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Abstract— Wireless Sensor Networks design requires high be formulated as a Multiobjective Optimization Problem
quality location assignment and energy efficient power asgh- (MOP) [10]; since all objectives are considered equal aedeth
ment for maximizing the network coverage and lifetime. Clasical 5 ot 3 single solution to optimize them at the same time (the
deployment and power assignment approaches optimize these . . . .
two objectives individually or by combining them together i set of Pareto optimal or non-dominated solufuons is usually
a single objective or by constraining one and optimizing the called Pareto Front (PF) [10]). Therefore, classical mastare
other. In this article a multi-objective Deployment and Power not applicable in such complex and non-linear problems and
Assignment Problem (DPAP) is formulated and a Multi-objectve  the adaptation of Multi-Objective Evolutionary Algorittsm

Evolutionary Algorithm based on Decomposition (MOEA/D) ; ; ot :
is specialized. Following the MOEA/D’s framework the above (MOEAs [10]), which poses desirable (.:h.araCte”S“CS fos th
type of problems, can be proven beneficially.

Multiobjective Optimization Problem (MOP) is decomposed

into many scalar single objective problems. The sub-problds 1, this paper, we investigate the multi-objective deteiigtin
are solved simultaneously by using neighborhood informatin. ’

Additionally, unique problem-specific, parameter-rising, genetic tic preTDepI.oymlent an_d Ppwer A§S|g_nment Pr.obllem (DPAP).
operators and local search heuristics were designed speciily DPAP is typical in applications which invoke a limited numbe
for the DPAP. In addition, a new encoding scheme is designed of expensive sensors, where their operation is signifigantl
to represent a WSN based on the DPAP’s design variables. affected by their position and communication [11]. In these
Simulation results show that MOEA/D provides a high quality - 55 the random deployment and dynamic power assignment
set of alternative solutions without any prior knowledge onthe . t th v choi d th licati fford th f
objectives preference. is not the only choice and the applications afford the use o
a centralized or even an off-line algorithm to compute the
|. INTRODUCTION locations and transmit power levels of the sensors. Spatltyfic
Wireless Sensor Networks (WSNs)[1] design has received m_vest_lgate the foII_owmg proble_m: for a given survejtta
- N sensing field, determine the locations and the transmit powe
significant attention in the recent years due to the resourcé

constraint nature of sensor node devices. There are t\l/%eIS of a fixed number of sensor nodes, such that the

important requirements to consider while designing eﬁﬁtienetwork lifetime and coverage are maximized simultangousl

WSNSs: i.e. the efficient sensor node locations (deployme[f?J formulated a similar MOP focusing on the trade-offs of

[2]) and power levels (power assignment [3]) for maximizingOVe"age and lifetime objectives using the popular Multi-
\ - : %bjective Genetic Algorithm (MOGA). This problem can be

the WSN'’s coverage and lifetime respectively. ) .

. considered as a subclass of our DPAP, since the authors

On one hand, most of the power assignment approaches

focus on dynamically assigning homogeneous [4] or rlonchsed on deployment only, fixing the transmission range

homogeneous [5] power levels to all sensors in the netwo&f. all sensors and affiliating a simplified energy model. Our

. : a%%roach is a hybrid MOEA utilizing the Multi-Objective
There are also cases where the power assignment is perfo”@volutionar Algorithm based on Decomposition (MOEA/D)
centrally/offline before the network startup [6], in whidhet y A9 b

deployment of the sensors is considered given or performfer%mewOrk [12] and Local Search (LS) [6].

randomly. On the other hand, there are deterministic deploy The main contributions of this paper are three-fold: 1)
ment approaches which fix or ignore the power assignmefft have formulated the deterministic deployment and power
of the sensors [7]. Few approaches tackle these two issassignment problem (DPAP) in WSNs as a MOP. 2) We
simultaneously for maximizing the lifetime and coveragkave designed a unique encoding representation of a WSN
objectives. These approaches (e.g.[8]), however, opéirtiie  topology and problem-specific, parameter-rising, poparat
objectives individually, or by combining them into a singlénitialization, genetic operators and local search héigss
objective or constraining one and optimizing the other Wwhidincluding a power assignment) for the DPAP. 3) We have
often results on ignoring and losing "better” solutions. successfully specialized a MOEA/D-LS approach to DPAP and
Maximizing coverage and lifetime are conflicting objeciveobtained near-optimal results. Simulations were condltde
and thus warrant a trade-off [9]. Thereby, the problem sthoushow the performance superiority of the proposed approach.



