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Abstract— In this paper, we propose a Subproblem-dependent designing problem specific heuristics for a MOP as a whole is
Heuristic (SH) for MOEA/D to deal with the Deployment and  difficult. The Multi-Objective Evolutionary Algorithm basi
Power Assignment Problem (DPAP) in Wireless Sensor Netwosk Decomposition (MOEA/D) [11] overcomes this difficulty

(WSNs). The goal of the DPAP is to assign locations and transm by d . the MOP int | borobl
power levels to sensor nodes for maximizing the network covege y decomposing the Into- many scalar subprobiems

and lifetime objectives. In our method, the DPAP is decompaxi and optimizing them simultaneously, by using neighborhood
into a number of scalar subproblems. The subproblems are information and single-objective techniques. The diffigul

optimized in parallel, by using neighborhood information and  however, on adding knowledge on a decompositional MOEA is
problem-specific knowledge. The proposed SH probabilistally ¢ the subproblems have different objective preferemees

alternates between two DPAP-specific strategies based oneth " - .
subproblems objective preferences. Simulation results k@ shown quire different treatment and have to be solved simultasigou

that MOEA/D performs better than NSGA-Il in several WSN in a single run. Therefore, the problem-specific heuristics
instances. should adapt to the requirements and objective preferehce o

each subproblem dynamically, during the evolution.

In [6], we have briefly introduced our problem specific

Most of the research in Wireless Sensor Network (WSNWOEA/D approach. This work concentrates on the improve-
topology design focuses on deciding optimal (a) locatiomsent part of MOEA/D and proposes two improvement strate-
(deployment [1]) and (b) transmit power levels (power agies, each focuses on one objective of DPAP. A Subproblem-
signment [2]) of the sensor nodes to be deployed in an am@pendent Heuristic (SH) is then adopted, to probabiéiljic
of interest. Several approaches have been proposed for dpply the two improvement strategies to the solution of
deployment and power assignment problems in WSNs, wigach subproblem and to strategically direct the search into
major goal on maximizing (i) the coverage [3], or (ii) thepromising areas of the search space. The goal is to improve
lifetime [4] objective, respectively. However, few attetap the MOEA/D’s performance in terms of diversity and quality
have been made for simultaneously tackling both (a) and (@fthe PF for the DPAP. In Section II, we briefly introduce the
decision variables, considering both (i) and (ii) objeeti\[5]. MO-DPAP. Section Il analyzes the problem by classifying th
Even though, the latter approaches optimize the objectivesn-dominated solutions based on their objective pretergn
individually, or by combining them into a single objective;The MOEA/D is briefly introduced in Section IV, followed
or constraining one and optimizing the other, which ofteby the proposed SH in Section V. The results of Section VI
results on ignoring and losing “better” solutions. The cage show an increase on the performance of MOEA/D and its
and lifetime of WSNs are conflicting objectives and warrant superiority against the widely used Non-dominated Sorting
trade-off. Hence, we have recently proposed the Deploymédénetic Algorithm-Il (NSGA-II [12]). The paper ends with
and Power Assignment Problem (DPAP) [6] in WSNSs, as sbome concluding remarks.
Multiobjective Optimization Problem (MOP).

There are many methods for dealing with MOPs in the lit-
erature [7], with the Multi-Objective Evolutionary Algahims A System Model
(MOEASs) being a promising approach. General MOEAs, Consider a 2-D static WSN formed by: a rectangular sensing
usually tackle a MOP as a “black box” [8], i.e. without anyarea A, N homogeneous sensors and a static sthkwith
problem specific knowledge. This might be a drawback famlimited energy, placed at the center 4f The sensors are
MOEAs when dealing with real life problems (such as DPAREsponsible to monitor and periodically report an event of
having undesirable effects, e.g. force the evolutionaocess interest to H. Each sensoi communicates directly or via
into unnecessary searches, negatively affecting theifoper multiple hops through nearby sensors with through the
mance. Thus, the incorporation of problem specific knowdedgath loss communication model as in [13]. In this model, the
in MOEAs [9], to direct the search into promising areas dfansmit power level that should be assigned to a sehsor

the search space, can be proven beneficially [10]. Howevezach a sensor is P; = 3 x d;, wherea € [2,6] is the path

