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Abstract— Wireless Sensor Networks design requires high
quality location assignment and energy efficient power assign-
ment for maximizing the network coverage and lifetime. Classical
deployment and power assignment approaches optimize these
two objectives individually or by combining them together in
a single objective or by constraining one and optimizing the
other. In this article a multi-objective Deployment and Power
Assignment Problem (DPAP) is formulated and a Multi-objective
Evolutionary Algorithm based on Decomposition (MOEA/D)
is specialized. Following the MOEA/D’s framework the above
Multiobjective Optimization Problem (MOP) is decomposed
into many scalar single objective problems. The sub-problems
are solved simultaneously by using neighborhood information.
Additionally, unique problem-specific, parameter-rising, genetic
operators and local search heuristics were designed specifically
for the DPAP. In addition, a new encoding scheme is designed
to represent a WSN based on the DPAP’s design variables.
Simulation results show that MOEA/D provides a high quality
set of alternative solutions without any prior knowledge onthe
objectives preference.

I. I NTRODUCTION

Wireless Sensor Networks (WSNs)[1] design has received
significant attention in the recent years due to the resource
constraint nature of sensor node devices. There are two
important requirements to consider while designing efficient
WSNs: i.e. the efficient sensor node locations (deployment
[2]) and power levels (power assignment [3]) for maximizing
the WSN’s coverage and lifetime respectively.

On one hand, most of the power assignment approaches
focus on dynamically assigning homogeneous [4] or non-
homogeneous [5] power levels to all sensors in the network.
There are also cases where the power assignment is performed
centrally/offline before the network startup [6], in which the
deployment of the sensors is considered given or performed
randomly. On the other hand, there are deterministic deploy-
ment approaches which fix or ignore the power assignment
of the sensors [7]. Few approaches tackle these two issues
simultaneously for maximizing the lifetime and coverage
objectives. These approaches (e.g.[8]), however, optimize the
objectives individually, or by combining them into a single
objective or constraining one and optimizing the other which
often results on ignoring and losing ”better” solutions.

Maximizing coverage and lifetime are conflicting objectives
and thus warrant a trade-off [9]. Thereby, the problem should

be formulated as a Multiobjective Optimization Problem
(MOP) [10]; since all objectives are considered equal and there
is not a single solution to optimize them at the same time (the
set of Pareto optimal or non-dominated solutions is usually
called Pareto Front (PF) [10]). Therefore, classical methods are
not applicable in such complex and non-linear problems and
the adaptation of Multi-Objective Evolutionary Algorithms
(MOEAs [10]), which poses desirable characteristics for this
type of problems, can be proven beneficially.

In this paper, we investigate the multi-objective determinis-
tic pre-Deployment and Power Assignment Problem (DPAP).
DPAP is typical in applications which invoke a limited number
of expensive sensors, where their operation is significantly
affected by their position and communication [11]. In these
cases, the random deployment and dynamic power assignment
is not the only choice and the applications afford the use of
a centralized or even an off-line algorithm to compute the
locations and transmit power levels of the sensors. Specifically,
we investigate the following problem: for a given surveillance
sensing field, determine the locations and the transmit power
levels of a fixed number of sensor nodes, such that the
network lifetime and coverage are maximized simultaneously.
[9] formulated a similar MOP focusing on the trade-offs of
coverage and lifetime objectives using the popular Multi-
Objective Genetic Algorithm (MOGA). This problem can be
considered as a subclass of our DPAP, since the authors
focused on deployment only, fixing the transmission range
of all sensors and affiliating a simplified energy model. Our
approach is a hybrid MOEA utilizing the Multi-Objective
Evolutionary Algorithm based on Decomposition (MOEA/D)
framework [12] and Local Search (LS) [6].

The main contributions of this paper are three-fold: 1)
We have formulated the deterministic deployment and power
assignment problem (DPAP) in WSNs as a MOP. 2) We
have designed a unique encoding representation of a WSN
topology and problem-specific, parameter-rising, population
initialization, genetic operators and local search heuristics
(including a power assignment) for the DPAP. 3) We have
successfully specialized a MOEA/D-LS approach to DPAP and
obtained near-optimal results. Simulations were conducted to
show the performance superiority of the proposed approach.



