
65BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for
service delivery frameworks: history,
architecture and tools

N Georgalas and A Achilleos (BT), V Freskos (University of Patras, Greece) and
D Economou (University of the Aegean, Greece)

As communication service providers strive to become leaner and more responsive to their customers, product lifecycle
management will become a much more commonplace discipline. Already used extensively in other industries, the technique
reduces both the costs of developing and launching new products and overall time to market. However, when applied to the
service-oriented architectures being adopted by BT and other industry leaders, the process can become highly complex.
Products and services may have a myriad of dependencies on the capabilities of constituent parts and other related business
entities, all of which must be understood and addressed.

This paper shows that the key to fast adoption of product lifecycle management is simplification. Communication service
providers can achieve this by introducing consistent, enterprise-wide lifecycle management frameworks that apply a common
management pattern to the lifecycle of products, services, resources and other business entities, building standard
management features into business capabilities and service delivery frameworks and using end-to-end model-driven tools.

The paper describes prototypes of the tools required.

1. Introduction
To get new products and services to market faster and in
higher volumes, the manufacturing and other industries
have come to rely on automated Product Lifecycle
Management (PLM) systems. Typically, such systems bring
together all the organisational domains and engineering
disciplines involved. Furthermore, they help companies
manage the complexity of the new product development
process.

Until recently, however, PLM was relatively rarely used in
the communications business. This is set to change. The
industry has been transformed by convergence and the
advent of technologies such as 3G and IP, and companies
from other industry sectors have begun to enter the market.
Products have become much more complex and are
increasingly assembled from components whose origins and
ownership are diverse. To respond, Communication Service
Providers (CSPs) need to change the way they develop,
deploy and offer new products [1], increasing throughput
and reducing time to market.

The success of PLM in other industries has encouraged
CSPs to adopt the technique, adapting it to meet their
specific needs.

2. General survey of PLM and associated tools in
various industries

As illustrated in figure 1, PLM is the process of managing the
entire lifecycle of a product from its conception, through
design and development, to operation and retirement.

The technique integrates people, data, processes and
business systems and provides a product information
backbone for companies and their extended enterprise. It is
a mature and highly applied discipline that is widely used in
the automotive, aerospace and hi-tech industries, so there is
a wealth of experience on which new adopters, such as the
communications industry, can call.

This section explores the history and evolution of PLM
and the lessons that can be learned from its application in
other industries.

66 BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

2.1 Evolution of PLM tools
According to CIMdata, a PLM consultancy, the origins of PLM
lie in Computer-Aided Design (CAD) [2]. Initially, Product
Data Management (PDM) systems were developed to
manage the numerous CAD files associated with product
designs. Later, functions were added to address product
structure, change control, configuration management and
other issues, and technologies such as visualisation were
introduced to enhance the capabilities and value of the tools.

In response to the requirements of their customers, PLM
tools suppliers are continuing to enhance their products.
Much more emphasis is being placed on supporting
collaboration between the parties involved in the product
lifecycle and on the management of product definitions,
rather than on just the management of product data. In
addition, suppliers are developing pre-packaged solutions
that offer generic functionality usable across different
industries in addition to tools that meet industry-specific
requirements. Web and internet-based technologies and
operating paradigms are being incorporated to create
solutions that enable increasing numbers of users and types
of stakeholders to participate in the definition and use of
product and plant information. Both the scope of the
lifecycle addressed and the levels of support offered to
businesses have increased as new technologies have been
applied and new vendors have entered the market.

In outline, the history of PLM tools from their inception
to the present day proceeded as follows [3]:

• Invention of various types of CAD tools – the CAD stage

• Integration of CAD data in Computer Aided Manufacturing
– the CAD/CAM stage

• Extension of CAD tools – the CAD environment stage

• Integration of a repository and change management
mechanism into CAD tools resulting in multiple
competing environments for storage and change
management

• Realisation that a comprehensive approach to product
data is necessary – the PDM stage

• Adoption of enterprise-wide product data repositories
supporting heterogeneous product data and tools

• Adoption of enterprise-wide engineering change processes

• Integration and rationalisation of product development
processes

• Integration of extended enterprise and outside suppliers
into the PDM environment – the collaborative PDM
(cPDM) stage

• Visualisation and collaboration

• Extensions to address the full lifecycle through
integration with pre-design, production system design
and after-sale lifecycle support.

As this shows, PLM and PDM evolved principally in
parallel to CAD tools. Taken together, increasing product
complexity and the need to boost productivity gains through
the use of CAD tools created the need for central corporate
repositories of product data.

The communications industry does not have the rich set
of CAD tools that exists in other industries, however. In
essence, CAD tools build hierarchical models of products that
detail the components they use and how they are assembled.
Of the tools used in the communications business today,
those most similar to the CAD tools used elsewhere include:

• network design tools (fixed and wireless);

• software design tools (IDEs, UML tools, etc.);

• product definition tools (product catalogues, etc.); and

• emerging tools for product and service assembly and
Software Development Kits (SDKs) that provide access
to CSP capabilities [4].

Concept Design and
Develop Deploy

Change Management

Operate Retire

Figure 1. Product lifecycle management process steps

67BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

2.2 Typical PLM tools architectural principles
Commercial PLM tools have been applied to some of the
world's largest and most complex projects – projects involving
millions of objects and tens of thousands of simultaneous
users. In some cases, they have been used to manage
engineering data on almost every aspect of a product at
almost every stage, from the capture of abstract requirements
to the virtual simulation of the production process.

The underlying repository for commercial PLM tools is
typically an object-oriented database. To accomplish their
job, PLM backbones manage the storage of data from a
heterogeneous collection of design tools. Sometimes, they
store it as a file tree. Alternatively, it is converted into
database objects.

PLM tools do not have a single unifying data model,
except for the notion of Bill of Materials1 (BOM), in which the
product is viewed as a composition of parts. In addition to a
BOM, tools may also provide object models representing
suppliers, issues, requirements and so on.

PLM tools may also allow their underlying data model to
be extended for different purposes. To allow users to work
with data from a variety of sources, they typically offer
Application Programming Interfaces (APIs) to support their
integration with other design tools and enterprise
applications. PLM tools also allow the creation of general-
purpose associative links between stored data and various
searching mechanisms, such as full text search or searching
on attribute values. Such associative links can be used to
loosely connect the engineering data created by various
design tools, for example.

Finally, commercial PLM tools are often integrated with
sets of general-purpose engineering management applications
to support tasks such as project planning, system engineering,
visualisation and mark up, issue tracking and engineering
change management. Such applications work with whatever
data has been stored in the engineering repository.

2.3 Practical issues
To meet the needs of their users and achieve fast and wide
adoption, PLM system suppliers have based the designs of
their products on a number of practical assumptions.

From their viewpoint, the ideal PLM environment would
resemble an Application Lifecycle Management (ALM) tool

suite. ALM tools assist in the creation and maintenance of
software products and are characterised by their tightly-
integrated development environment. In a similar way, an
ideal generic PLM environment would provide a tightly-
integrated suite of tools from a single vendor that spans
most, if not all, aspects of product lifecycle.

In practice, though, PLM suppliers have found the
need to support multiple engineering disciplines and
multiple vendors' CAD tools. Different engineering
disciplines use different tools and organisations often
prefer to mix and match 'best of breed' design tools in their
development processes. In such situations, PLM tools
bridge the outputs of different CAD tools and support
generalised system engineering activities. The BOM is used
as the organising concept and domain-agnostic system
engineering models are used to tie together the work done
by different engineering disciplines, such as physical and
electronics design.

Beyond the above needs, PLM systems have been
required to embrace many forms of product definition,
including less-structured forms. The models they must
accommodate can be incomplete or inadequate at one
extreme, and too formalised or too technical at the other.
PLM systems must therefore be able to connect and manage
heterogeneous information from sources, including
Microsoft Office documents and emails.

