Problem-specific Encoding and Genetic Operation
for a Multi-Objective Deployment and Power
Assignment Problem in Wireless Sensor Networks

Andreas Konstantinidis, Kun Yang and Qingfu Zhang
School of Computer Science and Electronic Engineering
University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK

{akonst, kunyang, qzhah@essex.ac.uk

Abstract— Wireless Sensor Networks Deployment and Power (i.e. without any problem knowledge) which may force the
Assignment Problems (DPAPs) for maximizing the network cov  evolutionary approaches into unnecessary searches and de-
erage and lifetime respectively, have received increasiraftention structive mating. Therefore, problem specific operatosikh

recently. Classical approaches optimize these two objeets . . . .
individually, or by combining them together in a single objective, be designed for MOEAs to direct the search into promising

or by constraining one and optimizing the other. In this pape, ~areas in the search space and to provide high quality sokitio
the two problems are formulated as a multi-objective DPAP Designing a problem specific operator or heuristic, to bénefi
and tackled simultaneously. Problem-specific encoding repsen- the MOP as a whole, is difficult. Hence, the decomposition

tation and genetic operators are designed for the DPAP and ; ; At
a Multi-Objective Evolutionary Algorithm based on Decompo- of the MOP into many single objective subproblems [7],

sition (MOEA/D) is specialized. The multi-objective DPAP § Which are optimized simultaneously by using neighborhood

decomposed into many scalar subproblems which are solved information and simple scalar optimization strategies) ba
simultaneously by using neighborhood information and netwrk a promising technique. The difficulty on designing problem

knowledge. Simulation results have shown the effectivenesf the  gpecific genetic operators for a decompositional MOEA is
proposed evolutionary components by providing a high qualy {4t each subproblem has a different objective preferande

set of alternative solutions without any prior knowledge onthe . . .
objectives preference, and the superiority of our problemspecific requires a different treatment. Therefore, the geneticaipes

MOEA/D approach against a state of the art MOEA. should adapt to the requirements and the objective preferen
of each subproblem dynamically during the evolution.
l. INTRODUCTION In [8] we have investigated the multiobjective determiiist

Two of the main network configuration requirements ipre-Deployment and Power Assignment Problem (DPAP).
Wireless Sensor Networks (WSNs) [1] topology designs arBPAP is typical in applications that invoke a limited number
(1) high quality location assignment (deployment [2]) andf expensive sensors, where their operation is signifigantl
(2) energy efficient power assignment [3]. Several appreschaffected by their position and communication. Besides, we
have been proposed for the deployment and power assignnieamte briefly introduced an approach relying on the Multi-
problems for maximizing the coverage [4] and lifetime [5} obObjective Evolutionary Algorithm based on Decomposition
jectives, respectively. Few approaches, however, havdethc (MOEA/D) and we have shown its superiority against a widely
the two problems at the same time, such as [6]. Even thougised MOEA. In this work, we describe and illustrate the new
the latter approaches optimize the objectives indiviguat encoding representation and the problem specific genetic op
by combining them into a single objective, or by constragnineration designed specifically for the DPAP and adapted to the
one and optimizing the other, which often results on igr@prilfMOEA/D framework. We show the necessity of our encoding
and losing "better” solutions. and genetic operators by comparing them with conventional

The conflicting correlation of the WSN’s coverage andases. Finally, we test the strength of our problem-specific
lifetime objectives directs to a Multiobjective Optimikai MOEA/D approach against the state of the art in MOEAs, the
Problem (MOP) [7] formulation for analysis of the objecgve Non-dominated Sorting Genetic Algorithm Il (NSGA-II) [9].
trade-offs [8]. In MOPs, all objectives are considered ¢qud
there is not a single solution to optimize them at the same.tim
Hence, a set of optimal/nondominated solutions existsyknoA- System Model
as the Pareto Front (PF) [9]. Therefore, classical methodsConsider a 2-D static WSN formed by: a rectangular sensing
are not applicable in such complex, non-linear problems aadea A, a nhumber of homogeneous sensdfsand a static
the adaptation of Multi-Objective Evolutionary Algoritem sink H, with unlimited energy, placed at the center4fThe
(MOEAS) [9], which poses all the desirable characterishics sensors are responsible to monitor and periodically remort
this type of problems, can be proven beneficially. event of interest toH. Hence, each sensér must be able

