genetic operators.
Step 2.2 - Update: Update reference point z∗ and use Y i to update
I Pдen , PF and the neighborhood Bi of the T closest neighbor
solutions of Y i .

Step 3 - Stopping criterion: If stopping criterion is satisfied, i.e.,
дen = дenm , then stop and output PF , otherwise дen = дen + 1,
go to Step 2.

values zk found so far for each objective fk , the objective function
of a subproblem i is stated as:

д(X |λi , z∗) =
2∑

k=1
|λik fk (X ) − zk |. (8)

Neighbourhood: A neighbourhood (or subpopulation) Bi is main-
tained for each of the N subproblems associated with weight vector
λi , composed of the indices of the subproblems whose associated
weight vectors are the T closest (in terms of Euclidean distance) to
λi . One expects optimal solutions in neighbouring sub-problems to
be close to each other in the search space, so the exchange of genetic
information should be helpful.
Step 1 - Initialization: The algorithm commences by creating an
initial population IP0 = {X 1, ...,XN } of solutions one for each
subproblem, named Internal Population (IP) of generation дen = 0.
The initial solutions are randomly generated and each individual is
evaluated as described earlier. Set дen = 1;
Step 2.1 - Genetic Operation: At each generation дen, for each sub-
problem i with objective function д(X i |λi , z∗), the population IPдen
is evolved by generating a new solution Y i , known as offspring using
conventional genetic operators (i.e., Selection, Crossover and Muta-
tion as in [18]). In particular, two parent solutions are selected from
the neighbourhood Bi of subproblem i using the well-known tourna-
ment selection approach with a tournament size t . The two parent
solutions are recombined using a two-point crossover to produce a
new solution - the offspring - with a probability rc . The offspring is
then modified with a random mutation operator with a probability
rm . Evaluate the new solution Y i using Eq. (8).
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Step 2.2 - Update: Use solution Y i to update the reference point z∗,
the internal population IP , the set of non-dominated solutions PF
found so far and neighbourhood Bi of the sub-problem i Bi . If i < N
then i = i + 1 and goto Step 2.1. The same process is followed for
all N sub-problems.
Step 3 - Stopping Criteria: If дen = дenm then terminate the
algorithm and output the PF , otherwise goto Step 2.1.

3.2 Multi-objective Indoor Localization Service -
MILoS

Our proposed MILoS approach for smartphone users proceeds in
three steps as described next.
Graph Generation Module: We use the free and open source IPS
Anyplace [6] for data collection. Given as input a series of queries on
the Building ID and Floor number, the Anyplace system returns the
Points of Interest (POIs) of the building/floor combination, and the
connections between them in JSON file as well as its RadioMap RM
as a text file. All this data is then reconstructed by our own system
to form the representation graph G = (P, E) of area I . Moreover,
we define a procedure for associating subsets of POIs with partial
RadioMap: each WiFi fingerprint is linked to its closest POI.
Multi-Objective Optimization Module: The reconstructed graph
G = (P, E) and the association map between subsets of POIs and par-
tial RadioMaps are fed into a MOEA/D (Algorithm 1) which solves
MO-FSOP offline. The MOEA/D obtains a set of non-dominated
solutions (PF) that concurrently optimizes the problem’s objectives
(Energy and Area Coverage).
Localization Module: Given some specified user’s criteria, a so-
lution X is selected from the PF by the decision maker and its
associated partial RadioMap pRM is downloaded once on the smart-
phone. In order to perform localization at current position l in I the
user employs a smartphone to initially capture the observed RSS
fingerprint Vl and then uses the WKNN localization method (with
input the partial RadioMap pRM and the observed fingerprint Vl )
in-situ.

