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Abstract— Wireless Sensor Networks Deployment and Power
Assignment Problems (DPAPs) for maximizing the network cov-
erage and lifetime respectively, have received increasingattention
recently. Classical approaches optimize these two objectives
individually, or by combining them together in a single objective,
or by constraining one and optimizing the other. In this paper,
the two problems are formulated as a multi-objective DPAP
and tackled simultaneously. Problem-specific encoding represen-
tation and genetic operators are designed for the DPAP and
a Multi-Objective Evolutionary Algorithm based on Decompo-
sition (MOEA/D) is specialized. The multi-objective DPAP is
decomposed into many scalar subproblems which are solved
simultaneously by using neighborhood information and network
knowledge. Simulation results have shown the effectiveness of the
proposed evolutionary components by providing a high quality
set of alternative solutions without any prior knowledge onthe
objectives preference, and the superiority of our problem-specific
MOEA/D approach against a state of the art MOEA.

I. I NTRODUCTION

Two of the main network configuration requirements in
Wireless Sensor Networks (WSNs) [1] topology designs are:
(1) high quality location assignment (deployment [2]) and
(2) energy efficient power assignment [3]. Several approaches
have been proposed for the deployment and power assignment
problems for maximizing the coverage [4] and lifetime [5] ob-
jectives, respectively. Few approaches, however, have tackled
the two problems at the same time, such as [6]. Even though,
the latter approaches optimize the objectives individually, or
by combining them into a single objective, or by constraining
one and optimizing the other, which often results on ignoring
and losing ”better” solutions.

The conflicting correlation of the WSN’s coverage and
lifetime objectives directs to a Multiobjective Optimization
Problem (MOP) [7] formulation for analysis of the objectives
trade-offs [8]. In MOPs, all objectives are considered equal and
there is not a single solution to optimize them at the same time.
Hence, a set of optimal/nondominated solutions exists, known
as the Pareto Front (PF) [9]. Therefore, classical methods
are not applicable in such complex, non-linear problems and
the adaptation of Multi-Objective Evolutionary Algorithms
(MOEAs) [9], which poses all the desirable characteristicsfor
this type of problems, can be proven beneficially.

Conventional MOEAs, however, usually tackle real life
problems (e.g. the above WSN problem) as a ”black” box

(i.e. without any problem knowledge) which may force the
evolutionary approaches into unnecessary searches and de-
structive mating. Therefore, problem specific operators should
be designed for MOEAs to direct the search into promising
areas in the search space and to provide high quality solutions.
Designing a problem specific operator or heuristic, to benefit
the MOP as a whole, is difficult. Hence, the decomposition
of the MOP into many single objective subproblems [7],
which are optimized simultaneously by using neighborhood
information and simple scalar optimization strategies, can be
a promising technique. The difficulty on designing problem
specific genetic operators for a decompositional MOEA is
that, each subproblem has a different objective preferenceand
requires a different treatment. Therefore, the genetic operators
should adapt to the requirements and the objective preference
of each subproblem dynamically during the evolution.

In [8] we have investigated the multiobjective deterministic
pre-Deployment and Power Assignment Problem (DPAP).
DPAP is typical in applications that invoke a limited number
of expensive sensors, where their operation is significantly
affected by their position and communication. Besides, we
have briefly introduced an approach relying on the Multi-
Objective Evolutionary Algorithm based on Decomposition
(MOEA/D) and we have shown its superiority against a widely
used MOEA. In this work, we describe and illustrate the new
encoding representation and the problem specific genetic op-
eration designed specifically for the DPAP and adapted to the
MOEA/D framework. We show the necessity of our encoding
and genetic operators by comparing them with conventional
cases. Finally, we test the strength of our problem-specific
MOEA/D approach against the state of the art in MOEAs, the
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [9].