II. PROBLEM DEFINITION

A. System Model

Consider a 2-D static wireless sensor network formed by: a
rectangular sensing areaA, a number of homogeneous sensors
N and a static sinkH with unlimited energy, placed at the
center ofA. The sensors are responsible for a simple task,
i.e. monitoring and periodically reporting an event of interest
to H . Hence, each sensori = 1, ..., N , must be able to
communicate (directly or via multiple hops through nearby
sensors) withH . We assume a perfect medium access control
and adopt the simple but relevant path loss communication
model as in [8]. In this model the transmit power levelPi

that should be assigned to a sensori to reach a neighbor
sensorj is Pi = β × dα

ij , whereα ∈ [2, 6] is the path loss
exponent andβ = 1 is the transmission quality parameter.
The energy loss due to channel transmission isdα

ij , dij is the
Euclidean distance between sensorsi andj andRi

c = dij is i’s
transmission range. The calculated power/range assignments
are considered static for the whole network’s lifetime. The
total energy consumption of each sensor node per cycle is
calculated based on the following energy model [13]:

Et(k, d) = Etx(k, d) + Erx(k) + Eor(k) (1)

whereEtx(k, d), is the energy consumption to transmit a
k-bit data packet a distanced and Erx(k), Eor(k) is the
energy consumption to receive and originate ak-bit data
packet respectively.

For sensing purposes and simplicity, we assume a grid area
A, composed by rectangular grids of identical dimensions,
centered at(x′, y′), and a binary sensing model [7]. A grid cen-
tered at(x′, y′) is considered covered, denoted bylx′y′ = 1,
if it falls within a sensor’s sensing range circleRs. Otherwise
lx′y′ = 0 . We consider unit-size grids, which are several times
smaller thanRs, for a more accurate placement [7].

B. Problem formulation

The DPAP can be formulated as a MOP as follows:
Given:

• A: 2-D plane of area size[0, xmax] × [0, ymax]
• N : number of sensors to be deployed inA
• E: initial power supply, for each sensori = 1, ..., N
• Rs: sensing range, for each sensori = 1, ..., N

The design variables vector (X) is composed by the following
design variables:

• (xi, yi) : the location of sensori.
• P i : the transmission power level of sensori which highly

depends onRi
c, the transmission range of sensori.

Objectives: Maximize coveragefcr and lifetimeflf :
The network coveragefcr(X) is defined as the percentage

of the covered grids over the total grids of theA and is
evaluated as follows:

fcr(X) = [

xmax
∑

x′=0

ymax
∑

y′=0

lx′y′ ]/cto (2)

where,cto = xmax × ymax is the total grids of the area and

lx′y′ =

{

1 if ∃i ∈ {1, ..., N}, di,(x′,y′) ≤ Rs

0 otherwise
is the coverage status of grid(x′, y′).

The network lifetime is defined as the percentage of the
duration from the deployment of the network to the cycleτ
an ith sensor depletes its energy supplyE over the maximum
possible network runtimeτmax. The network’s lifetime isτmax

when all sensors forward only ak-bit packet over a unit
distance. The lifetime objectiveflf (X) is evaluated as follows:

Algorithm: Lifetime Evaluation
Step 0: Set τ := 1; τmax = E/Et(k, dmin); Ei

r(0) := E,
∀i ∈ {1, ..., N};

Step 1: Calculate the shortest path from eachi ∈
{1, ..., N} towardsH with incoming cost link equal
to Ei

r(τ) = Ei
r(τ − 1) − Ei

t(k, d);
Step 2: If ∃ i ∈ {1, ..., N} such thatEi

r(τ) = 0 then

flf (X) := τ/τmax; (3)

Else τ = τ + 1, go to step 1;
whereEt(k, d) is given by equation 1 andEi

r(τ) is the residual
energy of each sensori = 1, ..., N in sensing cycleτ .