2.4 Lessons from other industries
A number of lessons can be learnt from other industries'
experience of developing and deploying PLM tools:

• A single data model can never support every tool.
Industrial experience has shown the futility of the quest
for a single universal data model to cover all aspects of
product design. As mentioned above, design involves a
variety of tools with their own, unique underlying data
model. Lifecycle information exported from these tools
is, therefore, heterogeneous.

• PLM information should be held in a 'one-truth'
common repository. The original drive for PDM arose
from the need to manage the data created by different
CAD tools that may or may not maintain their own data
repositories. One of the central value propositions of the
PLM systems from Teamcenter and MatrixOne, for
example, is their ability to bring all the data about a
product together in one single repository overcoming
the heterogeneity problem noted in the previous point.
Generally, it is important for tools to support a one-truth
common repository – a single point of contact regarding
product lifecycle data and information.

1 A Bill of Material (BOM) is a list of all the components and subassemblies
that go into a parent assembly. It is the subset of a structure that includes
only the physical items. A BOM includes the child items at a particular
location in an assembly, their quantity and unit of measure, and other
related information such as physical location.

68 BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

• PLM tools should support complex webs of relationships
between heterogeneous artefacts. Like Documentum
and other document management systems, product data
management systems must not only store a wide variety
of information, they must provide facilities to interlink it in
various ways. Among other uses, the resulting links allow
the origins and relationships among product data hosted
and managed in different tools to be traced. At the most
basic level, linking can be achieved by providing simple
pointers between related objects, but many more-
sophisticated approaches can also be employed.

• PLM tools should support enterprise-scale
configuration and change management. As PDM
systems grew into maturity and the management of
product data was extended to support a fuller collection
of product data, it became increasingly important for
enterprises to have change management processes that
could span their operations. Mature systems now
support large communities of users and allow them to
participate in the modification of the product data.

• PLM tools should support extended enterprises and
supplier collaboration. In today's business environment,
products are rarely developed by a single company. PDM
systems must therefore be able to support collaboration
between the members of extended value chains. This
becomes more imperative with the advent of Web 2.0,
which makes it easy to create complex ecosystems of
suppliers and consumers.

3. PLM in the communications industry
The market for communications services is much more
dynamic and complex than it was in the past. CSPs can no
longer afford to offer limited portfolios of regulated
telephony and data services, or for it to take a long time to
get new products into their customers' hands. Instead, they
must operate in a market characterised by:

• Software-based services that can be designed and
deployed without the need for substantial infrastructure
deployments, and are therefore much easier to adapt as
the market and consumer preferences change.

• New competitors that, enabled by deregulation, are
pressurising margins on traditional products. For instance,
among those competing strongly with traditional telcos to
sell fixed or mobile telephony packages are the super-
markets – the organisations that dominate the retail market.

• Broadband communications based on IP standards,
which are dramatically lowering the cost of providing
phone and multimedia services to customer premises.

• Soft telcos. The high market penetration of broadband
allows service-centric soft telcos to deliver services
without having to invest in physical access infrastructure.

• Maturing product portfolios that attract lower margins
and are being replaced by new alternatives.

In the light of these trends, the key goal for CSPs is to
reduce the time it takes to get new and updated products to
market. To achieve this, they must improve and automate
their strategy, infrastructure and product portfolio
management processes. These are situated at higher layers
than operational processes that were the targets of
performance-improvement initiatives in the past. CSPs must
also acquire the organisational agility to get products to
market quickly – for example, by basing products on reusable
capabilities and introducing data-driven configuration of
operational and business support systems.

3.1 Intra-enterprise product lifecycle
In the case of communications products, end-to-end
lifecycles can be complex and difficult to manage. Their
complexity results from two factors:

• their structural/compositional complexity (figure 2); and

• their organisational complexity (figure 4).

Service Lifecycle

Product Lifecycle

Resource Lifecycle

Device Lifecycle

Platform Lifecycle

Infrastructure Lifecycle

3.1.1 Structural/compositional complexity
A product offering is not a single artefact with an
independent lifecycle. Under the wraps, numerous other
artefacts – services in particular – are brought together to
compose the product. For each different product offering, the
constituent services will have a customised configuration and
each service will be characterised by its own lifecycle, which
again is not quite independent. In the different stages of their
lifecycle, services engage a plethora of physical resources
(routers and devices, for example) and logical resources, such
as Commercial Off-The-Shelf (COTS) components. These
resources are purchased, configured, deployed and operated

Figure 2. Compositional complexity

69BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

as part of the CSP's infrastructure and have their own
lifecycle. As a result, end-to-end PLM typically involves the
management of numerous nested lifecycles.

Figure 3 illustrates the hierarchical composition of
communications products from services and resources.
Consider, for example, a product called 'Email on Move'
that is to be made available on customer devices, such as
mobile phones, connected by IP over 3G or WiFi
networks. The product will depend on a number of
components of the CSP's infrastructure as well as the
customers' devices. Each component will have its
lifecycle, consisting of multiple phases, from concept
development and design through to deployment,
delivery, in-life operation and retirement. The
characteristics of the phases – the timescales, costs,
design disciplines, delivery modes and so on – will differ
vastly from component to component. However, all the
components must be brought together in a timely,
quality and cost-effective manner if the product is to be
successfully launched and sold.

3.1.2 Organisational complexity
The organisational complexity of the communications
product lifecycle is a result of the variety of information,
processes, stakeholders and tools involved (see figure 4).

The product lifecycle is characterised by the states
products traverse as they move from concept to retirement
(from 'cradle' to 'grave'). Each state is described by a set of
data, so PLM is essentially about managing product data as
the product moves between states. PLM is further
complicated because, at each state of the product lifecycle,
different stakeholders are involved. As they tackle their tasks,

CE – Customer Equipment, 3G – Third Generation, IP – Internet Protocol

Data Product

IP Service 3G Service

3G & IP Resource 3G Device

Lifecycle
3G Infrastructure 3G Platform

IP Infrastructure IP Platform

CE Product

Figure 3. Example product composition2

Information

Process

Stakeholders

Tools

Figure 4. Organisational complexity

2 The figure uses straight lines to show dependencies among the different
components and circular lines to indicate that each component has its own
lifecycle. It also uses a dotted rectangle with an associated dotted line to
refer to the generic case of Customer Equipment (CE) products users can
enjoy on third-generation (3G) mobile devices.

70 BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

these stakeholders collaborate using tools and systems to
capture the product data and manage the product lifecycle
aspects for which they are responsible. To achieve this, they
follow certain business processes. An agile PLM approach
should provide high levels of automatic instrumentation to
achieve integration across the organisation and facilitate
stakeholder collaboration.

3.1.3 The challenges for PLM
Following from the above, the primary challenges for PLM are:

• The lack of a common industry product model. Each
COTS vendor has developed its own view of a product
model from its specific functional perspective. None of
them align with the product model used in telcos.

• The lack of an industry end-to-end product lifecycle.
COTS vendors restrict the data model to their functional
area and provide local capabilities to update and maintain
their databases.Telcos often find it difficult to connect and
integrate the islands of product data that result. There is
no industry API standard they can call on to automate the
synchronisation and updating of product databases.

• Performance and non-functional aspects. The volume
of data needed to support products is substantial. As a
result, it is not feasible to hold it all in a single database to
which all applications direct their queries.

• The divergence of existing processes. Traditionally,
Operational and Business Support Systems (OSSs and BSSs)
have been developed product-by-product in isolated
'silos'. For PLM to operate effectively, the complex array of
systems that has resulted must be replaced by a single
integrated infrastructure of reusable OSSs and BSSs [5].