Conventional MOEAs, however, usually tackle real liféeo communicate (directly or via multiple hops through nearb
problems (e.g. the above WSN problem) as a "black” beensors) withi. We assume a perfect medium access control

Il. PROBLEM DEFINITION



and adopt the simple but relevant path loss communicatisensor; depletes its energy suppl. The lifetime objective
model as in [6]. In this model, the transmit power level thak(X) is evaluated as follows:

should be assigned to a sengdo reach a sensqris P, = Algorithm: Lifetime Evaluation

B x di;, wherea € [2,6] is the path loss exponent atd= Step 0: Sett:=1; E;(0) := E, Vj € {1,..,N};

1 is the transmission quality parameter. The energy loss duestep 1: For all sensorsj at each time interval do

to channel transmission i&;, di; is the Euclidean distance Step 1.1:UpdateE; (t) according to Eq. 1;

between sensors and j and R, = d;; is i’s transmission Step 1.2:Assign each incoming link of sensgra

range. The calculated power assignments are considetéd sta weight equal toF; (t);

for the whole network’s lifetime. The residual energy of sen Step 1.3:Calculate the shortest path frojrto H;

i, at timet, is calculated as follows: Step 2: If 3 j € {1,..., N} such thatE;(t) = 0 then stop
and set:

Ei(t) = Ei(t —1) = ((ri(t) + 1) x Py x amp) (1)
_ _ . L(X) = t; (3)

wherer;(t) is the total traffic load that senséreceives and
relays towards att (the "+1” is the data packet generated Elset =t+1, go to step 1;
by sensor; to forward its own data information) andmyp The same algorithm can be easily modified to con-
is the power amplifier's energy consumption. Note that, ttsider different energy models and routing algorithms (e.g.
energy consumed by the transceiver electronics, as wefbas,geographical-based [10] routing algorithms).
_recept|0n (_amd generation of data are considered negligiide . 1ll. THE PROPOSED PROBLEMSPECIFIC EVOLUTIONARY
ignored, since we assume t_hat the sensor nodes commun|cate COMPONENTS INMOEA/D
through long transmission distances. Thus, the transmiepo s
consumption is the dominant parameter on the total energy Briefing on MOEA/D
consumption [6]. The MOP can be decomposed inte subproblems using

For sensing purposes and simplicity, we assume thatany technique that constructs aggregation functions, they.
is composed by rectangular grids of identical dimensioWg¥eighted Sum Approach [7]. Then, a subproblemwith a
centered atz’, ') and we adopted a "binary” sensing modeiveight coefficient\’ can be defined as:
[4]. A grid at (', y') is covered, denoted by(z',3') = 1, if it irviiney v i i i
falls within a(sensgr’s sensing rangg, otr?g(rwiseg)(x’, y') = maz g'(X'A) = NL(XT) + (1 = A)Co(XT)
0. We consider unit-size grids, which are several times small Thereinafter, the Internal PopulatiofpP (stores the best
than R, for a more accurate placement [4]. solutions found for each subproblem during the search) is
randomly initialized. ThenD? solutions are generated using

B. Problem formulation the genetic operators, wheie= 1 to m, and an improvement

The DPAP can be formulated as a MOP, heuristic is applied on each’ to produceX®. In the update
Given: phase,/P/{O"} and IP U {X'}, if g;(X'|\)) > ¢°(O*|\),

o A: 2-D plane of sizer x y. otherwise O remains inIP. The neighborhood of{? (i.e.

o N: number of sensors to be deployed4n the solutions of thel" closest subproblems afin terms of

o FE: initial power supply, the same for all sensors. their weights{\!,--- , \™}) is then updated. If’(X¢|\/) >

« R, sensing range, the same for all sensors. g’ (O7|N), then IP/{O’} and IP U {X'}, otherwise, O’
Design variables remains in/ P, wherej € {1,...,T}. The external population