Il. PROBLEM DEFINITION where,cio = Tmaz X Ymaz 1S the total grids of the area and

A. System Model é gtﬁérﬁviﬁa’ oy N}y di () < R
Consider a 2-D static wireless sensor network formed by;d&ihe coverage status of grid’, y’).

rectangular sensing arefh a number of homogeneous sensors The network lifetime is defined as the percentage of the
N and a static sinkt with unlimited energy, placed at theqyration from the deployment of the network to the cyele
center of A. The sensors are responsible for a simple taskp ;t» sensor depletes its energy supplyover the maximum
i.e. monitoring and perlodlgally reporting an event of net& possible network runtime, ... The network’s lifetime s

to H. Hence, each sensar = 1,..,N, must be able t0 \when all sensors forward only &-bit packet over a unit

communicate (directly or via multiple hops through nearbyistance. The lifetime objectivg (X ) is evaluated as follows:
sensors) withH. We assume a perfect medium access control p|gorithm: Lifetime Evaluation

and adopt the simple but relevant path loss communicationStep 0: Setr = 1; Tmas = E/Es(k, dmin); EL(0) = E
model as in [8]. In this model the transmit power leval Vi e {1' ]\’[}Tn‘” A Smin > BT
that should be assigned to a sensoio reach a neighbor Step 1: Calculate the shortest path from each ¢

sensorj is P; = 3 x dj;, wherea € [2,6] is the path loss {1,..., N} towardsH with incoming cost link equal
exponent and3 = 1 is the transmission quality parameter. to Ei(r) = Ei(r — 1) — Ei(k,d);
T - [d t ) )

The -energy-loss due to channel tlransmissiomg'sdij i§ the Step 2: If 34 € {1,.., N} such thatFi (r) = 0 then
Euclidean distance between sensoasd;j andR} = d;; iSi’'s

lz/y/ =

transmission range. The calculated power/range assigsmen Ji5(X) =7/ Tmaa; 3
are considered static for the whole network’s lifetime. The ’

total energy consumption of each sensor node per cycle is Elser =7+ 1, go to step 1;

calculated based on the following energy model [13]: whereE, (k, d) is given by equation 1 an8? (7) is the residual

energy of each sensér=1,..., N in sensing cycler.

Ei(k,d) = By (k,d) + Ep(k) + Eor(k 1
(k. d) (b, d) + (k) + (k) (1) IIl. OUR MULTI-OBJECTIVEEVOLUTIONARY

where E;,(k,d), is the energy consumption to transmit a COMPUTATION APPROACH

k-bit data packet a distancé and E..(k), Eo-(k) is the  This section presents the general framework of MOEA/D
energy consumption to receive and originatek-dit data as well as the motivation and the design of our operators and
packet respectively. heuristics. MOEA/D proceeds as follows:

For sensing purposes and simplicity, we assume a grid A'qnnut: « network parameters(e.gl, N, E, R.)
A, composed by rectangular grids of identical dimensions, « m : population size and number of subproblems;
centered afz’, y'), and a binary sensing model [7]. A grid cen- « T: size of a neighborhood: ’
tered at(z’,y’) is considered covered, denoted hy,, = 1, « uniform spread of weight \;ectooso A
if it falls within a sensor’s sensing range cirdg. Otherwise « a stopping criteriogen, ., which c’orr’esp,onds to
Iy = 0. We consider unit-size grids, which are several times the maximum number of generations:
smaller thanR,, for a more accurate placement [7]. Output: e the external populationfZP = {X*}.