3.2 Inter-enterprise product lifecycle
To develop, deliver and manage its products, a CSP may depend
on multiple business-to-business relationships as shown in
figure 5. Each counterpart plays a specific role in the product
delivery process and therefore manages certain aspects of the
product lifecycle. The CSP, for instance, will employ tool
vendors and OSS suppliers to build the infrastructure it needs to
support product development and delivery. Additionally, the
CSP may require the services of system integrators to assemble
and configure the infrastructure upon which the product will
function. To keep costs down, CSPs may make the strategic
decision to outsource or conduct offshore all or part of the
product development process. Furthermore, they may join
forces with other organisations to deliver products to market,
sharing the revenues generated.

The products that result may be sold through SMEs, and
they may prefer to offer them to customers under their own

brand. Alternatively, CSPs may use Software-as-a-Service
(SaaS) infrastructure operated by organisations such as BT
and Google, either to make SaaS functionality available as
part of a product offering or to use the functionality on
demand during the product development process.

In all such situations, the control of the product lifecycle
crosses enterprise boundaries and flows over the value chain.
This results in a set of additional challenges for PLM
implementations to address:

• Data sharing – subject to security precautions and access-
control measures, organisations should be able to manage
and share product data flexibly using commonly-
understood formats.

• Collaboration – processes must operate smoothly across
business boundaries complete with all necessary
automated support.

• Project management across organisations –
stakeholders from different organisations should be able
to co-ordinate actions and collaborate to deliver project
tasks.

• Quality and performance – the biggest challenge is the
preservation of high levels of performance and the
quality of the end result.

3.3 Lifecycle pattern
Analysing the discussion in sections 3.1 and 3.2, the
following observations can be made:

• Starting from CSP products and traversing the dependencies
that link them to entities such as services and resources
(figure 2), it can be seen that lifecycle management is a
generic and common concern for an organisation – one that
involves business entities other than just products.

• The aspects that are most important when it comes to
the successful management of the lifecycles of different
business entities are processes, stakeholders,
information and systems/tools (see figure 4).

• Where the management of an end-to-end lifecycle
involves complex business-to-business relationships,
commonly-agreed structures are needed that
characterise the entity's lifecycle across all the
organisations involved, facilitate the interaction of their
activities and simplify the complexity of the lifecycle
management process over organisational boundaries.

Based on the first and last observations above, we
introduce the concept of a generic lifecycle pattern. This pattern

71BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

describes the aspects of a lifecycle that are common across
different business entities. The use of such a pattern would allow
CSPs to address the lifecycle management problem by building
solutions that concentrated only on a handful of common
concerns. Where complex business-to-business relationships
are involved, such patterns would establish a basis of common
understanding between the interacting organisations.

The proposed generic lifecycle pattern is illustrated in
figure 6. Its structure originates mainly in observation 2
above and comprises the following aspects:

• Lifecycle management processes, which specify the
sequence of steps undertaken in managing an entity's
lifecycle.

• Roles/actors, which identify various parties and their
responsibilities in the management of an entity's
lifecycle, those parties being business stakeholders
and/or systems.

• Information/metadata, which describes the different
states an entity goes through during its lifetime. The

entity meta-data is typically classified in four main
categories, as illustrated in figure 6, namely:

o configuration, which indicates the entity's
specification data customised for its adoption in a
particular context of use;

o usage, which captures performance data regarding
how the entity is currently used;

o health, which shows whether the entity requires
repairing or recovery measures; and

o Service Level Agreements (SLAs), which set the
thresholds of the entity's acceptable performance
levels.

• Management capabilities, which characterise the
capabilities required to manage an entity's lifecycle.
Provided either by stakeholders (manual) or by systems
(automatic), they allow them to manage the entity's
metadata in the context of lifecycle management
process tasks.

CSP

SMEs

System
Integrators

Outsourcing/
Offshoring

CSP Product
Partners Software as a Service

Providers

OSS
Suppliers Tool

Vendors

Figure 5. Product lifecycle complexity and value chains

72 BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

• Dependencies, which identify the set of business
entities on which a particular entity's lifecycle depends.
This provides traceability among the dependent entity
lifecycles, which is very important when changes are
introduced.

• Policies and rules/constraints, which specify behaviour
and/or restrictions applied on an entity at a certain stage
of its lifecycle.

3.4 Holistic lifecycle management framework
The lifecycle pattern described in the previous section
generalises the issue of lifecycle management by
abstracting specific details and concentrating on the
concerns that characterise the lifecycles of business entities
such as products, services and resources. This lays the
ground for the introduction of a holistic framework that,
through use of a generic set of management facilities, can
manage end-to-end the lifecycles of business entities
regardless of their type.

A process-based view of the holistic lifecycle
management framework's scope is shown in figure 7. The
bottom layer describes the Concept-to-Market (C2M) part,
where an entity such as a product or service is initially
perceived as a concept and then driven to market through a
number of subsequent steps, including design, development,
testing and launch (deployment and activation).

The middle layer of the figure shows the in-life stage of
the lifecycle, in which entities are instantiated to fulfil
customers' orders, operated, maintained and upgraded until

eventually they are retired. This stage includes the high-level
customer-facing processes BT refers to as Lead-to-Cash
(L2C) and Trouble-to-Resolve (T2R) [6].

C2M and in-life stages form a loop in figure 7, which
indicates that the holistic lifecycle management framework:

• provides a unified, end-to-end view over the entire
entity lifecycle;

• integrates all historic data of the entity's lifecycle
gathered from the individual process steps and allows, if
required, any decision-making task to access and
consider this data in order to draw more rounded
conclusions involving the entity;

• enables feedback loops so that changes incurred by, or
events influencing, an evolving entity at a later lifecycle
stage could feedback into earlier stages and drive
changes on aspects of this or other dependent entities.

With regard to feedback loops, an example would be
when a customer contacts a customer support centre to
provide feedback on a product that is in its in-life stage,
recommending improvements to certain product features.
Such input might be fed back either to the C2M design and
development stage (for implementation of such
improvements, leading eventually to a product update) or
to the C2M concept stage (in which case, the requirements
would be captured as inputs that could lead to new
product offerings).

Management Capabilities

Roles

Configuration

Health

Usage

SLA

Dependencies

Metadata

Lifecycle Management
Processes

Policies and
Rules / Constraints

Lifecycle

Figure 6. Lifecycle pattern

73BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

Portfolio management and strategy are shown as the
top layer in figure 7. The link to the two lower layers – C2M
and in-life – indicates that the proposed holistic lifecycle
management framework provides facilities that help
decision-makers at this level hook into low-level operational
systems and data stores. Such direct feeds from raw entity
lifecycle data can significantly enhance the agility with which
CSPs' strategies and portfolios are fine-tuned and optimised.

All layers are governed by rigorously-defined change
management processes and supporting automation, which
both underpin the holistic lifecycle management
framework and constitute an integral part of it. Change
management guarantees that any changes incurred by a
composite entity during its lifetime will be properly carried
out and propagated down the entity's dependency chain to
all the component entities that must be involved in its
implementation. It also ensures that changes are traceable.

A key aspect of the holistic lifecycle management
framework's C2M layer lies in the agility with which new

entities (products and services) are constructed and driven to
market. Best practice suggests that, to achieve such agility,
the 70-20-10 rule of thumb should be applied. Introduced
in 2005 [7], the 70-20-10 business resource management
model indicates the desired distribution of effort over three
possible modes of generating new products:

• Configure (70 per cent). New products should be specified
by configuration of existing products and features. The
process is data-driven – that is, no new code is required –
and should be sufficiently simple for customer service
agents and product managers to complete. This would
provide maximum possible reuse as all relevant systems
and capabilities are already in place. The configuration
should be rapid, at most days – preferably hours.