(EP) (stores all the non-dominated solutions found so far
during the search) is finally updated&;P = EP U {X'},
I - L if X? is not dominated by any solutio®’ ¢ EP, and
Objectives Maximize tr_le covera_géjv.(X) and the lifetime EP — EP/{07}, for all 07 dominated byX. The search
L(X) of a network design (solutionX: ‘ ﬂ defined ber of iom
The network coverag€'v(X), defined as the percentageS Ops alter a pre-getined number of generatignsyqa. .
. . . One of the main advantages of MOEA/D is that, appropriate
of the covered grids over the total grids df is evaluated as . I
scalar strategies can be adapted specifically to each dubpro

o L; : the location of sensoj.
« P; : the transmission power level of sengor

follows: lem 7. Traditionally, it is hard to design an operator and/or
z Y heuristic to benefit all subproblems, since they have differ
Co(X)=[>_ > gl y)]/(z xy) (2) objective preference and they have to be solved simultane-
z/=0y'=0 ously, in a single run. In order to overcome this difficultye w
where,z x y is the total grids ofd and have developed problem specific operators and heurissicgri
pon ) i3 e N dig; )y < Rs by each subproblenis preference (weight coefficient) and
9@ Y) =13 o otherwise adapted to its requirements. Thé parameter is used as a
is the monitoring status of the grid centeredat, v'). guide to the operators and heuristics for adjusting theeadegr

The network lifetime is defined as the percentage of tled coverage and lifetime and therefore designing different
duration from the deployment of the network to the cycle preference WSNs. MOEA/D [7] proceeds as follows:



Input: e network parameters4, N, E, Ry); j in Y are sorted based on their distance Hg i.e. d;,
e m : population size and number of subproblemswhere senson is the closest and sensdy¥ is the farthest

e T': neighborhood size; sensor towardg¢{, respectively. This results on having all the

e uniform spread of weighta!, ..., \™; sensors that are densely deployed arofhdt the beginning

e the maximum number of generationgn.,q.; of each chromosome and the sensors that are spread away
Output: e the external populationF P = {X*}. at the end. Thereinafter, each sengois assigned a power
Step 0-Setup:SetEP := (); gen := 0; IP := {); level P} proportional to R:/ € [1,mazR.] (where 1 and
Step 1-Decomposition: Initialize m subproblems, i.e. maxR,. are the minimum and maximum possible transmission

maxg’ (YY), fori=1,...,m. ranges, respectively) such that it reaches its closeshheig
Step 2-Initialization: Randomly generate an initial internalsensor, e.gk, wherek < j—1. A "dense-to-spread” encoding

population/P = {Y! ... [ Y™}, representation is designed as follows:
Step 3: For each subproblem= 1 to m do Input: A setY of size N;

Step 3.1-Genetic Operators:Generate a new so- Output: An ordered setX of size V;
lution O by using selection, crossover and Step 1: for each subproblem do

mutation operators. Calculate the order i to get X¢;
Step 3.2-Improvement: Apply a problem specific Step 1.1:foreach sensof in X* do
repalrllmprovement heuristic oft* to pro- (d; ;) if j=1,d;, <mazRe
duce X*.
Step 3.3-Update Populations: Update /P, EP pi— if & is j's closest sensor
. j > L
gnqtrt]hs(l; closest neighbors of subproblem (din)® k<jPi#0
w2 o dj. < mazR,
Step 4_-Stopp|ng criterion:If stopping criterion s satisfied, « In Step 1, the ordering facilitates our problem-specific
i.e. gen = genma.., then stop and outputr P,

genetic operators (will be introduced shortly) and im-
provement heuristics [8].

« InStep 1.1, each senspis assigned the smallest possible
PJ?' following the concept that multiple short hops are
more beneficial than a long hop [6] (e.g. in applications
where N is small and the sensor nodes communicate
through long transmissions). The reason is that

i (t) X dfy, > 7ri(t) x dfy +ri(t) x dj,

sinced;;, > d;; + di.
« Initially PJ?' = 0 for all sensorsj. So, after step 1.1 if a
sensor;j hasPJ? = 0 then is considered disconnected.

otherwisegen = gen + 1, go to Step 3
In this paper, the focus is on the encoding representatidn an
the problem-specific genetic operators, which are destribe
and illustrated below. More details about our DPAP-specific
local heuristic of MOEA/D can be found in [8].