III. O UR MULTI -OBJECTIVEEVOLUTIONARY

COMPUTATION APPROACH

This section presents the general framework of MOEA/D
as well as the motivation and the design of our operators and
heuristics. MOEA/D proceeds as follows:

Input: • network parameters(e.g.A, N , E, Rs)
• m : population size and number of subproblems;
• T : size of a neighborhood;
• uniform spread of weight vectorsλ0, ..., λm;
• a stopping criteriongenmax, which corresponds to
the maximum number of generations;

Output: • the external population,EP = {X∗}.
Step 0-Setup:SetEP := ∅; gen := 0; IP := ∅;
Step 1-Decomposition:Initialize m subproblems,

gi(X
i|λi) , i = 1, ..., m.

Step 2-Initialization: Generate a solutionX i, i = 1, ..., m,
by a problem-specific method. EvaluateF (X i). Ini-
tialize IP = (X1, ..., Xm);

Step 3: For i = 1, ..., m do
Step 3.1-Genetic Operation:Generate a new so-

lution X i by using genetic operators.
Step 3.2-Local Search: Apply repair, improve-

ment heuristics onX i to produceX i’.
Step 3.3-Update Populations:Update populations

IP , EP based onX i’ and update theT
closest neighbors ofX i’.

Step 4-Stopping criterion:If stopping criterion is satisfied,
i.e. gen = genmax, then stop and outputEP ,
otherwisegen = gen + 1, go to Step 3.

However, much work had to be done for the general-
purpose MOEA/D framework to be suitable for the multi-
objective deterministic DPAP in WSNs. Firstly, a dedicated



encoding representation is designed to image a WSN for the
DPAP. Secondly, problem-specific population initialization and
genetic operators required for giving high quality topologies
to each subproblem. Finally, local search heuristics are de-
signed to further improve and/or repair the existing topologies
quality and energy efficiency. In the following, we explain the
procedure of the above algorithm in more details.

A. Decomposition and the main idea of design

The Weighted Sum Approach [12] is used for decom-
posing the proposed MOP intom subproblems. Letλ =
(λ1, λ2, ..., λz) be a weight vector, wherez is the number of
objectives,λj ≥ 0 and

∑z

j=1 λj = 1. In this work,z = 2 and
(λi, 1−λi) is the weight vector for each subproblemi. A scalar
optimization problem is defined asMax. gi(X |λi) = λiflf +
(1 − λi)fcr, for i = 1, ..., m. So, considering the preference
(weight coefficientλi) of eachi, we can adapt the appropriate
scalar strategies to optimize it specifically. For example,the
extreme subproblem1 is dedicated on maximizingflf and
fcr is fully ignored. Hence, forλ1 = 1, it is defined as
Max. g1(X |λ1) = flf . While λ decreases the subproblems
are more favoringfcr. The other extreme subproblemm is
therefore defined asMax. gm(X |λm) = fcr, for λm = 0. It
has to be noted that this beneficial procedure cannot be utilized
by any non-decompositional MOEA framework.

Traditionally, it is hard to design an operator and/or a heuris-
tic to benefit all subproblems, since they have different objec-
tive preference and they have to be solved simultaneously, in
a single run. In this work, we have developed problem specific
operators and heuristics rising by the preference parameter λ
and adapted to the requirements of each subproblem. Theλ
parameter is used as a guide to the operators and heuristics
for adjusting the degree of coverage and lifetime and therefore
designing different preference WSNs. So all of our methods,
which follow, have the same focus: whenλ is high, produce
dense topologies, decrease the network’s latency (maximum
number of hops en route) and increase the load balancing
(using both the relation between the transmission range and
number of data to transmit and multiple routes) favoringflf .
As λ decreases, spread the sensors far away fromH , favoring
fcr, giving the opportunity to the solutions to have sensors
aroundH to prevent disconnections.