• Assemble (20 per cent). If reconfiguration is not
possible, new products should be built by assembling
reusable capabilities. This mode would require more
complex COTS package configurations for the definition
of new rules and processes. It would also involve

Figure 7. Holistic lifecycle management framework for CSPs

Concept-to-Market

In-Life

Retire

Concept:
Rapid, high quality

decision taking,
focussed on customer

with all key
stakeholders

involved

(1) Days:
Repackage and

reconfigure where possible

(3) Months:
If not possible, engineer

new capabilities

Upgrade
and

Bundle

Beta
Launch

and Test

Launch
and

Scale-up

Maintain
and

Operate

Design / Develop

Underlying Change Management Process

Portfolio Management and Strategy

(2) Weeks:
If not possible, assemble
from existing capabilities

74 BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

assembly of software, network and hardware to enable,
for instance, the reuse of an existing capability that
needs to be configured in the new context, or the
deployment of new hardware to increase capacity. Little,
if any, new code would be necessary and the cycle time
would be in the order of weeks.

• Engineer (10 per cent). In a minority of cases – for
example, where entirely new capabilities are required –
more significant engineering will be required. This mode
may require new software development, new hardware
configurations and/or the building of new network
capabilities. Cycle times could be in the order of months.

BT is currently tuning its systems, processes and
practices towards implementation of the 70-20-10 rule.

At the heart of a holistic lifecycle management
framework reside a set of key management capabilities
aimed at co-ordinating the lifecycle aspects of a business
entity such as a product, service or resource as it mutates and
evolves over its lifetime. These capabilities originate from the
meta-model illustrated in figure 8. In this figure:

• Entity refers to the key artefact managed by the holistic
lifecycle management framework which mutates during
its lifecycle, i.e. it gets created, accessed, reused,
changed or transformed.

• Process workflow refers to the automation that drives
the overarching process or processes controlling the
change and evolution of an entity.

• Access control refers to the set of capabilities controlling
access of processes, stakeholders and systems to the
business entity state data.

• Logic refers to business logic that is owned by the
framework and governs the entity or that defines the
way a business entity interacts with others around it.

• State (or lifecycle state) refers to the states a changing
business entity goes through; a minimum of one state is
required. There may be an association between state
and revision/version capability (see below), which shows
that state transitions can be traced.

• Revision/version refers to management capabilities of
the framework that allow snapshots of the entity's
transformation to be captured. Audit trails can be created
if this is required by the change management process.

• Associations refer to the relationships an entity develops
with the others of which it is composed (compositional
associations) and with the entities with which it
communicates (interactional associations).

Based on the meta-model of figure 8, a holistic lifecycle
management framework should provide the following key
management capabilities:

• Repository management. To ensure a single view that spans
the full lifecycle, all the data about a business entity must be
held at the same logical place. Repository management
polices the 'one-truth' information model and supports
associative linking between information items.

Has (one to many)
association with
another entity

Tracked Lifecycle
State Changes

Business Logic
(Constraints, Rules)

Interactions Between
Processes and Entity

Process Workflow

Entity

Each entity the product depends
upon has its own lifecycle

Access

Logic

Lifecycle or States

(Minimum One State)

Revisions/Versions and Auditin
g Trail

(Minimum One Revision)

Figure 8. Meta-model for lifecycle management capabilities

75BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

• Configuration management. This involves both change
management and version control. As noted above, change
management is a core lifecycle management framework
feature enabling the evolution of a business entity
throughout its lifetime. Versioning enables the management
of multiple revisions of the same entity and can result in
creating a history or audit trail of all entity revisions.

• Information sharing. This involves two aspects:

o Searching and visualisation of data – that is, providing
querying facilities to obtain the desired data sets and
visualisation mechanisms that present the data in
ways it can be easily understood and consumed.

o Access control and data security – that is, providing
elaborate security capabilities and ways to partition
different levels of authorisation rights to create,
access and change data.

• Process management and collaboration. This involves
two aspects:

o Workflow, which enables the automation of processes
by introducing a controlled way of managing
individual process tasks, in sequence or in parallel.

o Notification, which is a generic mechanism for
facilitating collaboration between the human
stakeholders or automated tools involved in the
management of an entity's lifecycle. Notification can
involve the exchange of simple emails or more
complex synchronous or asynchronous messaging.
To make collaboration effective, notifications should
carry a payload of meta-data providing information
that helps the relevant process to progress. For
instance, a notification informing a stakeholder of
the need to review a document could include in its
payload a link to the document, a review delivery
deadline and additional assisting meta-data.

• Management of business logic. This plays a key role in
the governance and management of the business entity
lifecycle. It manifests itself in the following ways:

o Functionality – Business logic may be captured as a
block of functionality that executes certain behaviour.
This functionality implements a software capability,
such as management or analysis, which can be
invoked at certain stages in an entity's lifecycle.

o Constraints – The entity should comply with several
constraints imposed by its constituent parts, by
supporting functionality or by the context within

which the entity operates. It is important to ensure
that certain validation procedures are in place to
guarantee constraint satisfaction in a timely manner
and, in case of constraint conflicts, to provide
alternative strategies for resolution.

o Policies/rules – An entity can be governed by certain
rules and policies that define expected behaviour in
certain circumstances. There are several types of
rules. Some are relevant to the processes that
manage the entity lifecycle while others are
associated with validation, access control and OSS.

• Tools integration. A range of tools may be used in the
process of managing an entity through the various stages
of its lifecycle. For the holistic lifecycle management
framework to provide seamless end-to-end management,
the tools should interact and be integrated. Integration can
be achieved in one of three ways:

o Function-driven integration, in which tools are
integrated through functional capabilities that are
requested by one tool and provided by another.
Traditionally, there are two ways of achieving
functional integration. The first is tight coupling, in
which the tool requesting a functional capability is
strongly dependent on that which provides it. If
changes are made to the tool providing the
capability, the tool that uses it will also need to be
updated. The second is loose coupling, in which
functional capabilities are provided as services which
are invoked with calls on a contractually-specified
service interface. In general, changes made to
individual tools do not have knock-on consequences.

o Data-driven integration, in which tools are
connected through shared product data. To do this,
tools must conform to a common information
model that ensures a common semantic
understanding of data items involved. Shared data
may be collected and managed in a common
repository in which case the integrated tools will
have to check data in and out of the repository as
they use it to avoid the chance that more than one
tool might attempt to change it at the same time.
Alternatively, tools can be integrated as a result of
exchanging data directly among themselves. In this
case, the tools concerned must be able to parse and
understand a common data exchange format.

• Process-driven integration, in which the process
provides the context within which tools must synthesise
and link their outputs.

76 BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

A more thorough examination of the aforementioned
lifecycle management capabilities3 and the key dimensions
underpinning holistic PLM frameworks is provided in [8],
which was developed by the TeleManagement Forum (TMF)
product lifecycle management team [9]. Established and led
by BT, the team brings together CSPs and tool vendors from
across the world.

The team has also developed a more detailed analysis of
the holistic lifecycle management framework's process-
based view (figure 7) [10] but, at the time of writing, this was
still a work in progress.

The description of the holistic lifecycle management
framework provided in this paper relates it to the generic
lifecycle pattern presented in section 3.3. More specifically,
the process-based view of the framework (figure 7) links to
the lifecycle management processes noted in the pattern,
whilst the lifecycle management capabilities view (figure 8)
links to the pattern's management capabilities. All other
pattern items – roles, policies and rules/constraints, meta-
data and dependencies – serve as sources of requirements
that drive the definition of the specific list of the framework's

generic management capabilities covered above. This tight
association highlights the key role the lifecycle pattern plays
in the holistic lifecycle management framework.

4. Service delivery framework
Leading CSPs are shifting their portfolios from traditional
communications to more software-orientated products and
services. The blurring of boundaries between networks, ICT
and applications allows their capabilities to be integrated to
create new-wave services. Service Delivery Platforms (SDPs)
[11] facilitate this integration.