I. INTRODUCTION

Il. PROBLEM DEFINITION



loss exponent and = 1 is the transmission quality parameter. Step 1: For all sensorg/ at each time interval do

The energy loss due to channel transmissiodjs d;; is the Step 1.1:UpdateE; () according to Eq. 1;

Euclidean distance between sensars and R, = d;; is i's Step 1.2:Assign each incoming link of sensgra

communication range. The calculated power assignments are weight equal toF; (t);

considered static for the whole network’s lifetime. Thedaal Step 1.3:Calculate the shortest path frojnto H;

energy of sensoi, at timet, is calculated as follows: Step 2: If 3j € {1,..., N} such thatf; () = 0 then stop
and set:

Ei(t) = E(t = 1) — [(rs(t) + 1) x P, x amp] (1)

wherer;(t) + 1 is the total traffic load that sensoforwards L(X):=t 3
towards H at t (r;(t) is the traffic load that relays and )
“+1" is the data p(ag:ket generated byto forward its own Elset = t_+ 1, goto step 1; ] -~
data information) andump is the power amplifier's energy 1he Same algorithm can be easily modified to con-
consumption. We assume that, the sensor nodes communiS4{gr different energy models and routing algorithms (e.g.
through long transmission distances and therefore therwan 9€ographical-based [14] routing algorithms).
power consumption is a major factor on their total energv "
consumption [13]. Therefore, the energy consumed by tl Lx
transceiver electronics, as well as, for reception and rggioa o
of data are considered negligible and ignored.

For sensing purposes and simplicity, we assume thig X
composed by rectangular grids of identical dimensions ce /
tered at(2’,y’) and we adopted a “binary” sensing model [3] D Q&\@ .
Namely, a grid atz’,y’) is covered, denoted by(z',y’) = *
1, if it falls within a sensor's sensing rangk,, otherwise
g(z’,y’') = 0. We consider unit-size grids, which are several (@) The PF of DPAP (2)ﬂyag‘|’zus pareto optimal solutions
times smaller tharR,, for a more accurate placement [3]. orine
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. Fig. 1. Classifying the optimal network designs in DPAP
B. Problem formulation

The DPAP can be formulated as a MOP,

Given: [1l. PROBLEM ANALYSIS
o A: 2-D plane of area size x y.
o N: number of sensors to be deployed4n
o FE: initial power supply, the same for all sensors.
« R,: sensing range, the same for all sensors.

In multi-objective DPAP, there is not a unique network
design, which can satisfy all objectives at the same timehEa
design provides a preference to a particular objective. The
Pareto optimal network designs that are close in the obgecti

Decision variables space should have similarities with each other in the deuisi
o Lj; : the location of sensoy. space. In this work, we have identified two extreme optimal
« P;: the transmission power level of sengor network designsX“ and X2, which are dedicated on one
Objectives Maximize coverag€'v(X) and lifetimeL(X) of objective each. Thereinafter, the intermediate solutzarsbe
network designX: designed based on some network concepts and their position

The network coverag€v(X) is defined as the percentagén the objective space (i.e. objective preference). Theeexé
of the covered grids over the total grids 4fand is evaluated Pareto optimal solutions and the set of intermediate soisti
as follows: (Figure 1(a)) can be characterized as follows:

e « Solution X“: Dedicated on increasing the network’s life-
_ ro time performance fully or highly ignoring the network’s
Co(X) =1 > g’/ (@ xy) (2) Covetage qualiy
« Solution XP?: Dedicated on increasing the network’s
coverage quality, fully or highly ignoring the network’s
lifetime performance.
« Set of intermediate solutions:A set of solutions pro-
viding the trade offs between the network lifetime and
coverage obijectives.