B. Problem formulation Step 0-Setup:Set EP := (); gen := 0; 1P := 0);
Step 1-Decompositioninitialize m subproblems,

The DPAP can be formulated as a MOP as follows: . >
gi(Xz|/\i) yi=1,...,m.

leen:. ) Step 2-Initialization: Generate a solutioX?,i =1, ..., m,
o A: 2-D plane of area siz, Z.44] X [0, Ymaz] by a problem-specific method. EvaluaféX?). Ini-
o N: number of sensors to be deployed4n tialize IP = (X,.., X™);

o FE: initial power supply, for each sensoe=1,..., N

« R, sensing range, for each sensot 1,..., N
The design variables vectaK() is composed by the following
design variables

Step 3: Fori=1,...,m do
Step 3.1-Genetic Operation:Generate a new so-
lution X by using genetic operators.
Step 3.2-Local Search: Apply repair, improve-

o (zi,y;) : the location of senso. ment heuristics onX‘ to produceX ',
« P':the transmission power level of sengavhich highly Step 3.3-Update Populationd)pdate populations
depends orR, the transmission range of sengor IP, EP based onX” and update thel’
Objectives Maximize coveragef., and lifetime f;¢: closest neighbors oK.

The network coveragg..(X) is defined as the percentage Step 4-Stopping criterion:If stopping criterion is satisfied,
of the covered grids over the total grids of the and is i.e. gen = genmas, then stop and outpuEP,
evaluated as follows: otherwisegen = gen + 1, go toStep 3

Tmaz Ymas However, much work had to be done for the general-
JerX) = 1D D laryl/cto (2) purpose MOEA/D framework to be suitable for the multi-

27=0 /=0 objective deterministic DPAP in WSNSs. Firstly, a dedicated



encoding representation is designed to image a WSN for the
DPAP. Secondly, problem-specific population initialipatand
genetic operators required for giving high quality topadésgy

to each subproblem. Finally, local search heuristics are de
signed to further improve and/or repair the existing togae @
quality and energy efficiency. In the following, we explairet
procedure of the above algorithm in more detalils.

Semsorl | Semsor2 | | | Semsor¥1l | Semserm

A. Decomposition and the main idea of design x[mwie [ mwi® [ 0 [ | o Pa | Gl B

The Weighted Sum Approach [12] is used for decom- Gmsl | Gme2 | - | e | oM | GeeN
posing the proposed MOP into subproblems. Let\ = L Spread
(A1, A2, ..., \*) be a weight vector, where is the number of
objectives\/ > 0 and)_7_, A\; = 1. In this work,z = 2 and
(A\i, 1—X;) is the weight vector for each subproblénf\ scalar
optimization problem is defined a@d ax. g;(X|\;) = A fif + _ o
(1 = \i)fer, for i = 1,...,m. So, considering the preferencd=: Population Initialization
(weight coefficient\;) of eachi, we can adapt the appropriate Population,/ Py, is an initial set ofm solutions represented
scalar strategies to optimize it specifically. For exampiie, by their chromosome, produced in generaijen = 0. In this
extreme subproblem is dedicated on maximizing;y and study, we designed a new problem specific population initial
fer is fully ignored. Hence, for\; = 1, it is defined as ization which createsn solutions "seeded” in areas where
Maz. g1(X|A\) = fiy. While X decreases the subproblemgptimal solutions are likely to be found specifically for bac
are more favoringf... The other extreme subproblem is subproblem. We force the solutions of the subproblems which
therefore defined ad/ax. g,,(X|Am) = fer, fOr Ay, = 0. 1t prefer highf;y, i.e. high), densely deploy the sensors around
has to be noted that this beneficial procedure cannot beedili 2. Similarly, the solutions of subproblems with~ 1 — A
by any non-decompositional MOEA framework. to be a mixture of sensors connectedHoand spread around