More specifically, SDPs enable the rapid development
and deployment of new converged multimedia services.
These services are composed of telecoms and IT capabilities.
As illustrated in figure 9, an SDP sits in the middle, bridging
different sources of service capability. Examples of such
capability include telephony, wireless, IP, content, OSS and
third-party services. Capabilities are exposed through
standard functional interfaces. SDPs typically provide a
service control environment, a service creation/assembly
environment, a service orchestration and execution
environment and abstractions for media control,
presence/location, integration and other low-level
communications capabilities. They are used for the
composition of both consumer and business applications. To
make them carrier grade (that is, sufficiently reliable and

Expose Network and
Services to Partners

Standard
Interfaces

with OSS/BSS

Revenue Sharing

Standard
Network

Interfaces

Third Party Service and
Content Providers

VNOs

Parlay/Standard R
Ps

SIP/H
TTP/D

iam
eter

CRM

Subscribers DB

Billing
OSS & BSS

Wireless

PSTN

IP Networks

Standard Based Service
Delivery Platform

IT Domain Network Domain
Figure 9. Service delivery platforms

3 The term “meta-capabilities” is used in [TMF TR137] when referring to the
management capabilities of the holistic LM framework, which is due to the
capabilities’ generic nature and horizontal treatment of different business
entity types.

77BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

scalable for CSPs to adopt them), best practice requires the
principles of Service-Oriented Architectures (SOAs) to be
applied to the exposure of service capabilities [12]. An SOA-
based SDP will generally use web service or other SOA
technology standards to integrate services and compose
applications.

The SDPs available today are optimised for the delivery
of services in a given technological or network domain
(examples include web, IMS, IPTV, Mobile TV, etc.). Few
standards exist, which is why the TMF's Service Delivery
Framework (SDF) programme was created. In the context of
SDF, services are defined as components that expose their
functionality via one or more functional interfaces. A service
becomes an SDF service when it exposes one or more
operational interfaces whose role is to manage the service
lifecycle. (These operational interfaces are later defined as
SDF service management interfaces.) The SDF programme
focuses on the management of the SDF service lifecycle.

Figure 10 shows the reference model for the TMF service
delivery framework [13]. A typical SDF service is shown top
right. SDF services expose functional capability through Service
Functional Interfaces (SFIs), which are shown in the figure as
'lollipops' (see key). SDF Service Management Interfaces (SDF
SMIs) are special types of SFI that contain the lifecycle
management capabilities of the SDF service. Such capabilities
include, but are not limited to, configuration, performance
management, retirement, fault handling, versioning,
monitoring and usage. Finally, an SDF service may itself rely on
capabilities exposed by other services. Such SDF service
consumers are shown by 'sockets' in the figure (again, see key).

The rest of figure 10 illustrates the SDF reference model
comprising:

• SDF Management Support Services (SDF MSSs) which are
responsible for the end-to-end SDF service lifecycle
management. They support both operational (e.g.
provisioning, installation, update/activation, monitoring
capabilities) and business process automation. SDF MSS
capabilities may either invoke SDF SMI capabilities, in which
case they receive SDF service management metadata, or
invoke other support services from the infrastructure or the
management services domains of figure 10.

• Infrastructure and SDF Infrastructure Support Services
(SDF ISSs). The infrastructure domain provides specific
capabilities to management processes or SDF MSSs that
are usable across all SDF services and facilitate their
lifecycle management. These capabilities constitute the
SDF ISSs. Examples of SDF ISSs include SDF service
catalogues, metadata repositories, profile (specific
information for subscribers or other actors), resource
management capabilities and charging capabilities.

• Resources which are capabilities that can be used by SDF
services and are exposed by network, IT infrastructure,
OSS/BSS applications, or services on the internet4. They
can exist anywhere, either within or outside the CSP's
domain, and offer their capability to SDF services
through their functional interfaces.

Resources

Management Services

Infrastructure

SDF Infrastructure Support Service
Functional Interface

Infrastructure
Consumer

Resource
Consumer

SDF Service
Consumer

SDF Service
Functional Interface

SDF ISS
Consumer

SDF ISS
Consumer

SDF Service
Management
Interface

SDF Infrastructure Support Services
(SDF ISS)

SDF MSS
Functional

Interface

SDF Service
Management

Interface
Consumer

Lollipop Socket

Key

SDF Management
Support Services

(SDF MSS)
<qualified name> SDF Services

Figure 10. TMF service delivery framework reference model
(Note: The elements shown in grey are part of the reference model but fall outside the scope of the service delivery framework)

4 If we look back in figure 8, all capabilities exposed to an SDP from all
surrounding domains (3rd party, wireless, telephony etc) over the standard
functional interfaces can be considered as SDF resources.

78 BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

5. Mapping lifecycle pattern on SDF
This section applies the lifecycle pattern, described in section
3.3, to the service delivery framework. The mapping is
illustrated in figure 11, which shows how the different lifecycle
pattern aspects are distributed around the various parts of the
standard framework. The mapping is specific to the study of
the lifecycle pattern in the context of SDF services.

At any one point in time, the state of an SDF service is
reflected in the set values of the service lifecycle metadata. Some
of this metadata is performance-related, illustrating the usage
and health of the service. It changes as the service is used and can
be accessed through the SDF SMI, which is the interaction point
for lifecycle checks as the service operates. The piece of service
lifecycle metadata relating to service configurations and SLAs
changes less frequently. It is hosted on service catalogues and
inventories that constitute part of the SDF supporting
infrastructure. Access to this metadata is provided through SDF
ISS interfaces. The actual logic, which invokes the SMI and ISS
interface so that lifecycle metadata can be processed and the
service be managed, lies in the SDF MSSs. These reflect the
management capabilities encountered in the lifecycle pattern.
Some of the SDF MSSs may implement business process
automation that reflects the lifecycle management process item

of the lifecycle pattern. Such processes may be specified in the
form of workflows or orchestrated service invocations executed in
orchestration mechanisms provided by the SDF infrastructure.

The SDF infrastructure may host further supporting
facilities for the remaining lifecycle pattern aspects. It can
provide policy-based management facilities in order to handle
service policies and rules, another important aspect of the
lifecycle pattern. It can also use the service catalogue to capture
dependencies of a service onto other component artefacts.
Finally, it can offer authentication and authorisation
mechanisms for role-based access control in order to define
roles, materialised by human stakeholders or systems, and assign
privileges to those roles regarding the scope of operations they
can conduct within the SDF or define management capabilities
they bear and can make available to the SDF.

6. Tools
Due to the key role data plays in managing the lifecycle, the
data management discipline sits at the heart of PLM. This
section focuses on describing current practice and tools in
capturing/specifying, managing and sharing product data in
the CSP estate of OSS/BSS, service capabilities and
platforms. The section is divided in four subsections which, in

Resources

Management Services

Infrastructure

SDF Infrastructure Support Service
Functional Interface

Infrastructure
Consumer

Resource
Consumer

SDF Service
Consumer

SDF Service
Functional Interface

SDF ISS
Consumer

SDF ISS
Consumer

SDF Service
Management
Interface

SDF Infrastructure Support Services
(SDF ISS)

SDF MSS
Functional

Interface

SDF Service
Management

Interface
ConsumerSDF Management

Support Services
(SDF MSS)

<qualified name> SDF Services

Policy
Management

Management
Capabilities

Process

Metadata

Orchestration Catalogues

Policy

Metadata

Dependencies

Figure 11. Mapping the lifecycle pattern on SDF

79BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

sequence, present master data management, current
practice for defining new products, cutting edge research
work focusing on a factory-based approach for the
production of product specification tools and a general
discussion around the proposed approach.

