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The K-connected Deployment and Power Assignment Problem (DPAP) in WSNs aims at deciding both the
sensor locations and transmit power levels, for maximizing the network coverage and lifetime objectives
under K-connectivity constraints, in a single run. Recently, it is shown that the Multi-Objective Evolution-
ary Algorithm based on Decomposition (MOEA/D) is a strong enough tool for dealing with unconstraint
real life problems (such as DPAP), emphasizing the importance of incorporating problem-specific knowl-
edge for increasing its efficiency. In a constrained Multi-objective Optimization Problem (such as K-con-
nected DPAP), the search space is divided into feasible and infeasible regions. Therefore, problem-specific
operators are designed for MOEA/D to direct the search into optimal, feasible regions of the space.
Namely, a DPAP-specific population initialization that seeds the initial solutions into promising regions,
problem-specific genetic operators (i.e. M-tournament selection, adaptive crossover and mutation) for
generating good, feasible solutions and a DPAP-specific Repair Heuristic (RH) that transforms an infeasi-
ble solution into a feasible one and maintains the MOEA/D’s efficiency simultaneously. Simulation results
have shown the importance of each proposed operator and their interrelation, as well as the superiority
of the DPAP-specific MOEA/D against the popular constrained NSGA-II in several WSN instances.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The design of Wireless sensor networks (WSNs) [1] is a highly
complicated task with substantial impact on the quality, cost and
efficiency of real life sensor applications. Sensors are small elec-
tronic devices with limited energy, memory and transmit power
capabilities, which in some sensor network applications are also
limited in number because of their high cost [2]. A typical goal of
these network designs is to form a long lived WSN, such that the
sensors, using their sensing capabilities and wireless transceivers,
effectively cover a region of interest and forward important infor-
mation to a common collection point, usually referred to as a data
sink. The Deployment and Power Assignment Problem (DPAP) [3]
in WSNs aims at deciding both optimal sensor locations and trans-
mit power levels for maximizing the network coverage and life-
time in a single run. The multi-objective DPAP is typical for
applications that invoke a limited number of expensive sensors,
where their operation is significantly affected by their position
and communication [4]. In these cases, the random massive
deployment [5] and dynamic power assignment [6] is not the only
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choice; and the application affords the ‘‘luxury” of using a central-
ized or even an off-line algorithm to compute the locations and
transmit power levels of the sensors, prior deployment.

In WSNs, connectivity is also crucial for most applications [7,8],
since a possible partition of the network into disjoint parts may
cause undesirable effects, such as decreasing the coverage and con-
sequently the amount of information forwarded to the interested
users. A natural generalization of connectivity is K-connectivity
or K-fault tolerance [9,10]. Fault tolerance is a central challenge
in WSN design, since the failure of the battery constrained sensors
is very common in most applications. A WSN design is usually self-
healing when each sensor sustains K � 1 faulty neighbors (i.e. K-
fault tolerant WSN design). However, most studies [7–10] focus
at deciding either the locations or transmit power levels, for max-
imizing the network coverage or lifetime individually, or by con-
straining one and optimizing the other, while maintaining
connectivity (i.e. K = 1) and/or designing K-fault tolerant WSNs.
This often results in ignoring and losing ‘‘better” solutions, since
the WSN coverage and lifetime are conflicting objectives and a
set of trade-off candidates is required. Moreover, the two decision
variables highly influence both objectives and constraints, and
should be optimized simultaneously [11,12]. Thus, we have consid-
ered it important and challenging to investigate the multi-objec-
tive K-connected DPAP in WSNs.
-connected Deployment and Power Assignment in WSNs using a problem-
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Multi-Objective Optimization (MOO) is a relatively new area in
WSNs and it is difficult to apply an existing linear/single objective
method to effectively tackle a Multi-objective Optimization Prob-
lem (MOP), giving a set of non-dominated solutions. Thus, the
DPAP is used as a real world benchmark for multi-objective meth-
ods such as the Multi-Objective Evolutionary Algorithms (MOEAs),
which are good in obtaining a set of non-dominated solutions in a
single run. However, in most applications of MOEAs to WSNs the
MOP is treated as a ‘‘black box” [13], i.e. without using problem-
specific knowledge, which may have undesirable effects such as
forcing the evolutionary process into unnecessary searches and
destructive mating negatively affecting their overall performance
[3,12]. This can be considered as a main drawback of the generic
MOEAs when dealing with real life problems (such as DPAP). For
example, the studies in [14–16] tackled different deployment
problems in WSNs with general purpose MOEAs, such as the
Non-Dominated Sorting Genetic Algorithm-II [17] (NSGA-II), utiliz-
ing mainly a random population initialization, the general purpose
tournament selection, the single point crossover and a random
mutation for offspring reproduction. NSGA-II is also used by Jia
et al. for tackling two multi-objective optimization scheduling
problems [18,19]. The authors have utilized a random population
initialization, the basic tournament selection, two-point crossover
and random/swap mutation operators, respectively.

In [3], we have shown that the Multi-Objective Evolutionary
Algorithm based on Decomposition [20] (MOEA/D) is a strong tool
to tackle unconstrained real world problems (e.g. DPAP) emphasiz-
ing the importance of incorporating WSN knowledge for increasing
its efficiency. However, the addition of constraints in DPAP neces-
sitates constraint handling and render the tailoring of the existing
DPAP-specific MOEA/D, to match the abundance of the constraints
and objectives of the K-connected DPAP [21] for WSN design in its
full practical complexity, as a major challenge. MOEAs with con-
straint handling focus at obtaining a set of feasible Pareto optimal
solutions, i.e. Pareto Front (PF) [17], providing the trade-off be-
tween two or more conflicting objectives. Feasible are the solutions
that satisfy all constraints, and infeasible are those that do not. In
the literature, there are several constraint handling techniques
[22], including the use of a penalty function, adopting the rules
of the superiority of feasible solutions, using specialized operators
for generating only feasible solutions and using a repair heuristic
[23]. For the latter, Coello [22] has effectually declared that ‘‘any
heuristic which would guide the repair process, and the success of this
approach relies mainly on the ability of the user to come up with such
a heuristic.” Hence, repair heuristic is a good choice when an infea-
sible solution can be easily transformed to a feasible one without
harming the optimization process and is carefully designed with
problem domain knowledge. In WSNs, the concept of constrained
MOO has surprisingly received limited attention, and although
there are a considerable number of proposed hybridizations of
MOEAs with constrained handling methods, the number of
reported applications of those techniques is still relatively scarce.

Raich and Lizkai [24] investigated the optimization of sensor
layouts for detecting damages on structural systems. The goal of
their study was to minimize the number of sensors while maximiz-
ing the amount of information collected under a maximum num-
ber of available sensors. The authors adopted the generic NSGA
[25] and a simple repair method for handling the infeasible solu-
tions. Dunn and Olague [26] investigated a sensor planning prob-
lem, in which the goal was to optimize a group of sensing
actions embedded on a robot so that an object is highly and accu-
rately reconstructed in 3D, by minimizing the 3D reconstruction
uncertainty and the process cost (i.e. the motion of the robot) un-
der some local and global restrictions. The authors adopted the
NSGA-II [17] utilizing a binary tournament selection, a simulated
binary crossover and a deterministic mutation operator as well
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-objective K
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as different deterministic repair operators for constraint handling.
More recently (in 2008), Kim et al. [27] have also used NSGA-II to
tackle a surveillance sensor placement problem, using a random
population initialization, the single point crossover for offspring
reproduction with a restriction, i.e. the common elements in the
two parents are not exchanged and a specialized node-exchange
mutation for handling the infeasible solutions. Finally, Molina
et al. [28] investigated a WSN layout optimization problem with
the goal of maximizing the lifetime while minimizing the number
of sensors, under a fully covered sensing area. The authors com-
pared different MOEAs (e.g. NSGA-II, MOGA), utilizing a specialized
variable length representation, a deterministic population initiali-
zation, the shift and add-remove mutation operators and the tradi-
tional two-point crossover operator in all cases. A penalty function
is used for dealing with infeasible solutions.

In this paper, the K-connected DPAP in WSNs is defined and for-
mulated as a constrained MOP. The proposed problem is tackled by
a problem-specific MOEA/D approach composed of: (a) a DPAP-
specific population initialization that seeds the initial solutions
into the feasible regions of the search space, (b) specialized genetic
operators (i.e. M-tournament selection, adaptive crossover and
mutation) for generating new, high quality, feasible solutions at
each iteration and (c) a DPAP-specific Repair Heuristic for trans-
forming the infeasible solutions to feasible without deteriorating
the objective functions. At this point, it is important to note that
the genetic operators of (b) are, initially, successfully utilized in
[3] for dealing with the unconstrained DPAP in WSNs. However,
they are also adopted here because it is our belief that the same
operators can direct the search into high quality, feasible regions
of the objective space and therefore improve the performance of
MOEA/D and reduce the number of repair function evaluations in
the proposed constrained DPAP. Simulations studies demonstrate
the importance of each operator, individually, at increasing the
overall performance of MOEA/D and decreasing the overall func-
tion evaluations under various parameter settings. Finally, it is
shown that the proposed MOEA/D approach performs better than
the popular constrained NSGA-II in several network test instances.