II. PROBLEM DEFINITION

A. System Model

Consider a 2-D static WSN formed by: a rectangular sensing
areaA, a number of homogeneous sensorsN and a static
sink H , with unlimited energy, placed at the center ofA. The
sensors are responsible to monitor and periodically reportan
event of interest toH . Hence, each sensori, must be able
to communicate (directly or via multiple hops through nearby
sensors) withH . We assume a perfect medium access control



and adopt the simple but relevant path loss communication
model as in [6]. In this model, the transmit power level that
should be assigned to a sensori to reach a sensorj is Pi =
β × dα

ij , whereα ∈ [2, 6] is the path loss exponent andβ =
1 is the transmission quality parameter. The energy loss due
to channel transmission isdα

ij , dij is the Euclidean distance
between sensorsi and j and Ri

c = dij is i’s transmission
range. The calculated power assignments are considered static
for the whole network’s lifetime. The residual energy of sensor
i, at timet, is calculated as follows:

Ei(t) = Ei(t − 1) − ((ri(t) + 1) × Pi × amp) (1)

whereri(t) is the total traffic load that sensori receives and
relays towardsH at t (the ”+1” is the data packet generated
by sensori to forward its own data information) andamp
is the power amplifier’s energy consumption. Note that, the
energy consumed by the transceiver electronics, as well as,for
reception and generation of data are considered negligibleand
ignored, since we assume that the sensor nodes communicate
through long transmission distances. Thus, the transmit power
consumption is the dominant parameter on the total energy
consumption [6].

For sensing purposes and simplicity, we assume thatA
is composed by rectangular grids of identical dimensions
centered at(x′, y′) and we adopted a ”binary” sensing model
[4]. A grid at (x′, y′) is covered, denoted byg(x′, y′) = 1, if it
falls within a sensor’s sensing rangeRs, otherwiseg(x′, y′) =
0. We consider unit-size grids, which are several times smaller
thanRs, for a more accurate placement [4].

B. Problem formulation

The DPAP can be formulated as a MOP,
Given:

• A: 2-D plane of sizex × y.
• N : number of sensors to be deployed inA.
• E: initial power supply, the same for all sensors.
• Rs: sensing range, the same for all sensors.

Design variables:
• Lj : the location of sensorj.
• Pj : the transmission power level of sensorj.

Objectives: Maximize the coverageCv(X) and the lifetime
L(X) of a network design (solution)X :

The network coverageCv(X), defined as the percentage
of the covered grids over the total grids ofA, is evaluated as
follows:

Cv(X) = [

x
∑

x′=0

y
∑

y′=0

g(x′, y′)]/(x × y) (2)

where,x × y is the total grids ofA and

g(x′, y′) =

{

1 if ∃j ∈ {1, ..., N}, d(xj ,yj),(x′,y′) ≤ Rs

0 otherwise
is the monitoring status of the grid centered at(x′, y′).

The network lifetime is defined as the percentage of the
duration from the deployment of the network to the cyclet a

sensorj depletes its energy supply,E. The lifetime objective
L(X) is evaluated as follows:

Algorithm: Lifetime Evaluation
Step 0: Set t := 1; Ej(0) := E, ∀j ∈ {1, ..., N};
Step 1: For all sensorsj at each time intervalt do

Step 1.1:UpdateEj(t) according to Eq. 1;
Step 1.2:Assign each incoming link of sensorj a

weight equal toEj(t);
Step 1.3:Calculate the shortest path fromj to H ;

Step 2: If ∃ j ∈ {1, ..., N} such thatEj(t) = 0 then stop
and set:

L(X) := t; (3)

Else t = t + 1, go to step 1;
The same algorithm can be easily modified to con-

sider different energy models and routing algorithms (e.g.
geographical-based [10] routing algorithms).

III. T HE PROPOSED PROBLEM-SPECIFIC EVOLUTIONARY

COMPONENTS INMOEA/D

A. Briefing on MOEA/D

The MOP can be decomposed intom subproblems using
any technique that constructs aggregation functions, e.g.the
Weighted Sum Approach [7]. Then, a subproblemi with a
weight coefficientλi can be defined as:

max gi(X i|λi) = λiL(X i) + (1 − λi)Cv(X i)

Thereinafter, the Internal Population,IP (stores the best
solutions found for each subproblem during the search) is
randomly initialized. ThenOi solutions are generated using
the genetic operators, wherei = 1 to m, and an improvement
heuristic is applied on eachOi to produceX i. In the update
phase,IP/{Oi} and IP ∪ {X i}, if gi(X

i|λi) > gi(Oi|λi),
otherwiseOi remains inIP . The neighborhood ofX i (i.e.
the solutions of theT closest subproblems ofi in terms of
their weights{λ1, · · · , λm}) is then updated. Ifgj(X i|λj) >
gj(Oj |λj), then IP/{Oj} and IP ∪ {X i}, otherwise,Oj

remains inIP , wherej ∈ {1, ..., T}. The external population
(EP ) (stores all the non-dominated solutions found so far
during the search) is finally updated,EP = EP ∪ {X i},
if X i is not dominated by any solutionOj ∈ EP , and
EP = EP/{Oj}, for all Oj dominated byX i. The search
stops after a pre-defined number of generations,genmax.