6.1 Master data management
Any data that is considered key in the core operation of a
business is called master data. Master data may include
data about products, customers, employees, inventory,
suppliers, analytics and more. It is typically shared by
multiple stakeholders (users and groups) across an
organisation. In particular, because OSS and BSS are so
deeply involved in the management of the product
lifecycle, it is important that a CSP's OSS and BSS systems
access and manipulate product master data in a consistent
and seamless manner.

Master data may be stored on different systems that
manage different aspects of the lifecycle. When this is the
case, however, frequent exchanges of data will occur as tools
interact with these hosts to provide a seamless end-to-end
lifecycle view.

In all, the activity of master data management includes
the technology, tools, and processes required to create and
maintain consistent and accurate lists of master data. It is
used by business and IT to ensure uniformity, stewardship
and accountability of shared information assets. The role of
master data management ties neatly into the key
management capabilities of the holistic lifecycle
management framework reviewed in section 3.4 and,
particularly, to repository management, which has the job of
maintaining a single-view one-truth information base for
the artefacts involved in the product lifecycle.

BT has recently adopted a master data management
approach. Traditionally, when the company introduced a new
product, it would document the product description
manually before working out which OSSs and/or BSSs would
require development to provide the necessary service wrap.
OSS/BSS development was a manual process involving
stakeholders such as developers, system integrators and
even vendors. The process was also time-consuming, costly
and error-prone, and contributed to product master data
being dispersed across numerous OSS platforms [14]. As BT
seeks to reduce product introduction time, an agile and
automated way of configuring OSSs and BSSs is required to
replace the manual activities of the past. For this reason, BT
is currently implementing an independent Master Data
Management Platform (MDMP) as a component of its Matrix
architecture [15]5.

A simple view of BT's master data management
architecture is shown in figure 12. The MDMP builds and
delivers product master data sources and executes the data
governance function for the BT systems estate. To do this, it
maintains an enterprise-wide data model and oversees the
operation of data integrity and quality tools and processes.
MDMP exposes a set of capabilities that not only allow
master data management functionality to be used by
humans and systems but also invokes capabilities on other
OSS platforms to distribute product master data. These
capabilities allow MDMP to collate product description data
captured by product modellers/managers, store it using a
commonly accepted enterprise-wide data model, and drive
the configuration of OSS and BSS to support new product

Figure 12. Master data management and PLM tooling driving OSS/BSS platforms

Product Master
Data

Tools Factory
Environment Customer

Management

Billing

Order
Fulfilment

Product
Design Tool

Toolsmiths

Product
Designers

Adapter

Adapter

Adapter

XML

XML

XML

5 In the referenced paper, the master data management platform is referred
to as the portfolio management platform.

80 BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

introduction. Changes may be required to the design and
implementation of OSSs and BSSs to facilitate data-driven
configuration. The systems must offer a new XML-based
access interface in the form of an adapter through which
product master data can be communicated. The adapter's
role is to transform product data between XML and the
support system's native format as it flows to and from the
MDMP. Streams of product data exported from the master
data store in XML format will populate data structures
internal to the target OSS platforms once their adapters have
transformed it into their native data format. If product data
needs to be exchanged between two or more OSS/BSS
platforms, it will first be transformed into XML by the adapter
of the originating OSS and then into the respective OSS
internal formats by the receiving OSS adapters.

MDMP provides the data foundation for SOA capabilities
across BT's Matrix architecture. It makes OSS and BSS
platforms data driven, which removes hard coding and
maximises data reuse. This is a very important step in the
adoption of an agile PLM framework.

6.2 Current practice
As shown in figure 12, tools can help product designers
specify and feed an MDMP with valid product data sets. Two
key business stakeholders act as product designers:

• Product modellers who start with a new product
concept described in marketing and product
requirements documents and articulate a specification
of the product's structure, features and configurability.
The product specification will eventually generate
change requests on the OSS/BSS platforms to build in
the necessary modifications to support the new product.
Typical timescales for implementing such an OSS/BSS
engineering job range from six months to a year. Current
practice for product modellers is to capture the product
specification in text documents and use general-
purpose drawing tools for modelling. This
documentation will be shared with the OSS/BSS
developers and the stakeholders who will eventually
introduce the product data into the MDMP.

• Product managers who enable changes to the
configuration of an existing product or construct new
products using product templates. Product templates
are reusable and configurable product structures that
are specified by product modellers and are already
implemented in OSSs and BSSs. Because changes only
require in-life product configuration data updates to be
made to the systems, the time to complete the work is
dramatically reduced. Current practice for product
managers is to specify products using platform-specific
form-based user interfaces provided by the MDMP.

Both groups specify products using tools that are either
general-purpose or tied to a particular MDMP. For instance,
while using drawing tools such as MS Visio gives product
modellers the flexibility to tailor product model diagrams to
their requirements, the diagrams must be described explicitly
in accompanying documentation. The information will drive
the job of the OSS/BSS developers who implement system
changes and the individuals updating MDMP product master
data stores. This setting bears an element of risk as the
slightest ambiguity in the documentation leaves room for
misinterpretation by stakeholders. Agility also suffers in that
costly iteration may be required in order to remove vagueness
and avoid error in the MDMP updating and OSS/BSS
configuration process. Furthermore, the first time product
data is captured in a formally structured way is when it enters
the MDMP, rather than from the start of the concept
definition process. The data is organised according to the data
model introduced by the MDMP. This data model is MDM
platform-specific and, as mentioned above, is widely adopted
across all OSS/BSS platforms (through the adapters).

Thanks to widespread support among OSS and BSS
suppliers, the MDMP model has become the preferred and
almost established way for product data modelling among
the CSP product design community. This, however, does not
favour the adoption of a higher-level enterprise-wide
product information model that relates more directly to an
organisation's internal business capabilities (an example of
such model is BT's Common Capabilities Model, which is
explained later in this section). One reason for this may be
the lack of tools that can make a high-level information
model usable for stakeholders. Even where such tools do
exist, they may not integrate with the underlying platforms
in a way that allows product data to be fed automatically into
master data management and OSS/BSS. In such cases,
product designers may prefer to work with platform-specific
data models that ensure product data will be recognised
directly by the underlying systems.

6.3 Model-driven factory for PLM tooling
Unfortunately, current practice does not:

• automatically drive the PLM process from product concept
inception all the way through to OSS/BSS configuration;

• minimise the effort expended in iterative interactions of
stakeholders involved; and

• maintain enterprise-wide information stewardship
through a high-level product information model.

Our research work introduces an alternative approach
that does deliver these benefits. It proposes the adoption of
an end-to-end product design tool chain that allows

81BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

designers to specify products graphically in an unambiguous
way, share their specifications with other stakeholders and
exchange product data among different systems in different
formats. The product design tools provide a product
modelling language with a specific graphical notation. The
product modelling language is an information model
containing product-specific concepts a designer can use to
articulate knowledge regarding a product. Such concepts
include product offering, product specification (features and
component parts), pricing information and rules. An example
of product modelling language is the product domain of
TMF's Shared Information and Data model (SID). A similar

and more specific example is the portfolio package of BT's
Common Capability Model (CCM). The CCM describes
common capabilities of BT's Matrix architecture, and its
portfolio package is a Unified Modelling Language (UML)
class diagram defining product specification concepts.

The approach employs the service of a product design tools
factory, which is a production environment 'manufacturing'
tools for product modelling. The factory follows a generic
process of constructing domain-specific tools which uses
principles of the Model Driven Architecture (MDA) and is defined
in our prior work [16]. In the context of product design, the
process is characterised by five tasks, as illustrated in figure 13:

• Definition of the product modelling language concepts.
The elements of the product specification language are
captured in the form of a meta-model. An example of
such a meta-model is shown in figure 14. It was
developed in Borland's Together 2007 environment and
presents in UML notation a model of concepts and
relationships that are part of BT's CCM Portfolio
package. This gives the abstract syntax of the product
definition language. If necessary, the language abstract
concepts can be augmented with constraints imposing
special restrictions on the way they are used.