2'=01y'=0

where,z x y is the total grids ofd and

/ AN k) k) Tj,Yj),\T,Y
9(a'sy') = 0 otherwise o
is the monitoring status of the grid centeredat, y').

The network lifetime is defined as the duration from the
deployment of the network to the cyctea sensorj depletes ) i ) ) _ o
its energy supplyE. The lifetime objectivel,(X) is evaluated The optimal solutionX provides the maximum lifetime
as follows: among all the solutions in the PF,

Algorithm: Lifetime Evaluation E

: LX) =
Step 0: Sett:=1; E;(0) :=E,Vje{l,..,N}; d®. x amp’

min



whered,,;, is a controllable parameter, indicating the mini- Note that, it is expected that the interrelation of solution
mum distance allowed between a sensor nodefndhus, a X% and X¢ with the foresaid network concepts, “fades”
dense deployment of all sensor nodes arolndith minimum as they get closer to the center of the PF. Thereinafter, a
transmission distance®’. = d,,.;, and direct communications combination of these concepts could provide a balance on the
with H (resulting onv;(¢) = 0) is desirable. Note thaf,(X“) DPAP’s objectives as follows:

is used for normalizing the lifetime objective for the rekttos . Solution X*: The sensor nodes are connected in such

work, with the value 1 representing the best possible fithess 5 way that their transmission power decreasefincrease,

Moreover, sinceX* is dedicated onL(X*), the C(X*) and the sensing range overlaps increase/decrease, as they

should be the minimum among all Pareto Optlmal solutions in get closer toH, according to a S||ght preference on the

the PF. It is desirable, however, to achieve the highestilpless lifetime or coverage objective, respectively.

Cu(X*), which can be equal to Note that, whenV > ((2””};3)2 is high, the sensor nodes can
Cv(XA) =A'/(z xy), be deployed more densely, to provideCa(X?) = 1 by

allowing some sensing range overlaps, e.g. with a fi
where A’ ~ (2 x (Rs + dmin))*- distance between each other and the area’s boundarie® Ther

The optimal solutionX? provides the maximum coveragezre also scalar techniques that provide a highek B) by

among all the solutions in the PEv(X ?) highly depends on ilizing a higherN, such as Chen’s et al. approach [5].
N. In this paper, we assume a spread like deployment, hence,

let N < ((jgsy)z be small. Therefore, the sensor nodes should IV. BRIEF INTRODUCTION ONMOEA/D
be deployec} regularly,_with a fixed_ distanedr; between  The MOP can be decomposed inta subproblems by
each other andi, avoiding any sensing range overlaps. Thﬁdopting any technique for aggregating functions [11], e.g

maximum coverage can be calculated as follows: the Weighted Sum Approach used here. hétbe a weight
2 that its associated subproblencan be defined as:
Co(x By = N X7 A | |
(x xy) maz g' (XN = NL(X?) + (1 — X)Co(X?)
. . A . . . B .
Similarly to;f , achieving a network desigi ™ with the |isially. the Internal Population] P, which stores the best
highestL(X ) is always desirable, solutions found for each subproblem during the search, is
B E randomly initialized. The genetic operators (i.e. setatti
L(X7) = k x (N/4) x (2R;)* x amp’ crossover and mutation) are then invoked/dn for offspring

reproduction, X, for each subproblen, wherei = 1 to m.
wherek x (N/4) x (2R,)™ x amp is the energy consumption \joreover, problem specific heuristics are applied to improv
of each sensoi that is directly connected t&l at each/, and each Xi and obtainY?. The update phase of MOEA/D
N/4 x k is a fixed minimum number of packets of sizgi.e. js processed in three steps. (1) Upddie, IP/{X} and
the traffic load) that should be burden by each sensor modg p  {vi} if ¢;(Yi|A)) > ¢'(X*|\?), otherwiseX' remains
assuming a regular, symmetrical deployment. in IP. (2) Update the neighborhood &, i.e. the solutions