Algorithm 2 MILoS - A Multi-Objective Indoor Localization Service

Step 1 - Graph Generation Module:
Input 1.1: Data from IPS Anyplace.
Output 1.1: Reconstructed representation graph G = (P , E).
Output 1.2: Association between POIs and partial Radiomaps by

linking each WiFi fingerprint to its closest POI.
Step 2 - Multi-Objective Optimization Module (Algorithm 1):
Input 2.1: Output 1.1 and 1.2.
Output 2.1: Pareto Front (PF) set of non-dominated solutions.
Step 3 - Localization Module:
Input 3.1: Any solution X (set of POIs) from PF of Output 2.1.
Input 3.2: Partial RadioMap pRM associated to X from Output 1.2.
Input 3.3: User’s observed fingerprint Vl at location i ∈ I .
Input 3.4: A localization function loc() - we use WKNN method.
Output 3.1: Calculated location loc(pRM ,Vl ).

4 EXPERIMENTAL EVALUATION
In this section, we describe the details of our experimental method-
ology composed of our datasets, algorithms, algorithmic parameters,
evaluation metrics and some realistic mobility scenarios. We then

present the results of our MOEA/D performance evaluation and the
validation of the obtained near-optimal solutions with respect to
indoor localization accuracy on the mobility scenarios.

4.1 Datasets
To carry out our trace-driven experimentation, we used the following
real data:

CSUCY Data: Data is collected in a typical building at the Com-
puter Science (CS) department of the University of Cyprus using
three Android devices. In particular, it consists of 45,000 reference
fingerprints taken from ∼120 Wi-Fi APs installed in the three floors
of the CS and neighboring buildings. On average, 10.6 APs are de-
tected per location. We collected our data by walking over a path that
consists of 2,900 locations. The CSUCY data has a size of ∼2.6 MBs.
The three floors of the CS UCY building can be further characterized
as follows:

• Floor 1: Normalized # of fingerprints: 715; # of POIs: 121;
• Floor 2: Normalized # of fingerprints: 686; # of POIs: 115;
• Floor 3: Normalized # of fingerprints: 752; # of POIs: 57;

4.2 Multi-Objective Evolutionary Algorithms
The proposed MOEA/D is compared with the state-of-the-art in
MOEAs based on Pareto-dominance NSGA-II. NSGA-II maintains a
population IP of size N at each generation дen, for дenm generations.
NSGA-II adopts the same evolutionary operators (i.e. selection,
crossover and mutation) for offspring reproduction as MOEA/D. The
key characteristic of NSGA-II is that it uses a fast non-dominated
sorting and a crowded distance estimation for comparing the quality
of different solutions during selection and to update the IP and the
PF . We refer interested readers to [17] for details.

4.3 MOEA Parameters
The algorithmic parameters in the following experiments are set
as follows: termination criterion дenm=200, population size and
number of subproblems N=500, crossover rate rc=0.9, mutation
rate rm=0.05, neighbourhood size T = 10 and tournament size
t = 5. Note that in our experimental studies we have used the same
number of function evaluations for all methods, for fairness, and
each algorithm is executed 20 times in each study. The value of
γ = 0.5 was used for Equation 4. All algorithms were coded in
Java programming language and run on an Intel(R) Core(M) i5 CPU
2.4GHz Windows 7 server with 4 GB RAM.

4.4 MOEA Performance Metrics
It is desirable that the obtained non-dominated set of a MOEA is of
high quality, that is as close to the true Pareto Front as possible, and
distributed as diversely and uniformly as possible. In the literature,
there is no single metric that can reflect both of these aspects and
thus a number of metrics are often used [20, 21]. In this study, we
have used the following metrics to evaluate our proposed approach:

• Coverage (C): commonly used for comparing two sets of non-
dominated solutions A and B, the C(A,B) metric calculates
the ratio of the non-dominated solutions in B dominated by
the non-dominated solutions in A, divided by the total number
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Figure 1: Experimental Series 1 - Comparison between MOEA/D and NSGA-II on the three floors of the UCY dataset.

Table 2: Experimental Series 1 - Comparison between MOEA/D and NSGA-II in terms of the performance metrics ID , IH , NDS and
C. The best results of each test instance are denoted in bold.