2. The K-connected Deployment and Power Assignment
(K-connected DPAP)

2.1. System model and assumptions

Consider a 2D static WSN formed by: a rectangular sensing area
A, N homogeneous sensors and a static sink H with unlimited en-
ergy, placed at the center of A. We assume a perfect medium access
control, such as SMAC [29], which ensures that there are no colli-
sions at any sensor during data communication and we adopt the
simple but relevant path loss communication model as in [2]. In
this model, the transmit power level that should be assigned to a
sensor i to reach a sensor j is Pi ¼ b� da

ij , where a 2 [2,6] is the path
loss exponent and b = 1 is the transmission quality parameter. The
energy loss due to channel transmission is da

ij , where dij is the
Euclidean distance between sensors i and j. The communication
range of each sensor i is Ri

c ¼ dij, s.t. Ri
c 6 Rmax, where Rmax is the

maximum communication range that is determined by the maxi-
mum transmit power level that a sensor can be assigned, denoted
as Pmax. The transmit power level Pi and the coordinates (xi,yi) are
the DPAP’s decision variables that are considered fixed for the
whole network lifetime, for sensor i = 1, . . . ,N. The residual energy
of sensor i, at time t, is calculated as follows:

EiðtÞ ¼ Eiðt � 1Þ � Ei
txðtÞ þ Ei

rxðtÞ þ Es

h i
; ð1Þ

where Ei
txðtÞ ¼ k� ðriðtÞ þ 1Þ � ðPi � ampþ EctÞ; Ei

rxðtÞ ¼ k� riðtÞ�
Ect is the amount of energy consumed by sensor i for transmission
-connected Deployment and Power Assignment in WSNs using a problem-
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and reception, respectively, Es is the amount of energy consumed
for sensing and processing k, which is the amount of data sensed
and collected by a sensor with a fixed sensing range Rs, (ri(t) + 1)
is the total traffic load that sensor i forwards towards H at t, ri(t)
is the traffic load that i receives and relays and ‘‘+1” is the data
packet generated by i to forward its own data information, amp is
the power amplifier’s energy consumption and Ect is the energy
consumption due to the transmitter and receiver electronics.

Furthermore, it is assumed that A is divided into G uniform con-
secutive grids to make the coverage problem more computation-
ally manageable. The size of the grids is several times smaller
than p � Rs for a more accurate approximation within the sensing
disk. A sensing model based on the definite range law approxima-
tion is considered [7]

gðx0; y0Þ ¼
1; if 9j 2 f1; . . . ;Ng; dðxj ;yjÞ;ðx0 ;y0Þ 6 Rs;

0; otherwise;

�
ð2Þ

is the monitoring status of a grid centered at (x0,y0) with 1 indicating
that the grid is covered and 0 otherwise.

Finally, the connectivity status of a sensor j is denoted as

cj ¼
1; if j is K-connected;
0; otherwise;

�
ð3Þ

where sensor j is usually considered K-connected [9] if it directly
communicates with H, or if it sustains K neighbors with positive-ad-
vance towards H (i.e. neighbors are closer to H than j [30]), consid-
ering the many-to-one communication nature of WSNs.

2.2. Problem formulation

The K-connected DPAP in WSNs can be formulated as a con-
strained MOP,

Given:

� A: 2D plane of area size x � y.
� N: number of sensors to be deployed in A.
� E: initial power supply, the same for all sensors.
� Rs: sensing range, the same for all sensors.
� Pmax: maximum transmission power level, the same for all

sensors.

Decision variables of solution X:

� (xj,yj): the location of sensor j.
� Pj: the transmission power level of sensor j.
Fig. 1. The PF of unconstraint
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Objectives: Maximize coverage Cv(X) and lifetime L(X), subject
to K-connectivity Cn(X) = 1.

The network coverage Cv(X) is defined as the percentage of the
covered grids over the total grids of A and is evaluated as follows:

CvðXÞ ¼
X

allðx0 ;y0Þ
gðx0; y0Þ

2
4

3
5=G; ð4Þ

where, G is the total grids of A and g(x0,y0) is calculated using Eq. (2).
The network lifetime L(X) is defined as the duration from the

deployment of the network to the cycle t in which a sensor j de-
pletes its energy supply E and is evaluated as follows:

Algorithm 1 (Lifetime Evaluation).

Step 0: Set t :¼ 1; Ej(0) :¼ E, "j 2 {1, . . . ,N};
Step 1: For all sensors j at each time interval t do
Step 1.1: Update Ej(t) according to Eq. (1);
Step 1.2: Assign each incoming link of sensor j a weight equal to

Ej(t);
Step 1.3: Calculate the shortest path from j to H;

Step 2: If $j 2 {1, . . . ,N} such that Ej(t) = 0 then stop and set:
and co

-connec
Comm
LðXÞ :¼ t; ð5Þ
Else t = t + 1, go to step 1;

The same algorithm can be easily modified to consider different en-
ergy models in Step 1.1 (e.g. [12]) and routing algorithms in Step 1.3
(e.g. geographical-based [30,31] routing algorithms).

The percentage of K-connected sensors in X can be measured as
follows:

CnðXÞ ¼ jCSj=N; ð6Þ

where CS = {jjcj = 1}, Cn(X) = 1 when all sensors are K-connected and
cj is calculated using Eq. (3).

In Multi-Objective Optimization (MOO) [32] we need the fol-
lowing definitions. We assume that we have n objectives f1, . . . , fn

to maximize.

Definition 1 (Pareto dominance). Suppose x and y are two
decision variables, x is said to dominate y, denoted by x � y, if
and only if fi(x) P fi(y) for every i 2 {1,2, . . . ,n} and fj(x) > fj(y) for at
least one index j 2 {1,2, . . . ,n}.
Definition 2 (Pareto optimality). x* 2X is said to be Pareto optimal
(or non-dominated) if there is no another x 2X so that x dominates
nstrained DPAPs.
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x*. The set of all Pareto optimal solutions in the decision space is
called the Pareto optimal Set (PS). The image of the PS in the objec-
tive space is called the Pareto optimal Front (PF).

Fig. 1(a) illustrates a PF with n = 2. The Pareto optimal solutions
in the PF (marked as solid circles) provide better lifetime and/or
coverage than any other solution in the objective space. The remain-
ing solutions are all dominated by at least one solution of the PF.
Solutions XA and XB are often called the extreme points of the PF
[32], since they provide the highest f1 and f2, respectively, than
any other solution in the objective space. The ideal solution z* and
the nadir solution znad provide the maximum and minimum objec-
tive values, respectively, and they are often considered unreachable.

In addition to multiple objectives, most real world optimization
problems involve constraints as well. In that case, the search space
X can be defined as follows:

X ¼ fxjx 2 X; x meets constraints c1; . . . ; cqg; ð7Þ

where, X is the base search space and x is a solution of the feasible
region X that satisfies all q constraints, i.e. c1, . . . ,cq. The solutions
that satisfy all constraints are called feasible, and those that do
not, infeasible. In Fig. 1(b), the bold curve indicates the PF of a con-
strained MOP, including the extreme solutions A and B. The shaded
area shows the feasible region composed of feasible solutions, such
as C. All other solutions, e.g. D, are considered infeasible.

2.3. DPAP solution representation and ordering

In DPAP [3], a candidate solution X consists of N items. Its j-th
item has two parts, (xj,yj) and Pj, which represent the location
and the transmit power level of sensor j, respectively. The items
of a solution X are ordered as follows: the sensor locations in X
are sorted based on their distance to H, where 1 is the closest
and N is the farthest sensor location with respect to H, respectively.
This results in having the locations of the sensors that are densely
deployed around H at the beginning of each solution and the loca-
tions of the sensors that are spread away at the end. Thereinafter,
each sensor j is assigned a transmit power level Pj proportional to
Rj

c 6 Rmax, such that it reaches its closest neighbor sensor, e.g. k,
where k < j.

3. The problem-specific Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D)

This section details the proposed MOEA/D operators designed
for tackling the K-connected DPAP. Note that, the underlying idea
behind the problem-specific operators might shed some light on
the design of MOEA/Ds for other MOPs.