B. Encoding Representation

In this paper, we present a new chromosome representation
of sizeN . Each chromosome,X , is composed by multi-part
genes, the design variables of the problem, e.g. genei is
composed by(xi, yi) andPi. The chromosome representation,
shown in Figure 1, is called”dense-to-spread” encoding
because of the way the chromosome is sorted. The nearer a
sensor is toH the sooner is added in the chromosome. This
results in having all the sensors densely deployed aroundH
at the beginning of each chromosome and the sensors which
are spread away at the end. This encoding representation
will facilitate the problem specific operators and heuristics
discussed later.

Fig. 1. Encoding Representation

C. Population Initialization

Population,IP0, is an initial set ofm solutions represented
by their chromosome, produced in generationgen = 0. In this
study, we designed a new problem specific population initial-
ization which createsm solutions ”seeded” in areas where
optimal solutions are likely to be found specifically for each
subproblem. We force the solutions of the subproblems which
prefer highflf , i.e. highλ, densely deploy the sensors around
H . Similarly, the solutions of subproblems withλ ≈ 1 − λ
to be a mixture of sensors connected toH and spread around
and finally, the solutions of subproblems more interested in
fcr, i.e. low λ, having most of the sensors spread around.
IP0, is then forwarded to the genetic operators.

D. Genetic Operators: Selection, Crossover, Mutation

Genetic operators [10] is the robust global searching tool of
MOEAs. This section presents our problem-specific operators.

1) Selection: Selection operator [10] responsibly chooses
high quality solutions from the current population to be
included for reproduction in the next generation. In this paper,
we have adopted a tournament selection-based operator [6],
which is simple and fast. Our tournament selection has two
major differences compared to conventional operators: (1)the
solutions selected to compete in the tournament are thetm
nearest neighbors of each subproblemi in IP , in terms of
Euclidean distance of theirλ value. (2) the neighbor solutions,
e.g.j andz, are competing ini’s tournament in terms ofλi,
ignoring their ownλj andλz , their pareto domination and/or
ranking [10]. The selected solutions, denoted asPri

1 andPri
2

parent solutions, are then forwarded to the crossover operator.
2) Crossover:Crossover is the operator which recombines

Pri
1 andPri

2 to produce one or more offspring, e.g.Oi. Our
problem-specific crossover operator, namely”window”-based
crossoverworks as follows:

For each subproblemi, the two parents are merged,Pri
1,2 =

Pri
1∪Pri

2, and sorted as in section III-B, i.e. having the dense
part of sensors in the left part of the merged chromosome
and the sparse on the right part. Initiate a window,wi =
min + (max − min) × (1 − λi), wheremin = N (the size
of the offspring) andmax = 2 × N (the size of the merged
chromosome). Note that,wi varies based onλi of eachi. Place



the window at the left side ofPri
1,2. Randomly,randi ∈

[1, wi], selectj = 1, ..., N genes (=sensors) fromPri
1,2. A

gene, e.g.srandi , can be selected only once,Pri
1,2/{srandi}.

Add srandi in Oi = Oi ∪ {srandi} at positionj. Figure 2
exemplifies the ”window”-based crossover operator by giving
the wireless sensor network’s interpretation of the extreme
subproblem withλ1 = 1.

Fig. 2. Example on the problem specific ”window-based” crossover operator

3) Mutation: Mutation operator [10] maintains the diversity
of the population by randomly modifying the genes of a
chromosome based on a mutation rate,mrate. When a gene
i is to be modified, a new(xi, yi) and Ri

c are randomly
chosen based onλi. If λi is high, then(xi, yi) is chosen
such thatdiH ≤ maxRc/2] and Ri

c ∈ [minRc, maxRc/2]
to support dense deployment andflf , otherwise,(xi, yi) is
chosen such thatdiH > maxRc, xi < xmax, yi < ymax and
Ri

c ∈ [minRc, maxRc] to support spread deployment andfcr.
ParametersminRc andmaxRc is the minimum and maximum
possibleRc assignment.

Note that our algorithm can adopt other kind of genetic
operators with minor changes in the algorithm’s design.

E. Local Search: Repair, Improvement and Power Assignment

As mentioned earlier, MOEA/D is suitable on using simple
scalar subproblem techniques for locally improving and/or
repairing a solution, i.e. Local Search (LS) [6].