Alg: MOEA/D NSGA-II
Metric: ID IH NDS ID IH NDS C(M,N) C(N,M)

f1: 0.12 1.00 46.00 0.12 0.94 27.00 0.39 0.00
f2: 0.08 0.99 87.00 0.10 0.92 36.00 0.34 0.00
f3: 0.08 1.00 89.00 0.09 0.92 49.00 0.56 0.08

mean: 0.0882 0.9974 77.7500 0.1023 0.9237 40.2500 0.4649 0.0408
std: 0.0215 0.0026 21.1877 0.0138 0.0101 10.7510 0.1134 0.0471
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Figure 2: Experimental Series 2 - Indoor Localization Accuracy during navigation for various mobility scenarios.

of non-dominated solutions in B; a higher value forC(A,B) is
an indication of higher quality of solutions in A than in B.

• Distance from reference set (ID ): shows the average dis-
tance from a solution in the reference set R to the closest
solution in A. The smaller the value of ID the closer the set
A is to R indicating better convergence. In the absence of the
real reference set R, the average distance of each single point
to the nadir point is used.

• Hypervolume (IH ): indicates the area dominated by at least
one solution in the obtained non-dominated set A. Therefore
high IH indicates better diversity.

• Number of Non-Dominated Solutions (NDS): a straightfor-
ward metric proposed by Weicker et al. in [22] that is usually
considered in cases of real-life discrete optimization problems
showing the cardinality or the number of Non-Dominated So-
lutions in set A, i.e. NDS(A) = |A|. In these cases, it is more
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desirable to obtain a high number of NDS(A) in order to
provide an adequate number of Pareto optimal choices. It is
usually desirable to have a high number of NDS when the
solutions is of high quality (i.e. low C-metric) and spread (i.e.
low ID -metric) in the objective space.

4.5 Mobility Scenarios
For the validation of the obtained PF solutions with respect to indoor
localization accuracy, we constructed realistic mobility patterns of
three different users (professor, student and visitor) navigating within
the CSUCY building. Their navigation is composed of around 15-20
localization steps, where at each step the WKNN method is used
(Step 3 of Algorithm 2), as discussed in Section 1.

The three scenarios are as follows:

• A professor moving from a lecture room to his/her office.
• A student moving from a lecture room to a computer lab.
• A visitor navigating from the department’s main entrance to

a professor’s office.

4.6 Experimental Series 1: MOEAs Performance
Evaluation

Experimental Series 1 aims at evaluating the performance of the
MOEA/D approach against the NSGA-II approach, in all UCY
datasets described in subsection 4.1 and with respect to all the per-
formance metrics of subsection 4.4.

Figure 1 shows that the proposed MOEA/D approach outperforms
the NSGA-II in all datasets in terms of both diversity and conver-
gence. Particularly, the Pareto Front (PF) obtained by MOEA/D
dominates all the solutions obtained by NSGA-II, since it is much
closer to the zenith point of the objective space (i.e., upper left cor-
ner). Moreover, MOEA/D’s PF is also wider than NSGA-II’s PF and
therefore provides more near-optimal solution choices to the deci-
sion maker. This is due to the fact that NSGA-II is trapped to local
optima and mainly fails to improve the Area Coverage objective in
all 3 cases.

This is also evident from the analytical results of Table 2 in which
the best performance value of each metric and for each dataset is
shown in bold. MOEA/D outperforms NSGA-II in all three datasets
for the IH , NDS and C-metric and provides better or equal perfor-
mance for the ID metric. Particularly, MOEA/D provides around
20% and 10% better performance, on average, for the ID and IH
metrics. It obtains about 37 more non-dominated solutions in its PF
than NSGA-II and the PF obtained by MOEA/D dominates 46%, on
average, the PF obtained by NSGA-II.