One of the main advantages of MOEA/D is that, appropriate
scalar strategies can be adapted specifically to each subprob-
lem i. Traditionally, it is hard to design an operator and/or
heuristic to benefit all subproblems, since they have different
objective preference and they have to be solved simultane-
ously, in a single run. In order to overcome this difficulty, we
have developed problem specific operators and heuristics rising
by each subproblemi’s preference (weight coefficientλi) and
adapted to its requirements. Theλi parameter is used as a
guide to the operators and heuristics for adjusting the degree
of coverage and lifetime and therefore designing different
preference WSNs. MOEA/D [7] proceeds as follows:



Input: • network parameters (A, N , E, Rs);
• m : population size and number of subproblems;
• T : neighborhood size;
• uniform spread of weightsλ1, ..., λm;
• the maximum number of generations,genmax;

Output: • the external population,EP = {X∗}.
Step 0-Setup:SetEP := ∅; gen := 0; IP := ∅;
Step 1-Decomposition: Initialize m subproblems, i.e.

maxgi(Y i|λi), for i = 1, ..., m.
Step 2-Initialization: Randomly generate an initial internal

populationIP = {Y 1, · · · , Y m};
Step 3: For each subproblemi = 1 to m do

Step 3.1-Genetic Operators:Generate a new so-
lution Oi by using selection, crossover and
mutation operators.

Step 3.2-Improvement:Apply a problem specific
repair/improvement heuristic onOi to pro-
duceX i.

Step 3.3-Update Populations: Update IP , EP
and theT closest neighbors of subproblem
i with X i.

Step 4-Stopping criterion:If stopping criterion is satisfied,
i.e. gen = genmax, then stop and outputEP ,
otherwisegen = gen + 1, go to Step 3.

In this paper, the focus is on the encoding representation and
the problem-specific genetic operators, which are described
and illustrated below. More details about our DPAP-specific
local heuristic of MOEA/D can be found in [8].

Fig. 1. Encoding Representation

B. Encoding Representation

The encoding represenation is a setY i of sizeN , composed
by the DPAP’s design variable vectors:

Y i = {(Li
1, P

i
1), · · · , (Li

N , P i
N )}

where,
Li

j = (xi
j , y

i
j), location of sensor j

P i
j , transmit power level of sensor j

For the benefit of our approach the set is ordered and named
”dense-to-spread”representation as follows: the sensor nodes

j in Y i are sorted based on their distance toH , i.e. djH ,
where sensor1 is the closest and sensorN is the farthest
sensor towardsH , respectively. This results on having all the
sensors that are densely deployed aroundH at the beginning
of each chromosome and the sensors that are spread away
at the end. Thereinafter, each sensorj is assigned a power
level P i

j proportional toRi,j
c ∈ [1, maxRc] (where 1 and

maxRc are the minimum and maximum possible transmission
ranges, respectively) such that it reaches its closest neighbor
sensor, e.g.k, wherek < j−1. A ”dense-to-spread” encoding
representation is designed as follows:

Input: A set Y of sizeN ;
Output: An ordered setX of sizeN ;
Step 1: for each subproblemi do

Calculate the order inY i to getX i;
Step 1.1:for each sensorj in X i do

P i
j =























(dj,H)α if j = 1, dj,h ≤ maxRc

if k is j’s closest sensor,
(dj,k)α k < j,P i

k 6= 0
djk ≤ maxRc

• In Step 1, the ordering facilitates our problem-specific
genetic operators (will be introduced shortly) and im-
provement heuristics [8].

• In Step 1.1, each sensorj is assigned the smallest possible
P i

j following the concept that multiple short hops are
more beneficial than a long hop [6] (e.g. in applications
where N is small and the sensor nodes communicate
through long transmissions). The reason is that

rj(t) × dα
jk > rj(t) × dα

jl + rl(t) × dα
lk

sincedjk > djl + dlk.
• Initially P i

j = 0 for all sensorsj. So, after step 1.1 if a
sensorj hasP i

j = 0 then is considered disconnected.