The goal of DPAP, however, is to provide the interestegk the 7' closest subproblems afin terms of their weights

users with a diverse set of network design choices, givieg th\! ... \m} are updated. Ify’(Y|\) > ¢/ (X7|\7), then
trade offs between the extreme optimal network desigrs IP/{X7} andIPU{Y "}, otherwiseX? remains in/ P, where
and X B. However, the procedure of designing theintermediate ¢ (1. T}. (2) Update the External PopulatiofEP),
topologies is complicated, since there is not a scalar ndeth@hich stores all the non-dominated solutions found so far
that can design all of them, in a single run. In the followiwg,  during the searchEP = EP U {Y} if Y is not dominated
introduce some general concepts for designing non-doetnagy any solutionX? € EP and EP = EP/{Xi}, for all XJ
solutions in different areas (e.g. a,b, and ¢ in Figure 1¢6)) dominated byy?. The search stops after a pre-defined number
the intermediate set of solutions (Figure 1(a)): of generationsgennaz.

« Solution X*: favors a high network lifetime. Hence, the One of the main advantages of MOEA/D is that, appropriate
focus is to provide dense network designs by placiragalar strategies can be adapted specifically to each dubpro
the sensor nodes with near to minimum transmissidem i. Traditionally, it is hard to design an operator and/or
distances close tél. This, however, leads to high sensindheuristic to benefit all subproblems, since they have differ
range overlaps and poor coverage. objective preferences and they have to be solved simultane-

« Solution X¢: favors a high network coverage. Thereforegusly, in a single run. In order to overcome this difficultye w
the focus is to provide spread network designs by placifigve developed problem specific operators [6] and hewsistic
the sensor nodes with high transmission ranges and losing by each subproblenis preference (weight coefficient
sensing range overlaps between (a) the sensor nodes ahdand adapted to its requirements. Thé parameter is
(b) the sensor nodes and the area’s boundaries. Thised as a guide to the operators and heuristics for adjusting
however, leads to a high energy consumption of eathe degree of coverage and lifetime, and therefore degignin
sensor node at eaah which results to a poor lifetime. different preference WSNs. MOEA/D proceeds as follows:



Input: e network parameters4, N, E, Ry); The proposed SH, illustrated in Figure 2, works as in
e m : population size and number of subproblems;Algorithm 1. Note that, a newand is obtained in each

e T': neighborhood size; generation for each subproblem, hence, the intermedidte su

e uniform spread of weighta!, ..., \™; problems, which prefer a balance between the two objectives

e the maximum number of generationgn.,q.; (e.g. \* = 0.5) have a high probability to be tackled by
Output: e the external populationZ P. both improvement strategies, in different generations, tn
Step 0-Setup:Set EP :=0; gen :=0; IP := {); design balanced topologies, such as solutioh Besides,
Step 1-Decomposition: Initialize m subproblems, i.e. max subproblems with high or low\ coefficient still have some

g (ZH\Y), fori=1,...,m. probability to be improved bympCv(X*) and ImpL(X?),
Step 2-Initialization: Randomly generate an initial internalrespectively. In the following we analyze the two improverne

populationIP = {Z!,...  Z™}; strategies separately.

Step 3: Foreach subproblem= 1 to m do

1
Step 3.1-Genetic Operators:Generate a new so- Y
lution X by using selection, crossover and [
mutation operators.
Step 3.2-Improvement: Apply a problem specific
repair/improvement heuristic oK’ to pro-
duceY™.
Step 3.3-Update Populations: Update 1P, EP
and theT closest neighbors of subproblem /_\
Step 4-Stopping criterion:If stopping criterion is satisfied, ﬂv
i.e. gen = genmae, then stop and outpuFEP, @
otherwisegen = gen + 1, go to Step 3

. . , subproblem i
We refer interested readers to [11] for details. In this

paper, the focus is on the improvement Subproblem-depéndenig. 2. The main concept of the Subproblem-dependent HisutBH)
Heuristic (SH) for incorporating problem specific knowledg

to MOEA/D and producing near optimal network designs for |mnrove lifetime: Following the analysis of section 1l the

the DPAP in WSNs. ImpL(X") improvement strategy is introduced. The goal of
ImpL(X?) is to densely deploy the sensor nodes arothd
V. THE SUBPROBLEM-DEPENDENTHEURISTIC (SH) and decrease their transmit power levels as they get closer t