C. Genetic Operators

s | s || e ] ow | s [ SRR This subsection introduces the proposed genetic operators
xt[@wmit [ wwie: [ = [ = ] enem P | o Py | 1) Weight-tournament selection operatas. responsible to
Gomol | Gz | = | o« | Geem | Gemn emulate the survival of the fittest concept and choose high
Dense Spread quality solutions from the current population to be incldde
for reproduction. In this paper, we have designed a tourmame
selection operator which is simple and fast. Our weight-
tournament selection has two major differences compared to
the conventional:
« the solutions selected to compete in a subprobi&m
The encoding represenation is a ¥étof size N, composed tournament are the solutions of theclosest subproblems
by the DPAP’s design variable vectors: of i in I P, which can also be called*’s neighbors.
Vi {(L1 P), - (L, Pi)} « X's neighbqrs, e.gx’ a_nd_ X’“,_are co_mpeting_ in's
- A1) N SN tournament, in terms oh’, ignoring their own)\’ and

Fig. 1. Encoding Representation

B. Encoding Representation

where, Ak, their Pareto domination and/or ranking.
L§ — (Izﬂ, y;'% location of sensor j Figure 2(a) exemplifies a tournament for subproblerof
. sizes; = 4. Solutions, e.g{ X?, X3, X4, X°}, are competing
Pj, transmit power level of sensor j in terms of \'. In this case, a neighbor solutioi” is better

. A
For the benefit of our approach the set is ordered and nan%gan a neighbor solutior, if

"dense-to-spread’representation as follows: the sensor nodes L(X?) + (1 — A)Cv(X?) > N L(X?) 4+ (1 — \H)Cou(X?)
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Fig. 2. The problem specific genetic operators

Our weight-tournament selection operator relies on one of uniformly selected fromv’ to prevent disconnections of
the core ideas of MOEA/D, i.e. two neighbor solutions in the  the sensors which are far away frafh
weight space should be similar to each other in the decisifiyure 2(b) exemplifies the WSN interpretation of our
space. Hence, a solutioi* is more likely to absorb good crossover operator on the extreme subproblem
topological information (i.e. efficient sensor locationsda 3) Adaptive mutation operatorThe mutation operator [5]
transmission power levels) from a neighbor solutiéfithan a maintains the diversity of the population by randomly modi-
solution, e.g X ™, which is far away in the weight space, evelfying the genes of a chromosome based on a mutation rate,
if X™ is a non-dominated solution. The selected solutions,,..;.. Our mutation operator treats each subprobldmased
denoted asPri and Pr} parent solutions, are then forwardedn its A\’. If \? sustainsL(X?) then a sensoy is modified
for recombination to the crossover operator. with "local” mutation. That is, provide a minimum shift from

2) Crossover:is the operator that recombin&s and Pr, its current position £; & 1,y; + 1), trying to either slightly
to produce one, or more offspring, e@¢, with probability increaseCv(X?) with minimum increase oiPZ or increase
crate- The "window”-based crossover determines a "windowL(X?) by decreasingd;z, assuming thatk |s j's closest
of size neighbor. In any casg;s shift should benefif{*.

If \* sustainsCv(X*), thenj is modified with "global”
mutation, i.ej is re-deployed anywhere in a sub-ar¥ac A,
wheremin := N andmaz := 2 x N, to direct the search into Which is defined as follows:

w' = min + (mazx —min) x (1 —\;)

promising areas in the search space for each parti¢ut@aor Tmin = (TH — |2xg — 2]) — mazR.;
"window” -based crossover works as follows: Tmaz = (TH + |zH — T)]) + mazR,;
Input: Two setsPri and Pri of size N; Ymin = (yu — lym — y;1) — mazRe;
Output:A set O’ of size N; Ymaz = (Yu + lyn — y;|) + mazRe; (4)
Step 0:SetO! = 0;Pri , = 0 T' = Tmaz — Tmin;
For i =1tom do y = Imaz Trnin;
Step 1: Merge Pri and Pri and create a "dense- Al =a' xy
to-spread” set ofPrf , of length2 x N; where (z,in, ymin) are the coordinates of the left bottom
Step 2: Calculatew’; corner of A’ andz’, 3/’ are the width, height ofl’ respectively.
Step 3Randomly generateand € [1, w']; Sensorj is then assigned &/ = (d;;)*, assuming thak
If there exists a sensennd in Pri , then is j's closest neighbor. Usually, wheh ~ 0 then A’ ~ A.