Traditionally, it is hard to design an operator and/or a feeur and finally, the solutions of subproblems more interested in
tic to benefit all subproblems, since they have differenecbj f.., i.e. low )\, having most of the sensors spread around.
tive preference and they have to be solved simultaneously,fiP, is then forwarded to the genetic operators.

a single run. In this work, we have developed problem specific ) _ _
operators and heuristics rising by the preference parameteD: Genetic Operators: Selection, Crossover, Mutation

and adapted to the requirements of each subproblem.XThe Genetic operators [10] is the robust global searching tbol o
parameter is used as a guide to the operators and heurigWi¢3EAS. This section presents our problem-specific opesator
for adjusting the degree of coverage and lifetime and tioeeef 1) Selection: Selection operator [10] responsibly chooses
designing different preference WSNs. So all of our methodsigh quality solutions from the current population to be
which follow, have the same focus: whenis high, produce included for reproduction in the next generation. In thipgra
dense topologies, decrease the network’s latency (maximwa have adopted a tournament selection-based operator [6],
number of hops en route) and increase the load balancimbich is simple and fast. Our tournament selection has two
(using both the relation between the transmission range amdjor differences compared to conventional operatorsth@)
number of data to transmit and multiple routes) favorfiag  solutions selected to compete in the tournament aretithe
As )\ decreases, spread the sensors far away figrfavoring nearest neighbors of each subproblénm /P, in terms of
fer, giving the opportunity to the solutions to have sensofsuclidean distance of thek value. (2) the neighbor solutions,

Fig. 1. Encoding Representation

aroundH to prevent disconnections. e.g.j and z, are competing in's tournament in terms ok;,
) . ignoring their own); and ., their pareto domination and/or
B. Encoding Representation ranking [10]. The selected solutions, denotedPa$ and Pr,

In this paper, we present a new chromosome representati@ient solutions, are then forwarded to the crossover tpera
of size N. Each chromosomeX, is composed by multi-part  2) Crossover:Crossover is the operator which recombines
genes, the design variables of the problem, e.g. gei® Pri and Pri to produce one or more offspring, e@;. Our
composed byz;, y;) and P;. The chromosome representationproblem-specific crossover operator, namsyndow”-based
shown in Figure 1, is calleddense-to-spread” encoding crossoverworks as follows:
because of the way the chromosome is sorted. The nearer Bor each subproblemthe two parents are mergefyi , =
sensor is toH the sooner is added in the chromosome. Thigri UPr}, and sorted as in section 111-B, i.e. having the dense
results in having all the sensors densely deployed ardiéindpart of sensors in the left part of the merged chromosome
at the beginning of each chromosome and the sensors whicid the sparse on the right part. Initiate a windavi, =
are spread away at the end. This encoding representatioin + (max — min) x (1 — );), wheremin = N (the size
will facilitate the problem specific operators and heucsti of the offspring) andnax = 2 x N (the size of the merged
discussed later. chromosome). Note thaty; varies based on; of eachi. Place



the window at the left side ofPri,. Randomly,rand’ € such thatd;z < maxR., otherwise,i is relocated sparsely,
[1,w'], selectj = 1,...,N genes (=sensors) froftri ,. A i.e. rand, € [0,%maz] and rand, € [0,Ymaz] Such that
gene, e.gs,.nqi, can be selected only oncBriQ/{smndi}. d;g > mazR.. The repaired solutioX;, is then forwarded
Add $,4nq: IN O; = O; U {s,.nqi+ at positionj. Figure 2 for improvement. The encoding representation of section Il
exemplifies the "window"-based crossover operator by gvinB is proven beneficial for the repair heuristic because of the
the wireless sensor network’s interpretation of the exérenchromosome sorting (inefficient sensors can be tracked with
subproblem with\; = 1. less computational effort).