The SH is composed by two simple single-objective stratél- This method malnly fa_vors the solu_tlons of areas a and b.
gies. Each strategy is based on a network concept related* SENSOr nodg at locationZ; is moving towards its one-
to an objective of DPAP and provides different treatment (3°P N€ighbor a distanceshi f¢, which depends on:
the solutions of each subproblem Particularly ImpL(X?) ¢ the current energy consumption of sengpr.e. (r;(t) +
benefits L(X*) and ImpCv(X?) benefitsCv(X?). The \! 1) x P x amp. _ _ _
coefficient of a particular shows a preference on one of * theenergy consumption of sensoat locationLZy, which
the two objectives (except in the case wheve = 0.5). considers sensoj as its one-hop neighbor node, i.e.
Therefore, we can probabilistically adapt a problem specifi (ri(t) +1) x P x amp .
strategy to selectively improve a solutidif. This is achieved Such that sensorsand deplete their energy supply approx-
by uniformly randomly generating a numbeand € [0,1], imately at the same time. . ,
comparing it with the\ weight coefficient of each subproblem Let7; andry; be the average traffic load of sensgrandk

i and applying an improvement strategy accordingly. during th_e netyvork’s lifetime, respectively, and= 2. Firstly,
the required distancé, between sensorg and i, such that

sensorsj and k deplete their energy supply approximately at
the same time, is calculated as follows:

Algorithm 1 The Subproblem-dependent Heuristic (SH)

Input: X% X’
Output: Y* _ ) di; x amp x T (t)
Step 1: Run the energy-efficient GRP on solutioft’. jh = — 4)
Step 2: Generate a uniform random numbend < [0, 1]. amp x T;(t)

Step 2.1If rand < X' then Consequently, the shift that senspshould move towards

_ ) is equal to:
Y — ImpL(X* ift =djp, — d
Step 2.2E1se o shift = djn = dj, ©®)

Thereinafter, the new location of sengpors:

Y' — ImpCv(X") L} = Lj + shift x (L — Lj)/djn (6)




The transmit power levels of senspiandk are then updated In ImpL(X?), a sensor nodé at location(L;) is shifted

as follows: backwards from its one-hop neighbor nogea distance
, ; 5 - 5 shift, to decrease the sensing range overlap between them.
Py = \/(xj —an)? + (Y5 — yn) @ The sensing range overlap between senggrg denoted as
Pl = \/(x; —2)2 + (¥ — y)? A,(k,j), is equal to:
N p2 .
where should satisfy®! x amp x 7; = P}, x amp x T}, and Aok, j) = Ry(q — sin(q))
djy, < djp such thatP; < P;. whereq = 2 x acos(dy; /2R;). Hence, by increasingy; the

“The ImpL(X") strategy works as in Algorithm 2. The 4,(k, j) betweenk and j decreases. Note that, fak,; —
procedure offmpL(X"*), as well as, some special cases arg« R, the Ay(k,j) = 0.

illustrated in Figure 3. Note that, whenis directly connected  However, ImpCuv(X?) may force all subproblems with
to H, thenh = H and whenj is at the end of the network, jow A’ to converge into a single solution, i.&? giving

then the shift is fixed and equals éo= R. Cwv(XP). This is undesirable, since we need the objectives
trade offs, i.e the solutions between the extreme solutiois
Algorithm 2 ImpL(X?) X B. Hence, the new position of sensoshould be calculated
Input:  Solution X"; in such a way that the sensing range overlap betweand
Output: Improved solutiony?; j is decreased and the current network lifetime is maintained
For j =1to N do Let 7%, 7; be the average relay data information of sengors
Step 1: Calculate the distancé);, using Eq. 4; andj respectively and; = 2.