C. Genetic Operators

This subsection introduces the proposed genetic operators.
1) Weight-tournament selection operator:is responsible to

emulate the survival of the fittest concept and choose high
quality solutions from the current population to be included
for reproduction. In this paper, we have designed a tournament
selection operator which is simple and fast. Our weight-
tournament selection has two major differences compared to
the conventional:

• the solutions selected to compete in a subproblemi’s
tournament are the solutions of thest closest subproblems
of i in IP , which can also be calledX i’s neighbors.

• X i’s neighbors, e.g.Xj and Xk, are competing ini’s
tournament, in terms ofλi, ignoring their ownλj and
λk, their Pareto domination and/or ranking.

Figure 2(a) exemplifies a tournament for subproblem1 of
sizest = 4. Solutions, e.g.{X2, X3, X4, X5}, are competing
in terms ofλ1. In this case, a neighbor solutionX2 is better
than a neighbor solutionX3, if

λ1L(X2) + (1− λ1)Cv(X2) > λ1L(X3) + (1− λ1)Cv(X3)



(a) The weight-tournament selection operator(b) The ”window”-based crossover operator (c) The adaptive mutation operator

Fig. 2. The problem specific genetic operators

Our weight-tournament selection operator relies on one of
the core ideas of MOEA/D, i.e. two neighbor solutions in the
weight space should be similar to each other in the decision
space. Hence, a solutionX i is more likely to absorb good
topological information (i.e. efficient sensor locations and
transmission power levels) from a neighbor solutionXj than a
solution, e.g.Xm, which is far away in the weight space, even
if Xm is a non-dominated solution. The selected solutions,
denoted asPri

1 andPri
2 parent solutions, are then forwarded

for recombination to the crossover operator.
2) Crossover:is the operator that recombinesPri

1 andPri
2

to produce one, or more offspring, e.g.Oi, with probability
crate. The ”window”-based crossover determines a ”window”
of size

wi := min + (max − min) × (1 − λi)

wheremin := N andmax := 2×N , to direct the search into
promising areas in the search space for each particulari. Our
”window” -based crossover works as follows:

Input: Two setsPri
1 andPri

2 of sizeN ;
Output:A set Oi of sizeN ;

Step 0: SetOi = ∅;Pri
1,2 = ∅

For i = 1 to m do
Step 1: MergePri

1 and Pri
2 and create a ”dense-

to-spread” set ofPri
1,2 of length2 × N ;

Step 2: Calculatewi;
Step 3:Randomly generaterand ∈ [1, wi];
If there exists a sensorrand in Pri

1,2 then
Step 3.1:Pri

1,2 \ {rand}; Oi ∪ {rand};
Step 3.2:If Oi’s length is not equal toN

goto Step 3 o.w. stop;

• When λ parameter is large andL(X i) favors Cv(X i),
the ”window” is small such that the sensor nodes that
are going to be added inOi are as close toH as possible
with small transmit powers to provide higher lifetime.

• When λ decreases, andCv(X i) starts favoringL(X i),
wi gradually increases to give the chance to the sensors
that are spread inA to be added inOi, and therefore to
provide better coverage. In this case, theN sensors are

uniformly selected fromwi to prevent disconnections of
the sensors which are far away fromH .

Figure 2(b) exemplifies the WSN interpretation of our
crossover operator on the extreme subproblem1.

3) Adaptive mutation operator:The mutation operator [5]
maintains the diversity of the population by randomly modi-
fying the genes of a chromosome based on a mutation rate,
mrate. Our mutation operator treats each subproblemi based
on its λi. If λi sustainsL(X i) then a sensorj is modified
with ”local” mutation. That is, provide a minimum shift from
its current position (xj ± 1, yj ± 1), trying to either slightly
increaseCv(X i) with minimum increase ofP i

j , or increase
L(X i) by decreasingdjk, assuming thatk is j’s closest
neighbor. In any case,j’s shift should benefitX i.

If λi sustainsCv(X i), then j is modified with ”global”
mutation, i.e.j is re-deployed anywhere in a sub-areaA′ ∈ A,
which is defined as follows:

xmin = (xH − |xH − xj |) − maxRc;
xmax = (xH + |xH − xj |) + maxRc;
ymin = (yH − |yH − yj|) − maxRc;
ymax = (yH + |yH − yj |) + maxRc;
x′ = xmax − xmin;
y′ = xmax − xmin;
A′ = x′ × y′

(4)

where (xmin, ymin) are the coordinates of the left bottom
corner ofA′ andx′, y′ are the width, height ofA′ respectively.