3.1. Decomposition and analysis

Initially, MOEA/D needs to decompose a MOP into a set of sub-
problems. Any decompositional technique can serve for this pur-
pose [20]. In this paper, the Weighted Sum approach is used, as
follows. The multi-objective DPAP is decomposed into m scalar
optimization subproblems considering two objectives. The ith sca-
lar optimization subproblem can be defined as:

max giðX; kiÞ ¼ kiLðXÞ þ ð1� kiÞCvðXÞ;
where ki is the weight coefficient of subproblem i = 1, . . . ,m. For the
remainder of this paper, we consider a uniform spread of the
weights ki, which remain fixed for each i for the whole evolution
and are determined as follows:

ki ¼ 1� ði=mÞ;

for i = 2, . . . ,m and k1 = 1. Hence, the ki coefficient is mainly utilized
for decomposing a MOP into a set of scalar subproblems by adding
different weights to the objectives.
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-objective K
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In this paper, we have also given a problem-specific meaning to
this parameter. Considering the ki weight coefficient of a subprob-
lem i, we can predict the objective preference of a particular design
and therefore, its position in the objective space. For example, the
extreme solutions XA and XB in Fig. 2 focus at optimizing one objec-
tive each. The extreme solution XA provides the maximum lifetime
and minimum coverage and the extreme solution XB provides the
maximum coverage and minimum lifetime among all the solutions
in PF, respectively. The goal of DPAP, however, is to provide the
interested users with a diverse set of network design choices
(e.g. Xa, Xb, and Xc in Fig. 2), giving the trade-off between the ex-
treme solutions XA and XB. However, the procedure of designing
non-extreme topologies is complicated, since there is not a scalar
method which can design all of them in a single run. However,
appropriate scalar strategies can be employed and controlled to
optimize different feasible areas of the objective space accordingly.
Note that, this beneficial procedure cannot be utilized by any non-
decompositional MOEA framework.

3.2. MOEA/D: an overview

A general MOEA/D approach usually proceeds as in Algorithm 1.

Algorithm 1. The MOEA/D general framework

Input:
� network parameters (A,N,E,Rs,Pmax);
� m: population size and number of subproblems;
� T: neighborhood size;
� uniform spread of weight vectors

(k1,1 � k1), . . . , (km,1 � km);
� the maximum number of generations, genmax;

Output: the external population, EP.
Step 0 – Setup: Set EP :¼ ;; gen :¼ 0; IPgen :¼ ;;
Step 1 – Initialization: Uniformly randomly generate an

initial internal population IP0 = {X1, . . . ,Xm};
Step 2: For i = 1, . . . ,m do

Step 2.1 – Genetic Operators: Generate a new solution Y
using the genetic operators.
Step 2.2 – Repair heuristic: Apply a problem-specific repair
heuristic on Y to produce Z.
Step 2.3 – Update Populations: Use Z to update IPgen, EP
and the T closest neighbor solutions of Z.

Step 3 – Stopping criterion: If stopping criterion is satisfied,
i.e. gen = genmax, then stop and output EP, otherwise
gen = gen + 1, go to Step 2.
-connected Deployment and Power Assignment in WSNs using a problem-
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The following remarks are related to the MOEA/D framework:
� The internal population IPgen of size m keeps the best solution
found so far for each subproblem. The initial solutions of IP0

are generated either randomly [3] or by a problem-specific heu-
ristic (which will be introduced in Section 3.3).
� Solution Y is generated by using a selection operator (which will

be detailed in Section 3.4.1) to choose two parent solutions
from the IPgen, e.g. Pr1, Pr2, a crossover operator (which will be
detailed in Section 3.4.2) to produce a new solution from Pr1,
Pr2 and a mutation operator (which will be detailed in Section
3.4.3) to modify the new solution Y. Solution Z is produced by
using a repair method on Y (which will be detailed in Section
3.5).
� The T closest neighbor solutions of Z are the solutions of the T

closest subproblems of i in terms of their weights {k1, . . . ,km}.
This is commonly known as the T neighborhood of subproblem
i.
� The external population EP stores all the non-dominated solu-

tions found so far during the search.

In the following the MOEA/D-based, DPAP-specific operators
are presented.

3.3. Population initialization

In Step 1 of MOEA/D, we adopt a problem-specific heuristic to
generate m solutions for the initial internal population (i.e. IP0).
The proposed heuristic seeds the initial solutions into promising
feasible regions of the objective space to improve the overall per-
formance of the MOEA/D.

In DPAP, we have m subproblems, where Xi is the solution of
subproblem i = 1, . . . ,m. Following the discussion in Section 3.1,
solution X1 should have the highest lifetime, solution X2 a better
coverage than X1 but a worse lifetime and so on, where solution
Xm should have the highest coverage. Thus, the sensors of X1

should be densely deployed in a small area A1 around H, where
for X2 the area A2 should be larger than A1 so that the sensors
are more sparsely deployed to benefit the coverage objective and
so on. Finally, for Xm the sensors should be sparsely deployed in
the whole area Am = A. In this paper, the subarea A1 # A is defined
as follows:

� Assuming unit side length grids and that each grid can host only
one sensor then

A. Konstantinidis, K. Yang / Compute
Please
specifi
A1 # A is a 2D area of length x1 and width y1;

centered at location ðxH; yHÞ;
with size x1 � y1 ¼ N

and x1 ¼ x
y
� y1;

ð8Þ
where A = [0,x] � [0,y] is the whole area of length x and width y.

Thereinafter, for the remaining subproblems i = 2, . . . ,m the
subarea Ai, that should gradually increase as the i increases
based on the weight coefficient ki, is defined as follows:

� Assuming unit side length grids and that each grid can host only
one sensor then
Ai # A is a 2D area of length xi and width yi;

centered at location ðxH; yHÞ;
where xi ¼ x1 þ ðx� x1Þ � ð1� kiÞ
and yi ¼ y1 þ ðy� y1Þ � ð1� kiÞ;

ð9Þ
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where for solution Xm of subproblem m with km = 0 the Am = A. Xm

should be a good approximation of solution XB with the highest
coverage.

For each subproblem i = 1, . . . ,m, an initial solution X is generated
using Algorithm 2.

Algorithm 2. An initial solution X for a subproblem i

Input: The size of a solution, N;
Output: A solution X;
Step 0: Set X :¼ ;;
Step 1: Calculate

Ai ¼
Eq: ð8Þ; if i ¼ 1;
Eq: ð9Þ; otherwise;

�

Step 2: Uniformly randomly generate N locations (xj,yj) 2 Ai

and add them in X;
Step 3: Order solution X as in Section 2.3;
Step 4: Assign transmit power levels Pj, where j = 1, . . . ,N, to

solution X, as in Section 2.3;
Step 5: Output X;
� The proposed population initialization constrains the initial

locations within a subarea Ai, which is calculated based on N
and the weight coefficient ki.

Remark 1. The random population initialization methods are usu-
ally ‘‘simple” and fast. Thus, they may be efficient in cases like [3]
in which the entire objective space is feasible. In constrained
MOPs, a random method often obtains low quality feasible solu-
tions and/or infeasible solutions, which has a negative impact on
the performance of the algorithm.

Remark 2. The problem-specific population initialization methods
are usually more computationally expensive than random meth-
ods. In constrained MOPs, however, there might be a trade-off
between the computational increase of MOEA/D due to a prob-
lem-specific population initialization, and the computational
increase due to a high number of repair function evaluations on
the infeasible solutions obtained by the random process. A high
number of infeasible solutions usually requires a high number of
repair function evaluations, which often increases the overall com-
putational effort of the algorithm.

Remark 3. The proposed problem-specific population initializa-
tion aims at: (a) improving the performance of MOEA/D by obtain-
ing good, feasible initial solutions and (b) reducing the probability
of obtaining infeasible solutions, with respect to an uniformly ran-
dom method. This probability increases as ki decreases.

3.4. Genetic operators

In the ith pass of the loop in Step 2 of the MOEA/D, the genetic
operators generate a new solution in Step 2.1. Note that, the same
genetic operators are initially proposed in [3] and successfully ap-
plied to the unconstrained DPAP. However, it is our belief that their
problem-specific nature might reduce the generation of infeasible
solutions (i.e. do not satisfy the K-connectivity constraints) and di-
rect the search into promising feasible regions of the objective
space. Therefore, they are adopted and introduced from a feasibil-
ity point of view in the following, for clarity.

3.4.1. Selection operator
The first genetic operator in Step 2.1 is the M-tournament selec-

tion operator (denoted as M-tourS) that combines a mating restric-
-connected Deployment and Power Assignment in WSNs using a problem-
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tion [20] and a standard tournament selection [33]. M-tourS, pro-
ceeds as in Algorithm 3.

Algorithm 3. The M-tournament selection operator (M-tourS)
for each subproblem i

Input: A population of solutions, IPgen;

Output: Two parent chromosomes, Pr1, Pr2;
Step 1: Select the solutions X 2 IPgen of the M closest

subproblems of i to compete in the tournament;
Step 2: Evaluate each solution X of the tournament in terms of

gi(X,ki);
Step 3: Find the best two solutions of the tournament, set

them as Pr1, Pr2 and stop;
The aim of M-tourS is to select solutions of the M closest sub-
problems of a subproblem i in IPgen, in terms of the Euclidean dis-
tance of their weights {k1, . . . ,km}, which are called Xi’s neighbors
and compete to a tournament. In that case, Xi’s neighbors, e.g. Xj

and Xk, are competing in i’s tournament in terms of gi(X,ki), ignor-
ing their own kj and kk, their Pareto domination and/or ranking. In
this way, more selection pressure is provided towards the optimal
point of each particular i for better exploitation of the feasible re-
gions of the objective space. That is, the optimization of a network
design Xi, should mainly acquire good topological information from
a neighbor network design Xj; instead of a network design Xm

which is far away in the weight space. This is due to the highly
non-linear multi-hop nature of WSNs. A tiny change in the topol-
ogy may lead to a big change on the objective values due to the
exponential relationship between the sensors transmission dis-
tance and energy consumption, as well as disconnections and/or
partitions of the network. According to Section 3.1, the solutions
of the subproblems in area a are mostly dense network designs
comprised of sensors located close to H with low transmit power
levels to facilitate the lifetime objective. In contrast, the solutions
of the subproblems in area c are spread network designs comprised
of sensors spread along the sensing field with high transmit power
levels to facilitate the coverage objective. Thus, by combing two
solutions that are far away in the objective space (e.g. a dense
deployment and a spread deployment) might cause deterioration
of the objective values and/or violation of the constraints.