Step 2: Subtractd};, from the initial distanced;, be-
tween ;5 and h to calculate theshift towards
sensorh, as in Eq. 5;

Step 3: Calculate and set the new locatidr) to sensor
j using Eq. 6;

Step 4: Update the transmit power level gpfandk using
Eq. 7,

shm,f d,’ Fig. 4. An example of the first part dfmpCuv(X*)

I

(a) Case 1 - Sensor connected to sink

Firstly, we calculate the required distaneﬁcﬁ, such that
sensorsk andj deplete their energy supply approximately at

the same time:
;o P x amp X T )
ki amp X 7j

Then, we calculate the shift that sendormoves backward
from j:

, shift = d;j — dg; (9)
5“'\&)/
s Consequently, the new location of sengois:

(c) Case 3 - Sensor at the network’s boundaries , , ’ , ’

_ r = (L x dj, ; — shift x Lj)/(d}, ; — shift) (10)
Fig. 3. An example off mpL(X?)

The new transmission power level of sengois:

Improve coverage:The improvement strategy that benefits Pl =\/(z}, — ;)% + (v}, — y;)? (11)
the coverage objective (i.dmpCv(X?)) follows the analysis
of Section Il as well. This particular strategy, howeveainty
favors solutions such aX® and X¢ of the objective space, . J
since ImpCv(X?) decreases (a) the sensing range overlélﬂatAO(kj) < Ao(kj).
between the sensor nodes by increasing the distance between When sensok has many one-hop neighbor nodes, then
them and (d) the sensing range overlaps between the sensor J is the one with the smallest,; and consequently the
nodes and the area’s boundaries, as required by the concepts largest4,(kj).
introduced in Section I forX?®, X¢. This first part ofImpCv(X?) is illustrated in Figure 4.

The final location and power assignment of sensahould
satisfy P; x amp x 7j = Py x amp x 7; anddy; > dj; such



Thereinafter/mpCv(X") decreases the sensing range over- VI. SIMULATION RESULTS AND DISCUSSION
laps between the sensor nodes and the area’s boundarie§
Assuming that the area is a rectangle, there are threediffer
cases where a sensor violates the area’s boundaries:

he goal of our simulation studies is: 1) to demonstrate the
effectiveness of our problem specific improvement strategi
(i.e. ImpL and ImpCv) and to empirically show how the
Case #1Violation on x-axis: (a) left or (b) right bound. proposed SH takes advantage of the foresaid strategies and
Case #2Violation on y-axis: (a) lower or (b)upper bound.adapts to the subproblems requirements, 2) to show thatthe S
Case #3: Violation on both axes: (a) lower/left, (b)increases the performance of the conventional MOEA/D and
lower/right, (c) upper/left, (d) upper/right. 3) to test the strength of the improved MOEA/D against the
NSGA-II in various network instances, giving the objective
trade offs and a variety of network design choices.

Table | shows various network instances ir2%factorial
design [15]. Network Instances (NIn) 1,2 and 3,4 are of
different As and same density (i.e. N/A) and NIn 1,3 and
2,4 are with different densities in the same Additionally, in
all simulations we have used the following network paramete
settings:a = 2, R, = 10m, E = 5J, amp = 100p.J/bit/m?
[14], max R, = 20m, dp,:, = 10m; and the following MOEA
settings:m = 120, ¢rate = 1, Mpae = 0.1, s, = 10 and
geNmaz = 250. MOEA/D also considers & = 2.