• Definition of the language graphical notation. The
language's graphical notation is defined. At this stage, all
graphical objects are defined, such as rectangles, boxes and

Tool Factory Environment

Map
Configurations

Product
Design

Tool

Product Modelling
Language Concepts

Graphical
Notation

Tool User
Interface

Configuration

Data
Transformation

Scripts

Figure 14. Tool factory environment defining the product modelling language

Figure 13. Product design tool factory environment

82 BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

connectors, which will be used to visually represent the
language concepts in a diagram. The only concern involved
in the exercise is the capture of a visual objects library. The
factory environment provides a default set of geometrical
objects with which to populate the library as well as facilities
to import icons or other objects constructed externally in
drawing tools. Mapping the visual objects to language
concepts is part of the mapping and tool generation task.

• Configuration of tool user interface features.
Presentation characteristics of the generated tool are
configured. This step organises individual modelling
language concepts in separate groups on a palette. The
palette is made available in the generated tool. In the
process of modelling a product, product designers
access the language concepts through this palette and
drag-and-drop them on the drawing panel to gradually
construct the model diagram. An example of such a
palette is shown in figure 15 in the right-hand side of
the depicted tool.

• Development of data transformation scripts. Data
transformation templates are constructed. Their role is
to convert product specifications defined in the product
modelling language supported by the generated tool

(for example, BT's CCM) into other data formats (such as
XML). The templates are programmed in a scripting
language provided by the factory environment. An
example of such a script written in the Xpand language
is shown in figure 16.

• Overall mapping and tool generation. The results of all
the above tasks get associated. The visual objects of the
library constructed when the language graphical notation
was defined get mapped onto the abstract language
concepts created when the first task was completed. Every
language element now has a visual representation. As the
palette is mapped onto the language elements, a place is
reserved for each language concept which provides
references to the concept and its visual aspect. Finally, the
data transformation scripts are pulled in to be provided as an
add-on utility in the modelling tool. With these mappings in
place, the factory has all the necessary knowledge to
manufacture the desired product modelling tool. The result is
a standalone graphical editor, such as the example illustrated
in figure 15, strictly dedicated to the semantics of the product
specification language engaged.

The example product modelling tool illustrated in figure
15 uses BT's CCM product portfolio package as the modelling

Figure 15. Generated tool with product model example

83BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

language to specify products. It is developed by applying the
aforementioned process steps in the domain specific
language utility of Borland's Together 2007 shown in figure
14, which served as the tools factory environment. The
layout of the produced tool is that of a quite standard
graphical editor. It mainly comprises a drawing panel where
the product model is to be specified. Product specification
language constructs can be drag-and-dropped on the panel
from the palette on the right-hand side to gradually build the
product model. The palette in figure 15 shows the modelling
entities of BT's CCM. Finally, the area at the bottom of the
figure is dedicated to editing properties of each class in the
product model diagram. For instance, this area shows the
properties of the ProductSpecification class named 'Nokia
6310', which is part of the illustrated product model
example. The tool has been configured so that each class in
the product model is stereotyped with its meta-type – that is,
with the type of model language construct of which it is an
instance. For instance, <<ProductSpecification>> denotes
that class 'Nokia 6310' is of type ProductSpecification, a
product modelling language construct defined as part of

CCM in the first task of the tool generation process. A similar
example involves all relationships in the model, which are
also stereotyped.

Data transformation templates, developed when the
data transformation task of the tool generation process is
completed, accompany the produced tool as an add-on
utility. These utilities enable the tools to convert product
models into various data formats. The script shown in figure
16 is an example of a CCM-to-XML data transformation
template. It ensures all product specifications created in the
tool of figure 15 by means of the CCM modelling language
can be transformed into XML format and be serialised in an
export file. An example of such XML output is shown in
figure 17. It is produced by the template of figure 16 and
represents in XML the product model of figure 15. One use of
the XML-formatted product data could be the configuration
of the OSS, similarly as MDMP does in figure 12. In this
scenario our approach substitutes the role of MDMP. Another
use of the XML data could be to automatically populate the
product master data store in MDMP, removing the need for
manual data updates by product managers. In order to
facilitate the updates, MDMP should provide an XML adapter
interface. Alternatively, transformation templates could be
developed in the tools that convert CCM-specified product
data directly into MDMP data model format, in which case
the product master data store can be updated over MDMP's
native access interfaces. From the above two scenarios, the
latter indicates a more preferable use of our approach in
combination with MDMP because it utilises benefits of both
camps whilst keeping enterprise custom-configured PLM
tooling and MDMP loosely-coupled and complementary.

6.4 Discussion
Incorporating the proposed product design tools factory in
the environment of a CSP has a number of advantages over
the established current practice:

• Data accuracy, right-first-time and short cycle-time.
As noted earlier in this section, currently product designers
prefer the use of general-purpose drawing packages, like
MS Visio, for modelling new products. In order to make this
collateral shareable for review and use by other
stakeholders involved, documentation is required to
thoroughly explain the diagrams. The inherent ambiguity
of this approach results in an error-prone process
characterised by costly iterations before stakeholders can
establish common understanding and perform MDMP or
OSS/BSS configuration updates. The tools factory
approach takes manual effort out of the design process
and improves accuracy. It engages stakeholders in using a
formal methodology and tools with a rigorously defined
product specification language. Product models are
therefore unambiguously specified and commonly

Figure 16. Code snippet for CCM-to-XML transformation template

Figure 17. Snippet of product data in XML format

84 BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

understood by all stakeholders involved in the process.
Additionally, the tools can automatically drive MDMP or
OSS/BSS by updating master or system data stores with
product data expressed in the appropriate formats.
Consequently, the proposed approach reduces iterations
and errors and improves the processing cycle time.

• Enterprise-wide product information stewardship. The
factory manufactures tools, which introduce a common
product information model as the specification language for
products. This allows flexibility to adopt as such a language
any high-level product information model developed and
owned by the CSP. Such is the case of BT's CCM. CCM has
been developed in BT, evolved over time and ties neatly in
the organisation's recognised Matrix architecture of reusable
capabilities. Therefore, it is the best choice of language to
govern the way BT products are specified and to maintain
high-level information stewardship across the organisation.
Product specification tools, such as the one reviewed in this
section, can be devised by the factory to embrace CCM and
assist its BT-wide use. This will benefit current practice in
product modelling which does not engage CCM but, as
noted above, is rather driven by general-purpose drawing
tools, product specification documents and the data model
endorsed by the MDMP of choice.

• Evolution. Any changes in CCM, or any other product
specification language, can propagate and materialise in
the supporting tools by adjusting the meta-models in the
tools factory environment. This way the approach maintains
the toolset in line with the direction in which the CCM
evolves, providing modelling consistency and data
integrity. Additionally, the factory offers utilities for tools
backward compatibility so that older product specification
data would still be accessed and managed by the new
toolset versions.

• Fast adoption. Incorporating the PLM tools factory in
BT, or any other CSP environment, does not introduce
significant integration tax or impose special
requirements for change on the established PLM
business process and associated infrastructure. Rather,
the factory plays a complementary role as the generated
tools mainly focus on automating parts of the PLM
process and on feeding with product data the MDMP
and OSS/BSS platforms.

Let us elaborate on the last point – that is, on the
factory's fast adoption by a CSP and its influence on the PLM
process and associated infrastructure.