The two selected parent solutions Pr1 and Pr2 are then for-
warded for recombination to the crossover operator.

3.4.2. Crossover operator
In Step 2.1 (Algorithm 1), the crossover combines the two par-

ents Pr1 and Pr2 to generate a new solution-the offspring denoted
as O, with a probability rate rc. In this paper, the adaptive crossover
operator (denoted as aX) is adopted [3], which probabilistically
controls two crossover strategies (i.e. window and clustering) each
favoring different feasible areas of the objective space.

The window crossover control parameters (behaviors) change
dynamically from subproblem to subproblem based on instant
requirements. To do so, it determines a ‘‘window” of size:

wi :¼ N þ N � ð1� kiÞ; ð10Þ

to select promising genetic material from each parent and direct the
search into promising feasible areas of the search space for each
particular i. That is, when ki is large and L(X) favors Cv(X), the win-
dow is small such that the sensor locations that will be added in O
are as close to H as possible with low transmit power levels to pro-
vide higher network lifetime and maintain K-connectivity. When ki

decreases and Cv(X) starts favoring L(X), wi gradually increases to
give the chance to the sensor locations which are spread in A to
be added in O and therefore to provide better network coverage.
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-objective K
specific constrained evolutionary algorithm based on decomposition, Comput.
The window always start at position 1 of solution U to always
include the sensor locations of the ‘‘dense” part of the network
(i.e. close to H) and therefore to maintain the connectivity as the
sensor locations spread in the topology.

Algorithm 4. Adaptive crossover operator for each
subproblem i

Input: Two solutions Pr1 and Pr2;
Output: A solution O;
Step 1:

Set d ¼
1; if ki P 0:5;
ki þ 0:1; if 0:3 < ki < 0:5;
0; otherwise:

8><
>: ð11Þ

Step 2: Uniformly randomly generate a number rand from
[0,1]

Step 3: If rand < d then//Apply Window
Step 3.1: Set O = ;; U = Pr1 [ Pr2;
Step 3.2 Order solution U as in Section 2.3;
Step 3.3: Uniformly randomly generate an integer j from
{1,2, . . . , [wi]}, where wi is defined as in Eq. (10);
Step 3.4 If there exists a (xj,yj) in
U = {(x1,y1), (x2,y2), . . . , (x2N,y2N)} then

Step 3.4.1: Delete (xj,yj) from U and add it in O;
Step 3.4.2: If the size of O is not N then goto Step 3.3;

otherwise stop and output O;
Step 4: Else//Apply clustering:

Step 4.1: Set O = Pr1 [ Pr2; d0 = dc;
Step 4.2: Order infeasible solution O = {(x1,y1), . . . , (x2N,y2N)}
as in Section 2.3;
Step 4.3: For j = 1 to 2N

While (xj,yj) 2 O and $(xk,yk) 2 Ojdjk 6 d0 do;
Step 4.3.1: Uniformly randomly delete either location

(xj,yj) or (xk,yk) from O;
Step 4.3.2: If the size of O is equal to N then stop and

output O;
End while

Step 4.4: Set d0 = d0 + dc and goto Step 4.3;
However, the window crossover has some undesirable effects
for low weights (e.g. km) and particularly for area c of the objective
space, generating infeasible offspring [3]. Particularly, when ki ? 0
then wi ? 2 � N, which basically drives the crossover operation
into an uniform random selection of sensor locations from the
merged solution U. In that case, there is a high probability of select-
ing locations which are far away to each other, resulting in a high
number of disconnected sensors, violating the K-connectivity con-
straint. This is not beneficial for the particular subproblems and
consequently for feasible offspring reproduction of network de-
signs that require high coverage quality. The clustering crossover
overcomes this undesirable effect and obtains feasible network
topologies of high coverage. That is, each sensor j at location
(xj,yj) 2 O represents a cluster, having d0 as the minimum Euclidean
distance measure between each cluster. Two clusters centered at
locations (xj,yj) and (xk,yk) are merged if djk 6 d0. In that case, either
location (xj,yj) or (xk,yk) is deleted from O. This continues until N
locations remain in O. Otherwise, if there are no more locations
with djk 6 d0 and the size of solution O is less than N, the Euclidean
distance measure is increased to further spread the locations in the
solution.

The proposed adaptive crossover composed of the window and
the clustering crossovers just described is outlined in Algorithm 4.
In this kind of crossovers, different mechanisms are adopted with a
probability d for producing a new solution, where d = ki means that
-connected Deployment and Power Assignment in WSNs using a problem-
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two crossover strategies are almost equally applied in each
generation. In this paper, we suggest a d probability such that
the window crossover is applied with highest probability in areas
a and b and the clustering in area c to maintain the K-connectivity
constraint for the reasons just mentioned.

3.4.3. Mutation operator
The last operator in Step 2.1 of MOEA/D (Algorithm 1 in Section

3.2) is the mutation, which is responsible for maintaining the
diversity of the population by modifying the locations of a solution
O with a rm probability. However, the choice of the new location
should be carefully determined, since an improper choice may
damage all the preceding actions of the problem-specific selection
and crossover operators, resulting in deterioration of the objective
values and violation of the K-connectivity constraints. That is, dis-
connected sensors, partition of the network, since the deletion of a
sensor in multi-hop communication may disconnect other parts of
the network.

Thus, it is considered reasonable to allow the mutation operator
to randomly modify the locations of a solution with an rm probabil-
ity, but restricting the modification to close to the current value or
at least to bias the probability distribution in its favor. This may
maintain the diversity of the population without destructive
behavior (i.e. generating infeasible solutions) or unnecessary
searches. The adaptive mutation operator that proceeds as in Algo-
rithm 5 is composed of two problem-specific mutation strategies,
namely the local and global mutations that favor different feasible
areas of the objective space, respectively.

Algorithm 5. Adaptive mutation operator for each
subproblem i

Input: A solution O
Output: A mutated solution Y
Step 0: Set rm;
Step 1: Order solution O as in Section 2.3;
If ki > 0.5 then
Step 2: For j = 1 to N do

Step 2.1: Generate an uniform random number
rand 2 [0,1];
Step 2.2: If rand 6 rm then

Calculate x0j; y
0
j

� �
using Eq. (12). Replace (xj,yj) 2 O with

x0j; y
0
j

� �
;

Else
Step 3: For j = 1 to N do

Step 3.1: Generate an uniform random number
rand 2 [0,1];
Step 3.2:If rand 6 rm then

Calculate A0 and x0j; y
0
j

� �
using Eq. (13). Replace (xj,yj) 2 O

with x0j; y
0
j

� �
;

End if
Step 4: Output Y = O;

If ki favors the lifetime objective (i.e. area a and the beginning of

area b) then a location (xj,yj) is modified ‘‘locally”, i.e.:

Uniformly randomly generate x0j 2 ½xj � dc; xj þ dc�
and y0j 2 ½yj � dc; yj þ dc�;

ð12Þ

to provide a minimum shift from its current position, where dc is
the distance between the centers of two adjacent diagonal grids.
This may result in improving Cv(X) in the sake of increasing Pj, when
the shift is backward with respect to H or, improving L(X) by
decreasing the Pj as well as decreasing the probability of violating
Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-objective K
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the K-connectivity constraint. If ki favors the coverage objective
(i.e. the end of area b and area c) then a location (xj,yj) is modified
‘‘globally”, i.e. a new location x0j; y

0
j

� �
is generated in a subarea

A0 # A which is defined as follows:

xmin ¼ ðxH � jxH � xjjÞ � Rmax; ymin ¼ ðyH � jyH � yjjÞ � Rmax;

xmax ¼ ðxH þ jxH � xjjÞ þ Rmax; ymax ¼ ðyH þ jyH � yjjÞ þ Rmax;

x0 ¼ xmax � xmin; y0 ¼ xmax � xmin;

A0 # A is a 2D area with length x0 and width y0:

Uniformly randomly generate x0j; y
0
j

� �
2 A0;

ð13Þ

where x0 and y0 are the width and height of A0, respectively. Note
that when k ? 0 then it should be that A0 ? A. In that case the sen-
sors are already spread in the topology having a high probability
that the modified sensor will find a path towards H and not violate
the constraints. The modified offspring is then forwarded to the re-
pair operator. For more details on the genetic operators and their
interrelation please refer to [3].