TABLE |
NETWORK INSTANCES
Network Instances| A (m?2) | Density (N/A)
N — Ninl 10000 | .0013 (N=13)
o NIn2 40000 | .0013 (N=52)
Case#3a Case #3b Case #3c¢ Case #3d NIn3 10000 | .005 (N=50)
(x,',y,) if Casc#la, where x'=R; NIn4 20000 005 (NZZOO)

(x,'.y) if Case¥#lb, where x,=x-Rj
(xy.y,'") if Case#2a, where y' =R
(X,v ') if Case#2b, where y =y-R,

L=< s i Costia, such that d g, L eI . Figure 6 illustrates the results of MO.EA/D adopting each
’ e - improvement strategy separately and simultaneously girou
, _ the SH. As can be seen, when the density of the network
(x ',y ') if Case#3c, such that d, ¢ vy = m . . .
, _ _ is low, the MOEA/D w/ImpCv provides a more diverse set
(6T DI Casefid, - suchh hat G = VXD 6 o3y of non-dominated solutions. In addition, when the network
Fig. 5. The cases of the boundaries violations and the ritocaf each Size is small, MOEA/D w/ImpCv obtains better results than
case in the second part ¢inpCv(X*) MOEA/D w/ImpL for solutions of area®$, ¢ and provides
a better approximation towards the extreme solutisf¥.
On the other hand, MOEA/D w/ImpL outperforms MOEA/D
If a sensork in a location L, = (xx,yx) violates any w/mpCv in areasa, b and obtains a better approximation
of the Cases #1,#2,#3 is redeployedf as in Figure 5. towards the extreme solutiaki4. Hence, it is difficult to say
Thereinafter, sensdr is assigned &; such that it reaches its which heuristic is the best with respect all NIns. MOEA/D-

(x .y, ") if Casc#3b, such that d g« 1y, = VE Sxp DT H0 -y, )2

closest neighbompCv(X*) works as in Algorithm 3. SH obtaining solutions from both strategies PFs, provides a
balanced diverse set of high quality solutions in all arefas o
Algorithm 3 ImpCu(X?) the objective space and the best approximation towards both

extreme solutions¥# and X% in all NIns.

Input:  Solution X*; . . I
neu outon & Thereinafter, Figure 7 shows the contribution of the

Output: Improved solutionY?;

Fork=1to N do subproblem-dependent heuristic. MOEA/D-SH increases the
Step 1:If j is k's next-hop neighbor angd £ H then performance of MOEA/D, especially on the subproblems
Step 1.1Calculate the distance,; by using Eq. 8; that require solutions aroun®®, giving a similar or better

Step 1.2Calculate the backwarslhift by using Eq. 9, approximation towards the extreme solutioiis' and X &, in
Step 1.3Use Eq. 10 to findl;, of sensork and update g hetwork instances. For the networks with low densitg. (i.
Py asin Eqg. 11; NInl1 and NIn3), MOEA/D-SH provides an average coverage
Step 2:If k violates any of the Cases #1,#2,#3 then . ), p . 9 . 9
increase of 0.5% for the solutions in areasnd ¢ with the
Step 2.1Setk into a new locationZ;, as in Figure 5; lif i d |
Step 2.2Update P}, such that it reaches its closest oneS&Me ifetime quality, and a simultaneous average increase
hop neighbor. of 1.5% lifetime and 1% coverage for those in areaFor
the network instances with high density, MOEA/D-SH obtains

non-dominated solutions of about 1.5% more average lifetim




Ninl NIn2 NIn3 Nin4

1— 1+ 11— 19
——@—— MOEA/D w/ImpL ——@—— MOEA/D w/ImpL \ ——e—— MOEA/D w/ImpL ——@—— MOEA/D w/ImpL
MOEA/D w/ImpCv MOEA/D w/ImpCv MOEA/D w/ImpCv MOEA/D w/impCv
_ 08 —+—— MOEA/D-SH 08 —+—— MOEA/D-SH 08 —+—— MOEA/D-SH 08 —+—— MOEA/D-SH
% 0.6 0.6 0.6
2 04 0.4 0.4
0.2 0.2 0.2
0 0 < 0
0.1 0 0.2 0.4 0 0.5 1
Fig. 6. MOEA/D with ImpL, ImpCv and SH in NI1
Ninl NIn2 NIn3 NIn4
1 1 1 1
MOEA/D —»—— MOEA/D —»—— MOEA/D ——— MOEA/D
08 MOEA/D-SH 08 ——+—— MOEA/D-SH 08 ———— MOEA/D-SH 08 ———— MOEA/D-SH
%5 0.6 0.6 0.6
2 04 0.4 0.4
0.2 0.2 0.2
0 0 0
0 0.2 0.4 0 0.2 0.4 0 0.5 1
Fig. 7. MOEA/D with and without the SH in NI1
Ninl NIn2 NIn3 NIn4
1 1~ 1— 1
NSGAII NSGAII NSGAIl NSGAII
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Fig. 8. MOEA/D vs. NSGAIl in NI1-4