2) Improvement: Improvement heuristic is composed by

Pr,': [MI213]4]5]6]7[8]9]10] Pr,': [L[213]4]s[6[7[8]9]10] two steps. Each solution should follow one of these two steps
according to itsA coefficient and a random variablegnd.
Each step favors one of the two objectives under considerati
If rand < A then Step 1 is invoked, ifand > X then Step 2
is invoked. The two steps work as follows:

Spréad Step 1 - Improves lifetimaefers to the subproblems which
require highf;¢. Hence, the goals of this heuristic are to design
s TalsTe[7[8 ]9 [t0]n]12]13[14]15]1617]18[19]20] dense topologies, to increase load balancing and/or dezrea
oy =A< latency. This is attained as follows: Léf}, be the repaired
solution of subproblemwith N sensors deployed iA. Divide
RO A into four equal spaces. Find the space with the highest
D) %}510 density, @ighS, with high and unbalanced traffic load) and
Bé\m@ the space with the lowest densityp®{S). Select the sensor
j € highS which causes the highest latency. Relocatm

o: [IT2Taf4[5T6[7[8]9 10 lowS such that it directly communicates with.

Step 2 - Improves coverag: mainly invoked on subprob-
lems which prefer higty.,.. Therefore, the sensors need to be
placed as spread as possible. This is achieved, by withdgawi

3) Mutation: Mutation operator [10] maintains the diversityall sensors as far aswaxzR./2 away from their farthest
of the population by randomly modifying the genes of aeighbor, starting from the sensors closerHo Hence, the
chromosome based on a mutation rate,;.. When a gene sensors are spread i without worrying for disconnections
i is to be modified, a newz;,y;) and R. are randomly and with increase probability of covering uncovered aress a
chosen based on;. If ); is high, then(z;, ;) is chosen connecting isolated sensors. Isolated sensors are thersens
such thatd;y < mazR./2] and R. € [minR.,mazR./2] placed far away and cannot find a route towafdlgmainly
to support dense deployment arfgy, otherwise,(xz;,y;) is because of the genetic operators). Connecting an isolated s
chosen such that;;; > mazRe, T; < Timas ¥i < Ymaz @and sor ensures that a previously uncovered area will be coyered
R € [minR., mazR.] to support spread deployment afig.  since R, < maxR./2.

Parametersiin R, andmaz R, is the minimum and maximum  Note that, when\; ~ (1— ;) there is a high probability that
possibleR,. assignment. both steps are invoked to a subprobléin different genera-

Note that our algorithm can adopt other kind of genetitons giving a hybrid of the two improvements. The improved
operators with minor changes in the algorithm’s design.  solution, X¢ is then forwarded for power assignment.

) ) 3) Power AssignmenfThe main focus of the power assign-
E. Local Search: Repair, Improvement and Power Assignmenkn: heuristic is load balancing. As it is mentioned eartfes

As mentioned earlier, MOEA/D is suitable on using simpléotal energy consumption of a sensas strictly related to its
scalar subproblem techniques for locally improving and/d?; and the number of-bit data it transmits (i.e. traffic load).
repairing a solution, i.e. Local Search (LS) [6]. So, each sensor should balance its traffic load through phelti

1) Repair: Repair heuristic increases the sensors individeutes and limit its transmission power at the same time.
ual utilization in a particular topology. Since, there are n Figure 3 exemplifies the power assignment heuristic: (Step
constraints and no infeasible solutions in DPAP, the repdir left) Sensort, which is far away fromH (d4sy > mazR.),
heuristic checks if a sensaris located: Case #1) close toincreases its initial transmission rang&}( = avgR. =
H,i.e.d; g < dnin and/or Case #2) close to another senseraxR./2, indicated by a solid circle) to the maximum possi-
J, 1.e. d;; < dmin, Whered,;, = 1. In both cases, the ble (R* = maxR,, indicated by a dotted circle). This results
solution is considered inefficient and needs repairingcésinto more alternative paths, i.d,2 and4,3, and a balance of
sensors of Cases #1 or #2 have limited chances to provitie traffic load forwarded by, alleviating sensot for several
extra load balancing and/or cover any uncovered regionsaycles. Moreover, it is evident that all four sensors aregisi
A). The repair heuristic randomly generates a new locatiomore transmission power than the necessary to reach their
(randg, rand,) for sensori. If A is high then, is relocated farthest neighbor. (Step 2, right) Sensors 1,2 and 3 farthes
aroundH, i.e. rand, € [0, maxR.] andrand, € [0,mazR.] neighbor isH, so all three sensors decrease thBjr and

Dense

P,

Fig. 2. Example on the problem specifiwihdow-baset crossover operator



subproblemsn = |IP|, and the neighborhood siZE = 2,
since a largel’ may affect the diversity of the population.