3.5. Constraint handling: repair heuristic

In K-connected DPAP, a solution X is infeasible if Cn(X) – 1, i.e.
there exists at least one sensor j at location (xj,yj) 2 X with cj = 0
(defined in Section 2.1). Thus, a repair heuristic is designed for
identifying and transforming an infeasible solution into a feasible
one (i.e. move it to a feasible region of the search space). An infea-
sible solution can be generated during initialization and/or repro-
duction of an offspring solution. A good repair heuristic should
have the following properties:

� the repaired solution should be as close as possible to the infea-
sible solution, so that the search space is more efficiently
explored.
� the objective functions should not be deteriorated.

Algorithm 6. The DPAP-specific Repair Heuristic (RH) for a
subproblem i

Input: A solution X;
Output: A feasible solution Y;
Step 0: Set K; s;

Step 1: if CnðXÞ ¼ 1; goto Step 2;
0; goto Step 5;

�

Step 2: Find the origin of infeasibility using Eq. (3), i.e. a
sensor j at (xj,yj) 2 X with cj = 0;

Step 3: if ki P 0.5 then
Step 3.1: Divide the circle with radius r = Rmax centered at
(xH,yH) into s equal sectors;
Step 3.2: Find the sparsest sector;

Step 3.3: Uniformly randomly generate a location x0j; y
0
j

� �

within the sparsest sector. Replace (xj,yj) 2 X with x0j; y
0
j

� �
and set Pj = (djH)a;
Else
Step 3.4: Find the Kth closest location to (xj,yj), e.g.
(xv,yv) 2 X;

Step 3.5: Calculate a new location x0j; y
0
j

� �
2 A using Eq. (14).

Replace (xj,yj) 2 X with x0j; y
0
j

� �
and set Pj ¼ Rj

c

� �a
;

EndIf
Step 4: If $jj(xj,yj) 2 X, cj – 1 then goto Step 2;
Step 5: Output Y = X;
-connected Deployment and Power Assignment in WSNs using a problem-
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Based on these properties, we design the DPAP-specific Repair
Heuristic (denoted as RH), Algorithm 6, in which the weight coef-
ficient ki of subproblem i plays an important role.

� In Step 1, the heuristic checks whether a solution is feasible or
infeasible (i.e. calculates Cn(X) as in Eq. (6) defined in Section 2.1).
� In Step 2, the origin of infeasibility is identified, i.e. a sensor j at loca-

tion (xj,yj) 2 X with cj = 0 (given by Eq. (3) defined in Section 2.1).
� In Step 3, when ki is high, and subproblem i requires a feasible

solution with long network lifetime, the RH:
Fig. 3.
sector i
link dis

Please
specifi
Step 3.1: divides the circle with radius r = Rmax centered at
(xH,yH) into s equal sectors (e.g. s = 4).
Step 3.2: finds the sparsest sector (i.e. the sector with the
lowest number of sensors).
Step 3.3: Replaces location (xj,yj) with an uniform random
location x0j; y

0
j

� �
within the sparsest sector, so that

Rj
c ¼ djH 6 Rmax and sets Pj ¼ Rj

c

� �a
.

In that case, while the RH is repairing an infeasible network
design it might also provide the following benefits:
– Supports the network load balancing and prevents a prema-

ture energy elimination of the sensors that are already
directly connected to H, increasing the network lifetime
(Fig. 3(a), for K = 1).

– Covers any previously uncovered area close to H, increasing
the network coverage without decreasing the network life-
time (Fig. 3(b), for K = 1).

� In Step 3, when ki is low, subproblem i requires a feasible solu-
tion with high network coverage, the RH:
Table 1
Step 3.4: finds a location (xv,yv), which is the Kth closest loca-
tion to (xj,yj) and sensor v is a positive-advance neighbor of
sensor j (i.e. v is closer to H than j [30]). If there does not
exist such a location (xv,yv) then RH considers (xH,yH) as
the closest location to (xj,yj) and sets Rj

c ¼ Rmax to repair
the infeasibility.
Step 3.5: Replaces location (xj,yj) with a new location x0j; y

0
j

� �
calculated as follows:

x0j; y
0
j

� �
¼ ðxj; yjÞ þ ðdju � Rj

cÞ � ½ðxu; yuÞ � ðxj; yjÞ�=djx; ð14Þ

Network instances.

Network instances A (m2) N Density (N/A)
where

NIn1 2500 (50 � 50) 25 0.01
NIn2 2500 (50 � 50) 50 0.02
NIn3 2500 (50 � 50) 63 0.025
NIn4 10,000 (100 � 100) 100 0.01
NIn5 10,000 (100 � 100) 150 0.015
NIn6 10,000 (100 � 100) 250 0.025
u ¼
v ; if cj ¼ 1; djv 6 djH;

H; otherwise;

�

Rj
c ¼

2Rs; if Rmax P 2Rs;

Rmax; otherwise;

�
Pj ¼ Rj

c

� �a
:

(a and b) Repairing an infeasible solution for subproblems with high ki. The circle
s the sparsest. (c) Repairing an infeasible solution for subproblems with low ki. Th
covered after redeployment.
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This results in low sensing range overlaps between the sensors
that might increase the network coverage while repairing the
infeasible solution (Fig. 3(c), for K = 1).

The repaired solution is then used to update the internal (IP)
and external (EP) populations as follows.
3.6. Update of populations and termination criterion

In Step 2.3, the populations (defined in Section 3.2) are updated
for each solution Zi as follows: (1) The (IPgen) update phase. If gi(-
Zijki) > gi(Xijki) then IPgen [ {Zi} and IPgen/{Xi}, otherwise Xi remains
in IPgen. (2) The neighborhood (defined in Section 3.2) update
phase. The new solution Zi is compared with its T closest Xj 2 IPgen

neighbor solutions. If gj(Zijkj) > gj(Xjjkj) then, IPgen [ {Zi} and IPgen/
{Xj}, otherwise, Xj remains in IPgen, where j = 1, . . . ,T. (3) The (EP)
update phase. EP = EP [ {Zi} if Zi is not dominated by any solution
Xj 2 EP, and EP = EP/{Xj} if Zi � Xj, for all Xj 2 EP.

At the end of each generation the termination criterion (the
maximum number of generations, genmax) is checked to decide
whether the search should stop.
4. Experimental setup

In this paper, we study six network test instances (Table 1),
which represent a broad class of the small-scale and dense K-con-
nected DPAP WSN topologies.

Moreover, we have fixed the parameter levels, following the
experimental studies in [3], as follows: max number of genera-
tions, genmax = 250, population size and # of subproblems
m = 120, crossover rate rc = 0.9, mutation rate rm = 0.5, tournament
size M = 20 and neighborhood size T = 2.

In all simulation studies, the following network parameters are
set [7,34]: Rs/Rmax = 100/200, E = 5 J, dmin = 100 m, a = 2, amp = 100
pJ/bit/m2 and square-grids of side length 10 m. The network life-
centered at (xH,yH) with radius r = Rmax is divided into s = 4 sectors. The shadowed
e dash-dotted line indicates the redeployment and the dotted line indicates the new
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time and coverage are evaluated as in Section 2.2 and the lifetime
objective is normalized by the L(XA) as in [35]. All algorithms were
coded in Java programming language and run on an Intel/circledR
Pentium 4 3.2 GHz Windows XP server with 1.5 GB RAM.
5. Performance metrics

This section briefly describes the performance metrics used for
comparing the performance of MOEAs. Since MOEAs generate a set
of solutions for approximating the PF, it is not easy to compare the
algorithms performances and there is not a single metric that can
satisfy all requirements. For this purpose, several metrics have
been proposed [17,13,36], including the IGD-metric, the hypervo-
lume measure, the D-metric, C-metric etc. In this paper, the DPAP
network topologies are designed off-line and there is no critical
need of real-time decision making. Thus, our main focus is at
obtaining a good approximate PF within an acceptable computa-
tional effort. In the absence of the real PF of a constrained DPAP in-
stance, the following four metrics are adopted:

The D-metric [17] measures the extent of spread achieved
among the obtained solutions. In the case of two objectives, the
D value of a set of candidate solutions A is defined as follows:

DðAÞ ¼ df þ dl þ
P
jdj � �dj

df þ dl þ jAj�d
;

where df and dl are the extreme Pareto optimal solutions in the
objective space, dj is the distance between two neighboring solu-
tions and �d is the mean of all the distribution. The smaller the
D(A) metric is, the better the diversity performance of A. D(A) = 0
means an uniform spread of solutions in the objective space.

A straightforward comparison metric between two sets of non-
dominated solutions A and B is the C-metric [17,36]. The C(A,B)
metric, which is usually considered as a MOEA quality metric, eval-
uates the ratio of the non-dominated solutions in A dominated by
the non-dominated solutions in B, divided by the total number of
non-dominated solutions in A. Hence

CðA;BÞ ¼ jA� fx 2 Aj9y 2 B : y � xgj
jAj :

The smallest C(A,B) is, the better the A. Note that
C(A,B) – 1 � C(B,A).