Step 3.1Pr} , \ {rand}; O" U {rand}; Figure 2(c) illustrates our adaptive mutation operatoraluhi
Step 3.2:1f O”s length is not equal t&v  proceeds as follows:
goto Step 3 o.w. stop; Input: A setO" of size N.
« When )\ parameter is large anfi(X?) favors Cv(X?), Output: A modified setO" of size N.
the "window” is small such that the sensor nodes that Step O:If A > 0.5 then goto Step 1, o.w. goto Step 2

are going to be added if? are as close tdl as possible Step 1: Uniformly randomly sete’; € [z; — 1,2; + 1];
with small transmit powers to provide higher lifetime. y; €ly; — Ly +1]; Pj' =P £1;

« When \ decreases, an@v(X?) starts favoringL(X?), Step 2: Calculate A’ (Eq. 4); Uniformly randomly set
w' gradually increases to give the chance to the sensors (z),y;) € A RY € [0,maxR.]; P' = (RY),

that are spread inl to be added ir0?, and therefore to  Note that our algorithm can adopt other klnd of genetic
provide better coverage. In this case, tNesensors are operators with minor changes in the algorithm'’s design.



TABLE Il

IV. EXPERIMENTAL RESULTS AND DISCUSSION
COMPARISON IN TERMS OFC,etric AND Dppetric

TheT goal of our experimental s_tt_Jdies is:_ 1) to test th(_e A A | AQ) | AG) | A@) | AG)
effectiveness of our problem specific encoding and genetic Value: | 089 | 0.76 | 053 | 0.76 | 0.501
operators, and 2) to test the strength of our problem-specifi c:_ C(115) 0(2,01) C(215) C(3;)2)
MOEA/D based approach against NSGA-II in various network VaC'L,‘e' 356'“’ 23.0% | 69.2% | 4.7%

: > o : . BAH | CEI | CE5 | CGA)
instances, giving the trade offs of our objectives and aetari Value: | 36.3% | 23.0 | 46.8% | 41.5%

of network design choices.

TABLE | .
THE NETWORK INSTANCES
Instances| A (m2) | Density (sensor pem?2) 7
Inst.0 10000 0.003
Inst.1 10000 0.0032 R
Inst.2 40000 0.0032
Inst.3 90000 0.0032 .
Inst.4 10000 0.0015 5
Inst5 | 10000 0.002 g
Inst.6 10000 0.006 £ 4

w

Table | shows various network instances. Instances 1
represent networks of differerts and same density (i.e. N/A).
Instances 4-6 represent networks with different densities
the sameA. In all experiments we have used the following
network parameter settinge. = 2, Ry = 10m, amp = 0
100pJ/bit/m? [10], maxrR. = 20m. Moreover, we have
used the following algorithm’s parameter settings:= 120,

Crate = 1, Mpate = 0.1, s¢ = 10 and gen,nq = 250. The
parameter considered only by MOEA/D & = 2, since a
large T may affect the PF’s diversity.

2l

14 g LR v
0 0.1 0.2 0.3 0.4 05 0.6 0.7
Coverage

Fig. 3. Comparison of various genetic components on Inst.0

B’s PF (i.e. the smaller the better)(A) shows the diversity

TABLE Il of the PF obtained by an algorithm A, i.e. the spread/variety
MOEA./D BASED ALGPRITHMS WITH !DIFFERENT GENETIC COMPONENTS of the network design choiced = 0 is the maximum, which
ﬁ:g"l”thm ggﬁg‘i‘;g ?g&?ﬁg‘r’;‘em SLOSE%Yﬁ{ g;’:%i‘)%‘ means that the solutions are evenly spread along the PF.
Alg.2 Dense-spread Tournament | One-point | Random It is evident, from both Figure 3 and th€ metric in
Alg.3 Dense-spread A-based Tour.| One-point | Random Table 1l that Alg. 5 obtained the highest quality on the
Alg.4 Dense-spread A-based Tour.| "Window” | Random network designs. Alg. 2 provides about 500 sec. lifetime
Alg:5 Dense-spread A-based Tour.| "Window” | Adaptive and 1% coverage increase compared to Alg.1. Alg.3 in turn