and the same coverage for argand about 1% more coveragePF. A straightforward comparison metric between two sets
and the same lifetime for area Moreover, it provides a of non-dominated solutions is the number of Non-Dominated
simultaneous increase of 1.5% lifetime and 2% coveradggglutions NDS(A), i.e. the volume of network design chojces
in average, for the solutions in aréa with respect those since in a real life problem (such as DPAP) is very difficult
obtained by MOEA/D. Moreover, MOEA/D-SH obtains ao obtain many NDS. Hence, a high NDS is desirable for
better approximation towards 4 and a similar approximation increasing the decision maker’s choices. Thus, the cortibima
towardsX Z in all Nins. of the number of NDS with the C-metric ans-metric should

) ] be an adequate set of metrics to judge if an algorithm has

For comparing the MOEAs, we have adopted various p&§ptained a large, diverse set of high quality solutions.

formance metrics that are usually employed for comparing
sets of solutions obtained by different algorithms. Theriogt  Figure 8 and Table Il illustrates the superiority of the
are theC(A, B) metric [12], which measures the solutionproposed MOEA/D method against NSGA-1l. MOEA/D out-
in an algorithm As PF dominated by the solutions in aperforms NSGA-II in all network instances in terms of qualit
algorithm B's PF (i.e. the smallef'(A, B) is, the better A of solution in the PF, number of NDS and in terms of diversity
is), the A(A) metric [12], which shows the diversity of thein dense network topologies. In network topologies with low
PF obtained by an algorithm A, i.e. the spread of the netwodensity, NSGA-II provides a more uniform spread of solusion
design choices along the PR(A) = 0 is the maximum, Even though, the width of the PF covered by MOEA/D is
which means that the solutions are evenly spread along A®re than the one obtained by NSGA-II, since NSGA-II lacks



TABLE Il TABLE Il

MOEA/D vs. NSGAIINI1-4, AS8 ANALYTICAL SOLUTIONS X4 AND X B AND THEIR APPROXIMATION BY
A-metric A(MOEA/D) A(NSGAII) THE EXTREME SOLUTIONSX ' AND X™ OBTAINED BY MOEA/D AND
NInl: 0.9867 0.8410 NSGAII
m:ng 832?2 8?2;? Lifetime | Coverage| Lifetime Coverage
ns. : : Nin | Method | X4\X! | XA\X! | XB\xm | XB\xm™
NIn4: 0.7262 0.8219
y . 0.8567 08220 Analytical 1 0.16 0.00003 0.408
verage: - : 1 [ MOEAD T 0.1574 0.05 0.3903
NDS-metric: NDS(MOEA/D) NDS(NSGAII) NSGAI T 0.097 0.25 0.1793
Ninl: 13 8 Analytical T 004 | 76® ° | 03926
NIn2: 15 10 2 [ MOEAD T 0.039 0.02 0.3239
m:”i- gg ;Z NSGATl i 0.0272 0.125 0.05
n4: - =
- Analytical 1 0.16 8e° 1
Average: 19.7500 14.0000 3 [ MOEAD T 0.1572 0.055 0.0332
C-metric: C(MOEA/D,NSGAII) | C(NSGAII,MOEAD) NSGAI T 0.1118 0.045 0.4221
H:E; 88888 égggg Analytical 1 0.04 2e? 1
. - 4 MOEA/D 1 0.0377 0.01 0.9427
NIn3 0.0000 1.0000 NSGAT T 0.0262 0.04 0.131
NIn4 0.0000 1.0000
Average: 0.0000 0.9250
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