Another commonly used metric, usually considered in cases of
real life discrete optimization problems [27,37], such as DPAP, is
the number of Non-Dominated Solutions (NDS(A)) in set A, i.e.
Table 2
Simulation results on S = 30,000 random network designs.

NIn K Infeasible sol.

1 1 29,235
2 30,000
3 30,000
4 30,000
5 30,000

2 1 12,870
2 30,000
3 30,000
4 30,000
5 30,000

3 1 6030
2 30,000
3 30,000
4 30,000
5 30,000

Please cite this article in press as: A. Konstantinidis, K. Yang, Multi-objective K
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NDSðAÞ ¼ jAj:

In DPAP, it is very difficult to obtain many different NDS. Therefore,
a high number of NDS(A) is desirable to provide an adequate num-
ber of Pareto optimal choices. However, the NDS should be consid-
ered in combination with other metrics (e.g. D and C metrics), since
it is usually desirable to have a high number of NDS when the solu-
tions is of high quality and spread in the objective space, within an
acceptable CPU effort. In contrast, and usually in cases of continu-
ous optimization [20], a high number of NDS is not desirable, since
the decision making procedure becomes more complicated and
more time consuming.

6. Experimental results and discussion

The goals of our simulation studies are: (1) to demonstrate the
difficulty in obtaining feasible solutions for the K-connected DPAP
through a purely random process, (2) to test the strength of the pro-
posed operators at improving the performance of MOEA/D at dealing
with the K-connected DPAP and (3) to demonstrate the effectiveness
of the proposed DPAP-specific MOEA/D-RH against the popular con-
strained NSGA-II in several WSN instances, giving the trade-off of the
objectives and a variety of feasible network design choices.

6.1. Random method

To study the difficulty of the proposed K-connected DPAP, we
use a purely random method in NIn1, 2 and 3 under a K = 1, . . . ,5
connectivity constraint. Specifically, we uniformly randomly gen-
erate 30,000 samples (i.e. network topologies) and we examine
(i) the . metric [38] that is defined as follows:

. ¼ jFj=jSj; ð15Þ

where jFj is the number of feasible solutions, and jSj is the total
number of random solutions generated (i.e. S = 30,000), (ii) the total
number of infeasible solutions and (iii) the total and (iv) average
number of disconnected sensors.

The results of Table 2 show that the random method obtains
solutions in the feasible region of the objective space only when
K = 1. For K = 2 to 5 all 30,000 network designs are infeasible in
all network instances (i.e. NIn1, NIn2 and NIn3). Moreover, when
K = 1 and the density is low (i.e. NIn1, N = 25), there are only
2.55% feasible solutions, which means 29,235 out of 30,000 net-
work designs are infeasible, having about 9/25 sensors discon-
nected per network design (i.e. about 36%). When the density is
high (e.g. NIn3, N = 63) this number decreases to about 0.567/63
sensors, on average (i.e. 0.99%). This is the reason why sometimes
.(%) Disconnected sensors

Total Average

2.55 275,337 9.175
0.0 511,665 17.05
0.0 649,890 21.675
0.0 717,879 23.925
0.0 741,642 24.725

57.1 16,766 1.7
0.0 110,425 11.05
0.0 214,441 21.45
0.0 321,518 32.15
0.0 405,060 40.5

79.9 5412 0.567
0.0 82,646 8.253
0.0 174,914 17.514
0.0 293,468 29.358
0.0 411,594 41.139
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it is assumed [39] that a dense sensor deployment implies network
connectivity. Table 2, however, shows that even when the number
of disconnected sensors is low, the . = 79.9% indicates that a rela-
tively high number of solutions is still infeasible, i.e. about 20.1% or
6030/30,000 solutions.

6.2. The effect of the DPAP Repair Heuristic (RH)

In this subsection, we study the effect of the proposed Repair
Heuristic (denoted as RH) on MOEA/D and we evaluate its impact
on dealing with the proposed DPAP. To do so, we compare the
MOEA/D w/RH that adopts the proposed RH, with the MOEA/D
w/SoFs and the MOEA/D w/PenF that replace the RH with the
following constraint handling techniques, respectively:

� Superiority of Feasible solutions (SoFs) [40]: A comparison of
two solutions X and Y is performed based on the following
rules:
– If X is feasible and Y is not feasible then select X.
– If both X and Y are feasible then select the one with the

highest scalar fitness.
– If both X and Y are infeasible then select the one with the

least constraint violation (i.e. number of disconnected
sensors).

It aims at favouring the good feasible, or least infeasible solu-
tions to be copied in the next generation.
� Penalty Function (PenF) [41]: Transforms a constrained opti-

mization problem into an unconstrained one by subtracting
(in the case of DPAP) a certain value (also known as penalty,
measured by a penalty function) from the scalar fitness value,
based on the amount of constraint violation. It aims at favouring
the feasible solutions over infeasible ones during the selection
process. In the proposed DPAP there is only one constraint, i.e.
the K-connectivity constraint, and the amount of violation is
measured based on the number of sensors in the network that
violate this particular constraint. The penalty of a solution X is
measured as follows:
Table 3
The fea

NIn

1

2

3

Please
specifi
pnðXÞ ¼ 1� CnðXÞ;
where Cn(X) is calculated as in Eq. (6) of Section 2.2. A con-
strained subproblem i can then be transformed into an uncon-
strained one as follows:
max giðX; kiÞ ¼ ½kiLðXÞ þ ð1� kiÞCvðXÞ� � pnðXÞ: ð16Þ
sibility results of MOEA/D w/RH, w/SoFs and w/PenF in NIn1, 2 and 3, K = 1, . . . ,5.

K MOEA/D w/RH MOEA/D w/SoFs

Infeasible .(%) Disconnected sensors Infeasible .(%)

Total Average

1 27,751 7.5 153,857 5.12 27,941 6.9
2 19,665 34.5 52,634 1.754 30,000 0.0
3 20,106 33.0 60,080 2.0 30,000 0.0
4 20,448 31.8 70,083 2.33 30,000 0.0
5 21,898 27.0 80,357 2.67 30,000 0.0

1 11,871 60.4 39,248 1.308 11,384 62.1
2 29,843 0.5 188,221 6.274 29,549 1.5
3 29,999 0.003 360,056 12.002 30,000 0.0
4 30,000 0.0 454,796 15.160 30,000 0.0
5 30,000 0.0 546,465 18.215 30,000 0.0

1 5206 82.6 13,027 0.434 4800 84.0
2 29,102 3.0 123,893 4.130 28,047 6.5
3 29,989 0.04 267,333 8.911 30,000 0.0
4 30,000 0.0 431,934 14.398 30,000 0.0
5 30,000 0.0 527,812 17.594 30,000 0.0
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The three MOEA/Ds. are compared in NIn1–3 for K = 1, . . . ,5 and
S = m � genmax = 30,000 in terms of the (i–iv) metrics, defined in
Section 6.1. Note that the metrics are evaluated at the beginning
of each generation for the MOEA/D w/PenF and the MOEA/D w/SoFs,
and before repairing for the MOEA/D w/RH. Besides, the following
standard genetic operators [33] are used, random population
initialization, standard tournament selection operator (tourS),
two-point crossover operator (2X), standard random mutation
operator (rM).

The results of Table 3 show that MOEA/D w/RH helps the evolu-
tionary process at obtaining feasible solutions in all network in-
stances for most Ks. In contrast, MOEA/D w/SoFs and w/PenH
perform poorly when the network is sparse (i.e. NIn1) and for high
Ks when the network is dense. Specifically, MOEA/D w/RH obtains
feasible solutions in NIn1 for all Ks. Moreover, MOEA/D w/RH
found it difficult to direct the search into the feasible regions of
the objective space for K = 4, 5 in NIn2, 3. MOEA/D w/SoFs gener-
ates 30,000 infeasible solutions (. = 0.0) for K = 2, . . . ,5 in NIn1,
for K = 3, . . . ,5 in NIn2 and for K = 3, . . . ,5 in NIn3. MOEA/D w/PenF
performs slightly better than MOEA/D w/SoFs, since it obtains fea-
sible solutions in NIn2, 3 for K = 3. MOEA/D w/RH generates less
infeasible solutions and there exists a lower number of discon-
nected sensors in its solutions for sparse networks with respect
to MOEA/D w/SoFs and MOEA/D w/PenF. The MOEA/D versions
perform similarly for dense networks. More insights are given in
the following example.