Figure 4(a) shows: (I) the tradeoffs between the two ob-
jectives and how they are competing against each other with
a high degree negative correlation of around.88. On one
hand, the design space of a WSN optimization problem is
highly non-linear because of the communication connegtivi
of the sensors. A small change in the network may cause
disconnections or partitions of the network and so big ckang
in both objective functions. This is the reason why the rssul
i.e. PF in Figure 4(a), are not continuous. On the other hand,
at the top and bottom of MOEA/D 's PF there are similar
lifetime solutions. The similarity of these solutions isedto
consequently their; at the level they can reacl/, i.e. the power assignment heuristic. Specifically, when sersor
R! = d;p and P; = (R.)* wherei = 1,2,3. Meanwhile, is shifted backwards from its farthest neighbjorthe power
sensor4 is not necessary to transmit witR} = maxzR.. assignment heuristic increases Rsto avoid loosing its path
Since, with P, = (R7)*, where R} = dsy3 < mazR., it towardsH. This results to a higheF;(k, d;;) and so a lower
reaches its farthest neighb2y keeps all its alternative pathsf,,, but at the same time it slightly increasgs. Therefore,
for load balancing and consumes less transmission energytwo very similar non-dominated solutions are designed.

(I) The superiority of our approach in terms of quality
of solutions in the PF. All non-dominated solutions obtdine

The population update of MOEA/D is composed by thregy MOGA are dominated by MOEA/D. (Note that, MOGA's
phases. (I) The Internal PopulatiqdP) update phaselP PF is very similar with the one provided by [9] in terms of
keeps all the best solutions found so far for each subpragbleips trend and spread of solutions. The small difference that
[IP| = m. If g;(X]|N\i) > ¢:(Xi|\;) thenIP U {X/} and appears in the quality is mainly because of the difference in
IP/{X;}, otherwiseX; remains inI P. (ll) The neighboring the system model.) MOEA/D has an advantage, of around 12%
solutions update phase. The new solutiail is compared of coverage over MOGA for the topologies having the same
with its T' closest neighbor best solutiorisfound so far. If lifetime and a lifetime increase of 18% in average, for the
g5 (XiIA;) > g;(X;[\), ¥ € 1,..,T, thenIP U {X/} and solutions having the same coverage. To be more specific, we
IP/{X,}, otherwise,X; remains inIP. (lll) The external decoded and zoom-in two non-dominated solutions, one from
population (EP) update phase. PopulatioAP stores all each algorithm, giving the same coverage. The solutionsr(a)
the non-dominated solutions found so far during the searthOGA's PF and (b) on MOEA/D’s PF are givingfa, = 66%
EP = EPU{X]}, if X]is not dominated by any solutionand a lifetime difference arounfi ;) — f;;w = 20%, i.e.

X; € EP andEP = EP/{X.}, if X] < X.. fis = 72% and fi;ey = 92%. The reason is given by
At the end of each generation the termination criterion Sigure 4(b). During the simulations run we have located the
checked to decide whether it is time to stop the search. & tiiensor consuming the more energy supply per cycle for each
paper the maximum number of generatiofnsy.,..., is used. algorithm. This was the same sensor which finally depleted

its energy supply first. We are illustrating the per cyclergye
consumption of the sensor which is responsible for theififet

The performance of MOEA/D is compared with MOGAof each (a) and (b) hon-dominated topologies.