Sensorj is then assigned aP i
j = (djk)α, assuming thatk

is j’s closest neighbor. Usually, whenλ ≈ 0 then A′ ≈ A.
Figure 2(c) illustrates our adaptive mutation operator which
proceeds as follows:

Input: A set Oi of sizeN .
Output: A modified setOi of sizeN .
Step 0:If λi > 0.5 then goto Step 1, o.w. goto Step 2

Step 1: Uniformly randomly setx′

j ∈ [xj − 1, xj + 1];
y′

j ∈ [yj − 1, yj + 1]; P ′i
j = P i

j ± 1;
Step 2: CalculateA′ (Eq. 4); Uniformly randomly set

(x′

j , y
′

j) ∈ A′;Rij
c ∈ [0, maxRc]; P ′i

j = (Rij
c )α;

Note that our algorithm can adopt other kind of genetic
operators with minor changes in the algorithm’s design.



IV. EXPERIMENTAL RESULTS AND DISCUSSION

The goal of our experimental studies is: 1) to test the
effectiveness of our problem specific encoding and genetic
operators, and 2) to test the strength of our problem-specific
MOEA/D based approach against NSGA-II in various network
instances, giving the trade offs of our objectives and a variety
of network design choices.

TABLE I

THE NETWORK INSTANCES

Instances A (m2) Density (sensor perm2)
Inst.0 10000 0.003
Inst.1 10000 0.0032
Inst.2 40000 0.0032
Inst.3 90000 0.0032
Inst.4 10000 0.0015
Inst.5 10000 0.002
Inst.6 10000 0.006

Table I shows various network instances. Instances 1-3
represent networks of differentAs and same density (i.e. N/A).
Instances 4-6 represent networks with different densitiesin
the sameA. In all experiments we have used the following
network parameter settings:a = 2, Rs = 10m, amp =
100pJ/bit/m2 [10], maxRc = 20m. Moreover, we have
used the following algorithm’s parameter settings:m = 120,
crate = 1, mrate = 0.1, st = 10 and genmax = 250. The
parameter considered only by MOEA/D isT = 2, since a
largeT may affect the PF’s diversity.

TABLE II

MOEA/D BASED ALGORITHMS WITH DIFFERENT GENETIC COMPONENTS

Algorithm Encoding Selection Crossover Mutation
Alg.1 Random Tournament One-point Random
Alg.2 Dense-spread Tournament One-point Random
Alg.3 Dense-spread λ-based Tour. One-point Random
Alg.4 Dense-spread λ-based Tour. ”Window” Random
Alg.5 Dense-spread λ-based Tour. ”Window” Adaptive

Table II shows five algorithms with different genetic com-
ponents combinations. The first algorithm (i.e. Alg. 1) is
composed by the ”default” operators which are simple and
popular: random encoding representation (sensors are added
randomly inX), tournament selection operator [5] (initialize a
tournament of random solutions fromIP ), one-point crossover
operator [5] and random mutation operator (randomly generate
(x′

i, y
′

i) and P ′

i for sensori, s.t. x′

i ∈ [0, x], y′

i ∈ [0, y] and
Ri

c ∈ [1, maxRC ]. The rest of the algorithms replace some of
the default operators with our problem specifics’ to investigate
their necessity. The last algorithm (i.e. Alg. 5) includes all
the problem specific genetic operators proposed in this work,
as well as, our encoding representation. Note that, we have
investigated more combinations of the genetic components that
are not presented in this paper due to page limit.

Initially, we have compared the five algorithms, on network
instance 0, in terms of quality of solutions in the PF (C metric)
and diversity (∆ metric [9]). C(A,B) measures the solutions in
an algorithm A’s PF dominated by the solutions in an algorithm

TABLE III

COMPARISON IN TERMS OFCmetric AND Dmetric

∆ : ∆(1) ∆(2) ∆(3) ∆(4) ∆(5)
Value: 0.89 0.76 0.53 0.76 0.501

C: C(1,2) C(2,1) C(2,3) C(3,2)
Value: 36.3% 23.0% 69.2% 4.7%

C: C(3,4) C(4,3) C(4,5) C(5,4)
Value: 36.3% 23.0 46.8% 41.5%
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Fig. 3. Comparison of various genetic components on Inst.0

B’s PF (i.e. the smaller the better).∆(A) shows the diversity
of the PF obtained by an algorithm A, i.e. the spread/variety
of the network design choices.∆ = 0 is the maximum, which
means that the solutions are evenly spread along the PF.