Fig. 4 illustrates the total number of disconnected sensors of the
solutions obtained by MOEA/D per generation with each technique
in NIn1, 2 and 3 for K = 1. In NIn1, all techniques start with about
1100 disconnected sensors out of a total of 3000 deployed sensors
(i.e. m � N = 120 � 25). The latter is sharply decreased to about 600
disconnected sensors after one generation when RH is adopted and
is smoothly decreased to about 800 disconnected sensors after
about 20 generations when PenF and SoFs are adopted. This indi-
cates that RH directs the search into the feasible regions of the
search space more effectively. When the network becomes denser
(i.e. NIn2,3) the number of disconnected sensors decreases and the
three techniques perform similarly. The total number of discon-
nected sensors in NIn2 is around 150 and in NIn3 is around 50.
The effect of the hybridization of MOEA/D with the three tech-
niques (i.e. RH, SoFs and PenF) is further studied in terms of the
performance metrics introduced in Section 5, as follows.

Tables 4 and 5 show the comparison between the MOEA/Ds with
the three constraint handling techniques in the network instances
MOEA/D w/PenF

Disconnected sensors Infeasible .(%) Disconnected sensors

Total Average Total Average

197,800 6.59 27,892 7.0 196,318 6. 54
313,096 10.43 30,000 0.0 159,560 5.31
458,423 15.28 30,000 0.0 217,785 7.25
558,941 18.63 30,000 0.0 242,473 8.08
625,390 20.84 30,000 0.0 289,071 9.63

39,811 1.327 10,966 63.4 38,419 1.281
138,796 4.627 29,725 0.9 148,505 4.950
468,820 15.627 29,999 0.003 334,209 11.140
760,618 25.354 30,000 0.0 575,897 19.197
995,700 33.190 30,000 0.0 771,261 25.709

12,939 0.431 4729 84.2 12,417 0.414
87,545 2.918 27,684 7.7 82,122 2.737

332,153 11.072 29,987 0.04 249,124 8.304
645,220 21.507 30,000 0.0 473,512 15.784
974,595 32.486 30,000 0.0 715,402 23.847
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Fig. 4. The number of disconnected sensors per generation obtained by MOEA/D with RH, SoFs and PenF in NIn1–3, K = 1.

Table 6
Statistical results of MOEA/D w/RH+ (i.e. MOEA/D w/RH + proposed evolutionary operators) vs. MOEA/D w/RH (i.e. generic MOEA/D w/RH) in NIn1–3 of K-connected DPAP for
K = 1. The best performance in each instance for each performance metric is indicated in bold.

Network instance D NDS CPU C

(w/RH+) (w/RH) (w/RH+) (w/RH) (w/RH+) (w/RH) (w/RH+,w/RH) (w/RH,w/RH+)

1 0.9209 0.9075 5 11 0.1481 0.1296 0 0.9091
2 0.9475 0.9776 8 7 0.2594 0.2611 0 1.0
3 0.9767 0.9787 5 7 0.323 0.3194 0 1.0

Average 0.9483 0.9550 6 8.3333 0.2435 0.2367 0 0.9697

Table 4
Statistical results of MOEA/D with RH, SoFs and PenF constraint handling techniques in NIn1–3 of K-connected DPAP for K = 1. The best performance in each instance for each
performance metric is indicated in bold.

Network instance K D NDS CPU

(w/RH) (w/SoFs) (w/PenF) (w/RH) (w/SoFs) (w/PenF) (w/RH) (w/SoFs) (w/PenF)

1 1 0.9075 0.9701 0.9627 11 7 7 0.1296 0.0976 0.0815

2 1 0.9776 0.9642 0.9797 7 8 5 0.2611 0.1514 0.1137
2 0.7781 0.9273 0.9246 7 9 8 1.4930 1.0221 0.9952
3 0.8507 – 0.9269 9 – 6 1.7614 1.5178 1.4876

3 1 0.9799 0.9787 0.9763 7 7 5 0.3194 0.2001 0.1817
2 0.7116 0.9074 0.9326 9 10 6 1.6059 1.0213 0.9344
3 0.8249 – 0.8950 10 – 6 1.9295 1.4998 1.3567

Average 0.8614 0.9495 0.9425 8.57 8.2 6.14 1.07 0.787 0.7358

Table 5
The C-metric results of MOEA/D with RH, SoFs and PenF constraint handling techniques in NIn1–3 of K-connected DPAP for K = 1. The best performance in each instance for each
performance metric is indicated in bold.

NIn K C(w/RH,w/SoFs) C(w/SoFs,w/RH) C(w/RH,w/PenF) C(w/PenF,w/RH)

1 1 0.0 0.8571 0.0 0.7143

2 1 0.3333 0.7143 0.5 0.4
2 0.2857 0.0 0.2857 0.0
3 – – 0.0 0.1666

3 1 0.0 1.0 0.0 0.6
2 0.2222 0.1250 0.0 0.3333
3 – – 0.7 0.0

Average 0.1682 0.5392 0.2122 0.3163
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where feasible solutions are obtained. The results show that RH is
more beneficial to MOEA/D’s performance than PenF and SoFs. Par-
ticularly, MOEA/D w/RH provides a better average D metric and
the highest average number of NDS in the PF. In terms of quality,
the non-dominated solutions obtained by MOEA/D w/RH dominate
53% and 31%, on average, of the non-dominated solutions obtained
by MOEA/D w/SoFs and w/PenF, respectively. Its superiority comes
at the cost of a slightly more computational effort.

6.3. The effect of the specialized genetic operators

In the previous subsection, MOEA/D w/RH used the generic evo-
lutionary operators (i.e. tournament selection, two-point cross-
over, random mutation). In this subsection, we replace the
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3, K = 1.
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generic operators with the proposed evolutionary operators (de-
fined in Section 3.4) to study their effect on the K-connected DPAP
and evaluate their impact on the performance of MOEA/D. Specif-
ically, the MOEA/D composed of a random population initializa-
tion, the M-tournament selection operator, the adaptive
crossover operator with the dense to spread ordering (defined in
Section 2.3) and the adaptive mutation operator is combined with
the RH. The new MOEA/D version, called MOEA/D w/RH + hereinaf-
ter, is compared with MOEA/D w/RH in NIn1, 2 and 3 for K = 1.

The results in Table 6 show an increase in the performance of
MOEA/D in all network instances when the proposed problem-spe-
cific evolutionary operators are adopted. Specifically, MOEA/D w/
RH+ provides a better average diversity and a higher quality of
Pareto optimal solutions than MOEA/D w/RH, in all network in-
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stances. MOEA/D w/RH+ performs slightly worse in terms of the
number of NDS and the CPU effort with respect to MOEA/D w/RH.

In the following, the feasibility of the solutions obtained by the
MOEA/D w/RH+ with respect to those obtained by MOEA/D w/RH
is studied. The results are illustrated in Figs. 5–8. Fig. 5 show an
average increase of 30%, 15% and 10% on the number of feasible
solutions obtained for NIn1–3, respectively. Specifically, Fig. 6 shows
that MOEA/D w/RH+ obtains about 40, 20 and 10 more network
designs in the feasible region of the objective space than MOEA/D
w/RH in NIn1, 2 and 3, respectively. Moreover, Fig. 7 shows that
MOEA/D w/RH+ decreases the average number of disconnected
sensors by 15%, 3% and 1% in NIn1, 2 and 3, respectively, which
means that the number of repair function evaluations is decreased,
from around 600 to 250, 150 to 80 and 50 to 30, as it is shown in Fig. 8.

At this point, it is important to notice the high number of infeasi-
ble solutions obtained by the random population initialization
method. This can be seen in all network instances as a peak point
at the beginning of each scatter plot in Figs. 5–8. Generation
gen = 0 of Fig. 5 shows a .-metric of almost zero for NIn1, 0.6 for
Nin2 and 0.8 for NIn3. In addition, Fig. 6 shows that the number of
infeasible solutions of gen = 0 is close to 120, 50 and 25 for NIn1, 2
and 3, respectively. Fig. 7 shows that in gen = 0, around 35%, 6%
and 2% of the total N �m sensors deployed per generation are dis-
connected. Finally, Fig. 8 shows that more than 1000 sensors are dis-
connected and require repairing in NIn1. In NIn2 and 3 the
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Fig. 9. MOEA/D w/RH+ (i.e. MOEA/D+ proposed evolutionary operators, random pop
operators + proposed population initialization) in terms of the total number of disconne

Table 7
Performance measure of MOEA/D with RH+ and RH++ in NIn1–3 of K-connected DPAP. Th

NIn D (RH+) D (RH++) NDS (RH+) NDS (RH++)

NIn1 0.9209 0.8544 5 15
NIn2 0.9475 0.8733 8 14
NIn3 0.9867 0.8419 5 14

Average 0.9517 0.8565 6 14.33
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disconnected sensors are around 200 and 50, respectively. Therefore,
in all cases, the feasibility of the initial population is relatively poor.
6.4. The effect of the proposed DPAP-specific population initialization

To overcome the drawback mentioned in the previous subsec-
tion, the proposed DPAP-specific population initialization (defined
in Section 3.3) is further adopted. To do so, the MOEA/D w/RH++
approach is designed, which replaces the random population
initialization of MOEA/D w/RH+ with the proposed population
initialization. MOEA/D w/RH++ is compared with the MOEA/D w/
RH+ in NIn1–3, for K = 1.