1) Repair: Repair heuristic increases the sensors individ-
ual utilization in a particular topology. Since, there are no
constraints and no infeasible solutions in DPAP, the repair
heuristic checks if a sensori is located: Case #1) close to
H , i.e. di,H < dmin and/or Case #2) close to another sensor
j, i.e. di,j < dmin, where dmin = 1. In both cases, the
solution is considered inefficient and needs repairing (since
sensors of Cases #1 or #2 have limited chances to provide
extra load balancing and/or cover any uncovered regions in
A). The repair heuristic randomly generates a new location
(randx, randy) for sensori. If λ is high then,i is relocated
aroundH , i.e. randx ∈ [0, maxRc] andrandy ∈ [0, maxRc]

such thatdiH ≤ maxRc, otherwise,i is relocated sparsely,
i.e. randx ∈ [0, xmax] and randy ∈ [0, ymax] such that
diH > maxRc. The repaired solutionX ′

R is then forwarded
for improvement. The encoding representation of section III-
B is proven beneficial for the repair heuristic because of the
chromosome sorting (inefficient sensors can be tracked with
less computational effort).

2) Improvement: Improvement heuristic is composed by
two steps. Each solution should follow one of these two steps
according to itsλ coefficient and a random variable,rand.
Each step favors one of the two objectives under consideration.
If rand < λ then Step 1 is invoked, ifrand ≥ λ then Step 2
is invoked. The two steps work as follows:

Step 1 - Improves lifetime:refers to the subproblems which
require highflf . Hence, the goals of this heuristic are to design
dense topologies, to increase load balancing and/or decrease
latency. This is attained as follows: LetX i

R be the repaired
solution of subproblemi with N sensors deployed inA. Divide
A into four equal spaces. Find the space with the highest
density, (highS, with high and unbalanced traffic load) and
the space with the lowest density, (lowS). Select the sensor
j ∈ highS which causes the highest latency. Relocatej in
lowS such that it directly communicates withH .

Step 2 - Improves coverage:is mainly invoked on subprob-
lems which prefer highfcr. Therefore, the sensors need to be
placed as spread as possible. This is achieved, by withdrawing
all sensors as far asmaxRc/2 away from their farthest
neighbor, starting from the sensors closer toH . Hence, the
sensors are spread inA without worrying for disconnections
and with increase probability of covering uncovered areas and
connecting isolated sensors. Isolated sensors are the sensors
placed far away and cannot find a route towardsH (mainly
because of the genetic operators). Connecting an isolated sen-
sor ensures that a previously uncovered area will be covered,
sinceRs ≤ maxRc/2.

Note that, whenλi ≈ (1−λi) there is a high probability that
both steps are invoked to a subproblemi in different genera-
tions giving a hybrid of the two improvements. The improved
solution,X i

I is then forwarded for power assignment.
3) Power Assignment:The main focus of the power assign-

ment heuristic is load balancing. As it is mentioned earlier, the
total energy consumption of a sensori is strictly related to its
Pi and the number ofk-bit data it transmits (i.e. traffic load).
So, each sensor should balance its traffic load through multiple
routes and limit its transmission power at the same time.

Figure 3 exemplifies the power assignment heuristic: (Step
1, left) Sensor4, which is far away fromH(d4H > maxRc),
increases its initial transmission range (R4

c = avgRc =
maxRc/2, indicated by a solid circle) to the maximum possi-
ble (R4

c = maxRc, indicated by a dotted circle). This results
to more alternative paths, i.e.4, 2 and 4, 3, and a balance of
the traffic load forwarded by4, alleviating sensor1 for several
cycles. Moreover, it is evident that all four sensors are using
more transmission power than the necessary to reach their
farthest neighbor. (Step 2, right) Sensors 1,2 and 3 farthest
neighbor isH , so all three sensors decrease theirRi

c and



Fig. 3. Power Assignment heuristic

consequently theirPi at the level they can reachH , i.e.
Ri

c = di,H and Pi = (Ri
c)

α where i = 1, 2, 3. Meanwhile,
sensor4 is not necessary to transmit withR4

c = maxRc.
Since, with P4 = (R4

c)
α, whereR4

c = d4,3 < maxRc, it
reaches its farthest neighbor2, keeps all its alternative paths
for load balancing and consumes less transmission energy.