on several network instances (e.g varyidg= 10000m? — In both cases, the particular sensors of topologies (a)land (
90000m?2 with fixed density and varyingV = 10 — 500 start with an initial battery supply oF = 0.25.J. While the
with fixed A) in terms of quality of solutions in the PFnetwork is "running”, itis evident that, sensor of (a) conms
and convergence speed using the same function evaluatior@e energy per cycle than sensor of (b). Specifically, senso
(f.e. = 120 x 250 = 30000). In this paper, due to pageof (a) spends its whole energy supply in 7299 cycles, with 72
limit, we just present the results of the network instance “.J more energy per cycle compared to sensor of (b) which
proposed by [9] using the same parameter settings for faspends the same amount of total energy supply in 9051 cycles.
ness:A = 10000m2, N = 10, a = 2, R, = 20m and This indicates that MOEA/D with a fixed number of sensors
R. = R,. Additionally, for the DPAP we have used a radian a fixed area can provide the same coverage as MOGA, but,
dissipation of E ... = 50nJ/bit for the circuitry energy with much higher lifetime. This is mainly due to the follovgin
consumption and,,,, = 100p.J/bit/m? for the transmitter reasons: 1) MOEA/D handles each sub-problem individually,
amplifier [13]. In MOEA/D, R, € [1,40](= [minR.,maxzR.] by using problem specific heuristics, and at the same time it
is calculated using the power assignment heuristic. M@govabsorbs any available beneficial information from the neigh
the algorithm’s parameter settings are: = 120, crossover borhood. For example, the subproblems dedicated to ligetim
rate ¢ qte = 1, Mrqre = 0.1 and gen,q = 250. The two (coverage), use the problem specific operators and hesristi
parameters considered only by MOEA/D are the number tof obtain high quality lifetime (coverage) fithess and at the

Fig. 3. Power Assignment heuristic

F. Population Update and termination criterion

IV. EXPERIMENTAL RESULTS AND DISCUSSION
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Fig. 4. MOEA/D v.s.MOGA

same time they absorb all the necessary information from the

V. CONCLUSIONS

neighborhood for increasing coverage (lifetime). 2) Thghhi | this paper a new Deployment and Power Assignment
load balancing that the problem specific heuristics protde pyoplem (DPAP) is formulated as a MOP. Our motivation was
all solutions in MOEA/D’s PF compared to those in MOGAg provide a diverse set of high quality solutions for the [PPA
PF. Similarly, for cases with the same lifetime, MOEA/Qp the absence of any prior knowledge on the objectives pref-
provides higher coverage. The reason is that, MOEA/D ca@hence to facilitate a decision maker's choice. An MOEA/D-
spread the sensors without being affected by the increase &f aigorithm is designed and showed its superiority against
latency and consequently the increase of relay data sinceubGA in terms of quality of solutions and convergence
provides adequate load balancing to easefihs decrease. speed. In the future, we intend to add more constraints (e.g.
Figure 4(c) shows three PFs for each algorithm providednnectivity) on the DPAP to increase its realizability.

after a particular number of function evaluationse., for
comparing the methods population initialization and cenve
gence speed. The first PF of each algorithm shows the initicli]I]
population, i.e.f.e. = 120. It is evident, that the initial [2]
solutions provided by MOEA/D are of higher quality than
those provided by MOGA. This proves the effectiveness 0{3
our problem specific population initialization(section-@)
compared to the random approach adopted by MOGA, givini!
about 15% higher quality of solutions.

The second PF is given fof.e. = 15 x 10° (~125 [l
gens, the middle of evolution) and the last PF fbe. =
30 x 103 (~250 gens, the end of evolution). In both casegs]
and consequently for the whole evolution, MOEA/D provides
high quality PFs faster. MOGA need5 x 10° f.e. to provide
a similar quality on its top half PF as MOEA/P¢ = [7]
120). MOGA(f.e. = 15 x 103) bottom half PF has higher
quality than MOEA/Df.e = 120) but much less than (8]
MOEA/D(f.e. = 15x 103). However, both algorithms indicate
a high convergence speed in the initial 125 generations and &!
increase of around 25% in quality of solutions. The conver-
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