Fig. 9 shows the total number of disconnected sensors (before
repairing) in the initial population for each subproblem. The results
show the effectiveness of the proposed DPAP-specific population
initialization on providing feasible solutions. The proposed opera-
tor seeds almost half of the initial network designs in the feasible
region of the objective space in NIn1, around 85 network designs
in NIn2 and almost all network designs (113/120) in NIn3. This
should save repair function evaluations as well as direct the search
into new feasible regions of the search space and consequently in-
crease the diversity of the population. It is also important to notice
that the proposed initialization obtains feasible solutions for most
subproblems with high ki.
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ulation initialization) vs. MOEA/D w/RH++ (i.e. MOEA/D+ proposed evolutionary
cted sensors per generation in NIn1–3, K = 1.

e best performance in each instance for each performance metric is indicated in bold.

CPU (RH+) CPU (RH++) C (RH+,RH++) C (RH++,RH+)

0.15 0.17 0.2000 0.2000
0.26 0.26 0.1250 0.3571
0.32 0.33 0.2000 0.2857

0.243 0.253 0.175 0.28
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Fig. 10. MOEA/D w/RH+ vs. MOEA/D w/RH++ in NIn1–3.

Table 8
MOEA/D w/RH vs. MOEA/D w/RH++ in NIn1, 2 and 3, K = 1, . . . ,5.

NIn K MOEA/D w/RH MOEA/D w/RH++

Infeasible .(%) Disconnected sensors Infeasible .(%) Disconnected sensors

Total Average Total Average

1 1 27751.0 7.5 153857.0 5.12 19086.0 36.38 52566.0 1.752
2 19665.0 34.5 52634.0 1.754 17721.0 40.93 49141.0 1.638
3 20106.0 33.0 60080.0 2.0 17601.0 41.33 43963.0 1.465
4 20448.0 31.8 70083.0 2.33 18467.0 38.44 51322.0 1.711
5 21898.0 27.0 80357.0 2.67 17142.0 42.86 44093.0 1.470

2 1 11871.0 60.4 39248.0 1.308 13492.0 55.027 34202.0 1.140
2 29843.0 0.5 188221.0 6.274 24119.0 19.603 66267.0 2.209
3 29999.0 0.003 360056.0 12.002 25325.0 15.583 87706.0 2.924
4 30000.0 0.0 454796.0 15.160 25528.0 14.907 119312.0 3.977
5 30000.0 0.0 546465.0 18.215 27246.0 9.18 175012.0 5.834

3 1 5206.0 82.6 13027.0 0.434 9932.0 66.893 28902.0 0.963
2 29102.0 3.0 123893.0 4.130 25150.0 16.167 71813.0 2.394
3 29989.0 0.04 267333.0 8.911 27379.0 8.737 111951.0 3.732
4 30000.0 0.0 431934.0 14.398 28767.0 4.11 195061.0 6.502
5 30000.0 0.0 527812.0 17.594 28899.0 3.67 223841.0 7.461
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Fig. 11. MOEA/D w/RH vs. MOEA/D w/RH++ in NIn1, 2 and 3, K = 1, . . . ,5.
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Table 7 and Fig. 10 show the comparison between the MOEA/D
w/RH++ and MOEA/D w/RH+ in NIn1–3, confirming the latter
statement. The results show that the problem-specific population
initialization directs the search into new feasible regions, resulting
in a considerable increase on the diversity and the number of NDS.
The performance of MOEA/D in terms of quality of solutions in the
PF and CPU time remains relatively the same. The increase in the
number of feasible solutions of the subproblems which prefer long
network lifetime (high ki, area a), mentioned in the latter para-
graph, is advantageous. Fig. 10 demonstrates the increase in the
performance of the MOEA/D towards the aforementioned region
of the objective space.
6.5. The performance of MOEA/D with all the proposed operators

Table 8 and Fig. 11 demonstrate the effectiveness of the MOEA/D
w/RH++ (MOEA/D w/RH+ proposed evolutionary operators + pro-
posed population initialization) with respect to the MOEA/D w/RH
(i.e. MOEA/D w/RH, the generic operators, random population ini-
tialization) in NIn1–3, for K = 1, . . . ,5. Remember that the generic
MOEA/D w/RH performs better than the generic MOEA/D with the
generic constraint handling techniques, i.e. SoFs and PenF (please re-
fer to Section 6.2 for more details). The results show that MOEA/D w/
RH++ is currently the most efficient and effective MOEA/D version
presented in this paper for the K-connected DPAP. MOEA/D w/
RH++ performs better than MOEA/D w/RH in terms of feasibility (Ta-
ble 8), i.e. obtains more feasible solutions before repairing, and in
terms of quality (Fig. 11), in all network instances for all Ks.
Table 9
MOEA/D (M) vs. NSGA-II (N) in NIn1–16. The best performance in each instance for
each performance metric is indicated in bold.

Net. ins. D NDS CPU C

(N) (M) (N) (M) (N) (M) ðN;MÞ ðM;NÞ

NIn1 0.9439 0.8417 8 14 0.20 0.37 1.0 0.0
NIn2 0.9196 0.8286 10 17 0.31 4.99 1.0 0.0
NIn3 0.8991 0.7203 8 12 0.39 6.80 1.0 0.0
NIn4 0.9869 0.8290 10 5 1.22 10.69 1.0 0.0
NIn5 0.9844 0.9377 12 17 2.71 24.43 1.0 0.0
NIn6 0.9598 0.8374 13 19 2.98 42.12 1.0 0.0

Average 0.9489 0.8324 8 14 1.3 13.4 1.0 0.0
6.6. Comparison of MOEAs

In this subsection, we study the efficiency and effectiveness of the
proposed problem-specific MOEA/D on the constrained DPAP. To do
so, we compare the proposed method with the state of the art in
MOEAs based on Pareto dominance. Namely, the constrained
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [17]. NSGA-
II maintains a population IPgen of size m at each generation gen, for gen-
max generations. NSGA-II adopts the evolutionary operators (i.e. selec-
tion, crossover and mutation) for offspring reproduction as MOEA/D.
The key characteristic of NSGA-II is that it uses a fast non-dominated
sorting and a crowded distance estimation for comparing the quality
of different solutions during selection and to update the IPgen and the
EP. We refer interested readers to [17] for details.
Fig. 12. MOEA/D vs. N
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In this paper, NSGA-II adopts the following non-decomposition-
al operators that have shown promising performance in [3]: the x-
y axis ordering (xyOr) (Ordering-II), the standard tournament
selection (tourS) (Selection-I), the two-point crossover (2X) (Cross-
over-II) and the random mutation (rM) (Mutation-I) as well as the
Superiority of Feasible solutions (SoFs) constraint handling tech-
nique as proposed by Deb et al. [17]. For comparing the two MOEAs
we have adopted both visual and statistical comparison, through
the performance metrics introduced in Section 5, in all network
test instances of Table 1.

Fig. 12 and Table 9 show the superiority of the proposed MOEA/D
against the NSGA-II. MOEA/D performs better than NSGA-II in terms
of quality, diversity and number of NDS in most network instances,
at the cost of a higher computational effort. Particularly, MOEA/D
provides a diversity of around 0.82 which is better than the 0.94 ob-
tained by NSGA-II and six more NDS on average. The Pareto optimal
solutions obtained by MOEA/D dominate all solutions obtained by
NSGA-II and none is dominated. This indicates that NSGA-II has dif-
ficulties at obtaining good and feasible solutions for the K-connected
DPAP and effectively shows the necessity of incorporating problem-
specific knowledge in MOEA/D for obtaining a feasible, diverse and
high quality set of Pareto optimal solutions.
7. Conclusions and future research

In this paper, the K-connected DPAP in WSNs is formulated as a
constrained MOP and is decomposed into a set of scalar subprob-
lems. The subproblems are classified based on their objective prefer-
ences and tackled by MOEA/D using problem-specific knowledge,
simultaneously. A solution representation dedicated to DPAP and
SGA-II in NIn1–6.
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several DPAP-specific, MOEA/D-based evolutionary operators are
proposed and/or adopted. Namely, a DPAP-specific population ini-
tialization, specialized genetic operators (M-tournament selection,
the adaptive crossover and the adaptive mutation operators) and a
problem-specific repair heuristic. Simulation results have shown
the effectiveness of the proposed operators at improving the perfor-
mance of MOEA/D and outperforming the constrained NSGA-II in
several network test instances. MOEA/D obtains a feasible, diverse
set of high quality WSN designs without any prior knowledge on
the objective preferences to facilitate the decision maker’s choice.

There is a number of avenues for further research. The DPAPs in
WSNs include many features (e.g. system models, uncertainty on
sensors detection capabilities) and issues (e.g. interference, mobil-
ity), which are also important as those in the proposed DPAP. Thus,
various multi-objective DPAPs can be defined and tackled by prob-
lem-specific MOEA/Ds, similarly to this work. Besides, the hybridiza-
tion of MOEA/D with problem-specific local improvement
techniques for further improving the performance of MOEA/D is also
a future study.
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