It is evident, from both Figure 3 and theC metric in
Table III that Alg. 5 obtained the highest quality on the
network designs. Alg. 2 provides about 500 sec. lifetime
and 1% coverage increase compared to Alg.1. Alg.3 in turn
provides an increase of 3500 sec. of lifetime and 2% coverage,
in average. Alg.4 further increases the average solutions life-
time and coverage of around 2000 sec. and 10% respectively.
Finally, Alg.5 provides an increase of 250 sec. lifetime and
0.1% coverage, in average, compared to Alg.4.

The ∆ metric in Table III, however, shows an increase on
the diversity of the solutions obtained by Alg.1 to 3. The diver-
sity is then suddenly decreased from Alg.3 to Alg.4 because of
the problem specific crossover operator. The reason is that,our
”window”-based crossover increases the solutions quality, but
it converges into local optima solutions easily, which results
on a decrease of the PF’s diversity. This drawback, however,
is eliminated by our adaptive mutation operator included in
Alg.5. Alg.5 preserves the increase on the PFs quality achieved
by Alg.4 and, at the same time, maintains the diversity. Note
that, similar conclusions are drawn for all network instances.

Thereinafter, we have tested the strength of our MOEA/D-
based approach (Alg.5) against NSGA-II on network instances
1-6. In all experiments, we have used the same number of
function evaluations (f.e) [8] for fairness. Our MOEA/D-based
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(b) Instance 2
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(c) Instance 3
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(d) Instance 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

8

9
x 10

4

1

2

3
4

5
6

7 8
9
10 11

121314 15 1617 18192021 22 232425 2627282930

1

2

3

4

5

6

7 8

9
10

11121314 151617 181920212223

Coverage

Li
fe

tim
e 

(s
ec

)

 

 

MOEAD
NSGAII

(e) Instance 5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
x 10

4

1

2

3

4
5

6
7

8
910 11

12 13
14 15 16 17 18 19 2021222324252627

1

2

3

4

5

6

7
8910

1112
1314 15 16171819 202122232425 262728

Coverage

Li
fe

tim
e 

(s
ec

)

 

 

MOEAD
NSGAII

(f) Instance 6

Fig. 4. Comparison of MOEAD (Alg.5) against NSGAII in various network instances

approach adopted the proposed problem-specific operators and
NSGA-II the default operators. Figure 4 clearly shows the
superiority of the proposed approach against NSGA-II in
quality of solutions in the PFs. In instances 1-3, MOEA/D
provides 20% more lifetime in network topologies with the
same coverage and26% more coverage for network topologies
with the same lifetime, in average.

In instances 4-6, MOEA/D provides network topologies
of 25% higher lifetime (for the same coverage) and 14%
higher coverage (for the same lifetime), in average, than those
obtained by NSGA-II. Note that, NSGA-II with the default en-
coding and genetic operators does not provide any topologies
with more than 50% coverage in any network instance. The
reason is that, under the parameter settings and requirements
of the above DPAP, it is difficult to obtain high quality
spread-like topologies without network knowledge, because
the ’default’ genetic operators fall into destructive mating and
unnecessary search. Thereupon, NSGA-II directs the search
into areas in the search space with high quality dense-like
topologies which can be obtained more easily. Therefore, it
is clear from Figure 4 that MOEA/D provides a more diverse
set of solutions in all network instances giving more network
topologies than NSGA-II, without any prior knowledge on the
objectives preference, to facilitate the decision maker’schoice.

V. CONCLUSIONS

In this paper, an encoding representation and various genetic
operators were designed specifically for the multi-objective
DPAP in WSNs and a MOEA/D based approach is proposed.
Initially, we have shown the necessity of incorporating network
knowledge in the genetic components in terms of quality

and diversity of solutions in the PF. Thereinafter, simula-
tion evaluations have shown the superiority of the proposed
approach against NSGA-II. Our motivation was to design a
DPAP-specific MOEA/D and to provide a diverse set of high
quality WSN designs in the absence of any prior knowledge
on the objectives preference. In the future, we intend to add
constraints in DPAP to further increase its realizability.
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