F. Population Update and termination criterion

The population update of MOEA/D is composed by three
phases. (I) The Internal Population(IP ) update phase.IP
keeps all the best solutions found so far for each subproblem,
|IP | = m. If gi(X

′

i|λi) > gi(Xi|λi) then IP ∪ {X ′

i} and
IP/{Xi}, otherwiseXi remains inIP . (II) The neighboring
solutions update phase. The new solutionX ′

i is compared
with its T closest neighbor best solutionsj found so far. If
gj(X

′

i|λj) > gj(Xj |λj), ∀j ∈ 1, ..., T , then IP ∪ {X ′

i} and
IP/{Xj}, otherwise,Xj remains inIP . (III) The external
population (EP ) update phase. PopulationEP stores all
the non-dominated solutions found so far during the search,
EP = EP ∪ {X ′

i}, if X ′

i is not dominated by any solution
Xj ∈ EP andEP = EP/{Xz}, if X ′

i ≺ Xz .
At the end of each generation the termination criterion is

checked to decide whether it is time to stop the search. In this
paper the maximum number of generations,genmax, is used.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of MOEA/D is compared with MOGA
on several network instances (e.g varyingA = 10000m2 −
90000m2 with fixed density and varyingN = 10 − 500
with fixed A) in terms of quality of solutions in the PF
and convergence speed using the same function evaluations
(f.e. = 120 × 250 = 30000). In this paper, due to page
limit, we just present the results of the network instance
proposed by [9] using the same parameter settings for fair-
ness:A = 10000m2, N = 10, a = 2, Rs = 20m and
Rc = Rs. Additionally, for the DPAP we have used a radio
dissipation of Eelec = 50nJ/bit for the circuitry energy
consumption andǫamp = 100pJ/bit/m2 for the transmitter
amplifier [13]. In MOEA/D,Rc ∈ [1, 40](= [minRc, maxRc]
is calculated using the power assignment heuristic. Moreover,
the algorithm’s parameter settings are:m = 120, crossover
rate crate = 1, mrate = 0.1 and genmax = 250. The two
parameters considered only by MOEA/D are the number of

subproblemsm = |IP |, and the neighborhood sizeT = 2,
since a largeT may affect the diversity of the population.

Figure 4(a) shows: (I) the tradeoffs between the two ob-
jectives and how they are competing against each other with
a high degree negative correlation of around−0.88. On one
hand, the design space of a WSN optimization problem is
highly non-linear because of the communication connectivity
of the sensors. A small change in the network may cause
disconnections or partitions of the network and so big changes
in both objective functions. This is the reason why the results,
i.e. PF in Figure 4(a), are not continuous. On the other hand,
at the top and bottom of MOEA/D ’s PF there are similar
lifetime solutions. The similarity of these solutions is due to
the power assignment heuristic. Specifically, when sensori
is shifted backwards from its farthest neighborj, the power
assignment heuristic increases itsPi to avoid loosing its path
towardsH . This results to a higherEt(k, dij) and so a lower
flf , but at the same time it slightly increasesfcr. Therefore,
two very similar non-dominated solutions are designed.

(II) The superiority of our approach in terms of quality
of solutions in the PF. All non-dominated solutions obtained
by MOGA are dominated by MOEA/D. (Note that, MOGA’s
PF is very similar with the one provided by [9] in terms of
its trend and spread of solutions. The small difference that
appears in the quality is mainly because of the difference in
the system model.) MOEA/D has an advantage, of around 12%
of coverage over MOGA for the topologies having the same
lifetime and a lifetime increase of 18% in average, for the
solutions having the same coverage. To be more specific, we
decoded and zoom-in two non-dominated solutions, one from
each algorithm, giving the same coverage. The solutions (a)on
MOGA’s PF and (b) on MOEA/D’s PF are giving afcr = 66%
and a lifetime difference aroundflf(b) − flf(a) = 20%, i.e.
flf(a) = 72% and flf(b) = 92%. The reason is given by
Figure 4(b). During the simulations run we have located the
sensor consuming the more energy supply per cycle for each
algorithm. This was the same sensor which finally depleted
its energy supply first. We are illustrating the per cycle energy
consumption of the sensor which is responsible for the lifetime
of each (a) and (b) non-dominated topologies.