provides an increase of 3500 sec. of lifetime and 2% coverage

Table 1l shows five algorithms with different genetic comin average. Alg.4 further increases the average solutif@s |
ponents combinations. The first algorithm (i.e. Alg. 1) i§me and coverage of around 2000 sec. and 10% respectively.
composed by the "default” operators which are simple arkdnally, Alg.5 provides an increase of 250 sec. lifetime and
popular: random encoding representation (sensors aredaddel% coverage, in average, compared to Alg.4.
randomly inX), tournament selection operator [5] (initialize a The A metric in Table Ill, however, shows an increase on
tournament of random solutions frof#), one-point crossover the diversity of the solutions obtained by Alg.1 to 3. Theediv
operator [5] and random mutation operator (randomly geaeraity is then suddenly decreased from Alg.3 to Alg.4 becatise o
(z},y}) and P! for sensori, s.t. z; € [0,z], y; € [0,y] and the problem specific crossover operator. The reason isdhat,
R € [1,maxRc]. The rest of the algorithms replace some diwindow"-based crossover increases the solutions quadity
the default operators with our problem specifics’ to invgtie it converges into local optima solutions easily, which fesu
their necessity. The last algorithm (i.e. Alg. 5) includds aon a decrease of the PF’s diversity. This drawback, however,
the problem specific genetic operators proposed in this woik eliminated by our adaptive mutation operator included in
as well as, our encoding representation. Note that, we haig.5. Alg.5 preserves the increase on the PFs quality sebie
investigated more combinations of the genetic componagats tby Alg.4 and, at the same time, maintains the diversity. Note
are not presented in this paper due to page limit. that, similar conclusions are drawn for all network insesic

Initially, we have compared the five algorithms, on network Thereinafter, we have tested the strength of our MOEA/D-
instance 0, in terms of quality of solutions in the RFraetric) based approach (Alg.5) against NSGA-Il on network instance
and diversity A metric [9]). C(A,B) measures the solutions inl-6. In all experiments, we have used the same number of
an algorithm A's PF dominated by the solutions in an algonith function evaluations (f.e) [8] for fairness. Our MOEA/Dgeal
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Fig. 4. Comparison of MOEAD (Alg.5) against NSGAII in var@umetwork instances

approach adopted the proposed problem-specific operatdrs and diversity of solutions in the PF. Thereinafter, simula-

NSGA-II the default operators. Figure 4 clearly shows thiéion evaluations have shown the superiority of the proposed
superiority of the proposed approach against NSGA-II iapproach against NSGA-II. Our motivation was to design a
quality of solutions in the PFs. In instances 1-3, MOEA/IDPAP-specific MOEA/D and to provide a diverse set of high

provides 20% more lifetime in network topologies with theuality WSN designs in the absence of any prior knowledge
same coverage ara$% more coverage for network topologieson the objectives preference. In the future, we intend to add
with the same lifetime, in average. constraints in DPAP to further increase its realizability.

In instances 4-6, MOEA/D provides network topologies
of 25% higher lifetime (for the same coverage) and 14%
higher coverage (for the same lifetime), in average, thaseh (1]
obtained by NSGA-II. Note that, NSGA-II with the default en- 2] M. vounis and K. Akkaya, “Strategies and techniques fode place-
coding and genetic operators does not provide any topaogie ment in wireless sensor networks: A survelgi3evier Ad Hoc Networks
with more than 50% coverage in any network instance. The, YOl 6. no. 4, pp. 621-655, 2007. ,

. . . E] P. Santi, “Topology control in wireless ad hoc and sensetworks,
reason is that, under the parameter settings and requitemen” acm computing Surveysol. 37, no. 2, pp. 164—194, 2005.
of the above DPAP, it is difficult to obtain high quality [4] X. Xuand S. Sahni, “Approximation algorithms for senstaployment,”
spread-like topologies without network knowledge, beeaus, A'E_Elfoﬁrsigﬁgﬁ}g’i;s o gg%‘?“ﬁ?ﬁ'.' Ec’:GHerr]](,)' 12 28(.)72hang, oy
the 'default’ genetic operators fall into destructive mgtand aware topology control for wireless sensor networks usirgmetic
unnecessary search. Thereupon, NSGA-II directs the search algorithms,” Elsevier Computer Communicatignsol. 30, no. 14-15,
into are_as in .the search spaqe with high Ql_Jality dense_lik‘%] )QF.LiZJZ?‘l_dZIZ.GL:\’/I;?aOJArta, “On the deployment of wirelessadback-
topologies which can be obtained more easily. Therefore, Iit" hayl networks, TEEE Transactions on Wireless Communicatiov!. 6,
is clear from Figure 4 that MOEA/D provides a more diverse no. 4, pp. 1426-1435, 2007.
set of solutions in all network instances giving more networ (7]
topologies than NSGA-II, without any prior knowledge on the
objectives preference, to facilitate the decision makehsice. [8]
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V. CONCLUSIONS

In this paper, an encoding representation and various igeneig]
operators were designed specifically for the multi-obyecti
DPAP in WSNs and a MOEA/D based approach is proposé#]
Initially, we have shown the necessity of incorporatingmark
knowledge in the genetic components in terms of quality