4.7 Experimental Series 2: Indoor Localization
Accuracy on Mobility Scenarios

This experimental series aims at (i) validating the performance of
the PF solutions obtained by MOEA/D and (ii) demonstrating the
relation of both the coverage and energy objectives with respect
to the indoor localization accuracy on various mobility scenarios
described in Subsection 4.5.

Figure 2 shows the indoor localization accuracy per localization
step in all three scenarios, while varying the energy level. Here it
is important to notice that different energy levels means different

solutions from the PF and therefore different partial RadioMaps
(pRM) used during the localization process. For example, an energy
level of 0.1 means that the decision maker selects the PF solution that
is closer to an energy objective value equal to 0.1 and its solution in
the decision space (i.e., the associated pRM) is then used throughout
the navigation of the user in our mobility scenarios. The results show
that the higher the energy consumption of the selected solution is,
the better the accuracy (and therefore the less localization error) is
achieved by the user during navigation.

This is also evident from the results of Figure 3 that shows the
average localization error of all localization steps per scenario. Here
it is important to notice the declining trend of the bar plots of top
row as the energy increases and therefore the contradiction between
energy and accuracy. Moreover, the high quality of the obtained
solutions is also evident, since for a 90% energy consumption, which
means that 90% of the whole RM is downloaded to the smartphone,
the average localization error is close to 1m, which is acceptable for
an indoor environment.

Finally, the 3 bar plots of bottom row of Figure 3 show the rela-
tion between the area coverage objective and the indoor localization
accuracy. The results suggest that the proposed area coverage objec-
tive is a good representation of the localization accuracy, since in
all three scenarios, as its objective value increases, the localization
error decreases.

5 CONCLUSIONS AND FUTURE WORK
In the paper, we propose a novel Multi-objective Indoor Localization
Service (MILoS) that provides a fine-grained, energy-efficient local-
ization on the client-side, using only a partial RadioMap of WiFi
fingerprints.

MILoS proceeds in three steps. Firstly, it uses Anyplace IPS
[25] to reconstruct building digital maps, marking Points-of-Interest
(POIs), and pathways joining them. Also associates with any subset
X of POIs, a partial RadioMap pRM by linking each WiFi fingerprint
to its closest POI. The reconstructed graph is fed into a MOEA/D to
produce offline a set of non-dominated solutions, that concurrently
optimize several conflicting objectives (i.e., minimize the smart-
phone’s Energy Consumption and maximize the Area Coverage).
Finally, under some specified user’s criteria a solution is selected
by the decision maker and the associated partial RadioMap pRM is
downloaded once on the user’s smartphone. No further communi-
cation with the server is required and no information on the user’s
location is ever shared with the server, thus maintaining user pri-
vacy. To perform localization at current indoor position, the user
employs a smartphone to capture the observed RSS fingerprint and
then uses the WKNN localization method (with input the pRM and
the observed fingerprint) in-situ.

The performance of the proposed method is evaluated on real
datasets over mobility scenarios and compared against NSGA-II, the
state-of-the-art in MOEAs based on Pareto-dominance. In particular,
we experimentally verify that the two objectives are conflicting with
each other and that as the energy / area coverage of the selected
solution increases, so does the localization accuracy calculated by
the user.

Directions for future work include the following: (i) Allow the
user in advance to indicate preferences (in terms of probabilities)
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Figure 3: Experimental Series 2 - Relation between Indoor Localization Accuracy and Energy objective on various mobility scenarios.

of visiting POIs, instead of a blind visit, (ii) Improve data pre-
processing, by introducing a more dynamic method for associating
POIs subsets with partial RadioMaps, (iii) Hybridize the MOEA/D
with Local Search Heuristics for further improving its performance,
(iv) Design a Multi-Objective Indoor Navigation Service that sug-
gests to the user a path between two POIs, that maximizes localiza-
tion accuracy. (v) Quantify the notion of Privacy (conditional on the
required localization accuracy error).
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