In both cases, the particular sensors of topologies (a) and (b)
start with an initial battery supply ofE = 0.25J . While the
network is ”running”, it is evident that, sensor of (a) consumes
more energy per cycle than sensor of (b). Specifically, sensor
of (a) spends its whole energy supply in 7299 cycles, with 72
e−7J more energy per cycle compared to sensor of (b) which
spends the same amount of total energy supply in 9051 cycles.
This indicates that MOEA/D with a fixed number of sensors
in a fixed area can provide the same coverage as MOGA, but,
with much higher lifetime. This is mainly due to the following
reasons: 1) MOEA/D handles each sub-problem individually,
by using problem specific heuristics, and at the same time it
absorbs any available beneficial information from the neigh-
borhood. For example, the subproblems dedicated to lifetime
(coverage), use the problem specific operators and heuristics
to obtain high quality lifetime (coverage) fitness and at the
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Fig. 4. MOEA/D v.s.MOGA

same time they absorb all the necessary information from the
neighborhood for increasing coverage (lifetime). 2) The high
load balancing that the problem specific heuristics provideto
all solutions in MOEA/D’s PF compared to those in MOGA’s
PF. Similarly, for cases with the same lifetime, MOEA/D
provides higher coverage. The reason is that, MOEA/D can
spread the sensors without being affected by the increase of
latency and consequently the increase of relay data since it
provides adequate load balancing to ease theflf ’s decrease.

Figure 4(c) shows three PFs for each algorithm provided
after a particular number of function evaluations,f.e., for
comparing the methods population initialization and conver-
gence speed. The first PF of each algorithm shows the initial
population, i.e.f.e. = 120. It is evident, that the initial
solutions provided by MOEA/D are of higher quality than
those provided by MOGA. This proves the effectiveness of
our problem specific population initialization(section III-C)
compared to the random approach adopted by MOGA, giving
about 15% higher quality of solutions.

The second PF is given forf.e. = 15 × 103 (∼125
gens, the middle of evolution) and the last PF forf.e. =
30 × 103 (∼250 gens, the end of evolution). In both cases
and consequently for the whole evolution, MOEA/D provides
high quality PFs faster. MOGA needs15×103 f.e. to provide
a similar quality on its top half PF as MOEA/D(f.e =
120). MOGA(f.e. = 15 × 103) bottom half PF has higher
quality than MOEA/D(f.e = 120) but much less than
MOEA/D(f.e. = 15×103). However, both algorithms indicate
a high convergence speed in the initial 125 generations and an
increase of around 25% in quality of solutions. The conver-
gence speed of the last 125 generations is not as high as the
initials’. The decrease on the convergence speed is expected,
since it is much more difficult to increase the quality of the
existing non-dominated solutions and/or to obtain new, as the
number of generations grows. However, in the last 125 gens
MOEA/D gives an average increase on the quality of existing
non-dominated solutions of 3%, where MOGA gives 0.05%
and MOEA/D provides 3 new non-dominated solutions, where
MOGA provides 2. Note that, similar conclusions were drawn
for all network instances.

V. CONCLUSIONS

In this paper a new Deployment and Power Assignment
Problem (DPAP) is formulated as a MOP. Our motivation was
to provide a diverse set of high quality solutions for the DPAP
in the absence of any prior knowledge on the objectives pref-
erence to facilitate a decision maker’s choice. An MOEA/D-
LS algorithm is designed and showed its superiority against
MOGA in terms of quality of solutions and convergence
speed. In the future, we intend to add more constraints (e.g.
connectivity) on the DPAP to increase its realizability.
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