First, the incorporation of the tools factory into the CSP
adds a formal product modelling task to the C2M phase of
the PLM process that enhances or replaces the informal one

currently practised by product designers. During this task,
designers use the generated product-specification tools and
apply either CCM or any other tool-embedded high-level
product information model to capture product data. Not only
does this elevate the attention to CCM, which is currently
under-utilised in favour of the MDMP data model and the
informal Visio product model diagrams, but it also introduces
a strict data capture method that is governed by a tool.
Additionally, in the tasks of the PLM process that follow the
C2M phase, stakeholders share product data using the tools
that remove ambiguity, which enhances collaborative
interactions and keeps design iterations to a minimum.
Relevant stakeholders will, of course, have to be trained in
the use of product modelling tools. However, because the
graphical interfaces of these tools comply with the Eclipse
Framework [17], which is common ground for designers and
developers, stakeholders will often be able to teach
themselves how to use them, eliminating the need for
specialised training.

Second, the incorporation of the tools factory should
not result in significant changes to CSP's infrastructures. Two
factors make generated tools CSP-platform-independent:

• the modelling language used by the tools is based on a
high-level product information model that is not tied to
a particular technology; and

• tools are standalone and independent of the MDMP and
OSS/BSS platforms.

Take for instance the product portfolio package of BT's
CCM, which is used as the modelling language for the product
modelling tool presented in this section. CCM is a model of BT's
Common Capabilities, developed in UML. It does not bear any
association with particular technologies or depend on the
choice of MDMP (e.g. Oracle's product information
management hub) or OSS/BSS (e.g. Siebel). The tools integrate
with platforms through special data transformation templates
that are programmed in the factory and accompany the tools as
add-on utilities. Product data captured in the tools could then
transform either into MDMP and OSS/BSS platform native data
formats or into XML and update platform data stores
respectively over either native platform APIs or dedicated XML
adapters. Again, as noted above and illustrated in figure 12, the
recommended use of the factory and generated modelling
tools is to complement the MDMP by data driving its product
master data stores rather than to substitute the MDMP's role by
directly data-driving the OSS/BSS platforms.

The job performed by the modelling tools' data
transformation templates resembles that of the OSS
adapters. The former are engineered to convert product
data from CCM to another data format, such as XML. The

85BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

latter accommodate data exchanges between MDMP and
OSS and are programmed to transform data from a common
data exchange format, usually XML, into OSS native formats
and vice versa. An interesting idea would be to look at
whether custom data transformation templates can be
developed in the tools factory environment to play the role
of OSS adapters. In other words, OSS adapters are
developed in the factory as templates programmed to
achieve the same transformations. In the very frequent case
of new product features or of completely new products
being introduced, the required OSS development includes
effort to implement additional mappings in the existing
adapters. These map the new product data to their
respective and newly developed OSS internal
representations. This is a very costly and complex job which
potentially could be significantly simplified if the adapters
are implemented as templates within the integrated tools
factory environment. The idea is pending further
justification through future research work.

The introduction of the tools factory creates an
associated set of new CSP stakeholder roles, primarily that
of 'toolsmith' (see figure 12). Toolsmiths are responsible for
the process of manufacturing product modelling tools using
the factory (see figure 13). Tools are developed in line with
the CSP's authorised product information model, such as
CCM, which constitutes the product modelling language.
Therefore, toolsmiths have close interactions with the CCM
modellers and owners in order to co-ordinate their activities
in synchrony. Any change in CCM should drive a respective
change in the modelling tools. The number of individuals
performing the toolsmith role should be kept low in order to
restrict exposure of the tools factory environment. This way,
all the complexity of content and technical mechanisms
driving the tools factory production process remains
encapsulated away from the eyes of the wider business
community and exposed only to those few who are
specialised and trained for the job. It is expected that tools
users will significantly outnumber the toolsmiths. Beyond
the production process lie tools maintenance tasks including
deployment and distribution, installation, local
configuration and patch upgrading. Because these are
typical software maintenance tasks, tools could equally be
handled by the respective processes already established in
the company.

7. Conclusions
With increasing market pressure, CSPs are streamlining their
processes to expedite new product introduction at reduced
cost and time-to-market. In this context, PLM is seen as a
key discipline for the communications industry, although it is
still under-adopted in comparison to other industries. The
need to accelerate PLM adoption is further increasing due to

CSPs changing their product development approach from
the traditional telecoms-orientated to one of a more
software-orientated nature.

While shifting rapidly to a more SOA-based delivery of its
capabilities, BT is incorporating a PLM approach in conjunction
with its Matrix architecture. First steps in this direction include
the inclusion of a master data management platform in the
architecture. The challenge of implementing just this one
move is vast. All of BT's OSS and BSS platforms need to
interface to the MDMP and to interact with each other through
it to complete all necessary data exchanges. Further steps
include more agile lifecycle management processes and
operations and more automation that would remove manual
effort, long cycles and cost from product development.

CSPs should increasingly support standardisation work
that specifies cross-industry PLM process transformation
guidelines, lifecycle management interfaces for communication
services and interfaces/capabilities for telecoms-orientated
lifecycle management systems. Such effort is currently ongoing
in various teams of the TMF, and this paper has shown how the
lifecycle pattern relates to the TMF's service delivery framework
as a baseline for the direction of PLM standards.

It is equally important that CSPs support, through
enterprise-wide programmes, the construction of integrated
lifecycle management environments that adopt an end-to-
end tools-orientated approach and deliver cross-enterprise
PLM processes. Such environments should provide the tools
that unify the C2M, L2C and T2R phases of the lifecycle.

The tracing of complex dependency chains that involve
nested business entity lifecycles with intra- or inter-
enterprise spans is important to the success of lifecycle
management. Agile management of such complex lifecycle
chains will only be possible through full PLM process
automation and appropriate tooling support.

Acknowledgements
The main author would like to express his gratitude to Keith
McKnight, Tommy Loughlin and Helen Hepburn of BT's MDMP
team for their support of the work on the PLM tools factory.

Special thanks are also extended to Jim Hutton for the very
fruitful discussions and the unreserved sharing of his hands-on
experience on BT's product design processes and tools.

We also recognise the significant contributions members
of the TMF's PLM team have made to the ideas we have
presented, through the development of PLM as a discipline
in the industry, the development of standards and by
encouraging the exchange of in-depth knowledge between
subject matter experts.

Nektarios Georgalas holds a Diploma in
Electrical and Computer Engineering from
the University of Patras, Greece, an MPhil in
Computation from UMIST and a PhD in
Computer Science from the University of
London. He joined BT in 1998 and is now a
principal researcher in the company's Centre
for Information and Security Systems
Research. During his career with BT, he has
participated in and managed research
projects in areas including active networks,
market-driven data management systems,
policy-based management, distributed
information systems, service-oriented

architectures and web services. His research is currently focused on product
lifecycle management and rapid service assembly. Nektarios has led
numerous international collaborations on the application of model-driven
architecture and New Generation Operations Systems and Software (NGOSS)
standards in telecoms operational support systems and has both led and
contributed to the work of the TeleManagement Forum. He holds five
patents, has authored more than 30 papers and has frequently been invited
to speak at international conferences.

Achilleas Achilleos is currently a PhD student
in the School of Computer Science and
Electronic Engineering at the University of
Essex. He received his MSc from the same
department and a BSc from the Budapest
University of Technology and Economics in
Hungary. His research interests centre on
model-driven development, pervasive
service creation, context-modelling and
mobile computing. Currently employed by BT
as a research contractor, his research work is
co-funded by BT and the UK Engineering and
Physical Sciences Research Council (EPSRC).

86 BT Technology Journal • Vol 26 No 2 • April 2009

Agile product lifecycle management for service delivery frameworks: history, architecture and tools

References
1 Ward A and Smith C, 'Service orientation: impact on BT's product

portfolio', BT Technology Journal, vol.26, no.2, April 2009, pp.13-23

2 CIMdata Inc, 'PDM to PLM: growth of an industry', http://www.
edstechnologies.com/download/pdm-plm-growth-of-industry.pdf

3 Elliot L, 'Does one size fit all?', Desktop Engineering, February 2006,
http://www.deskeng.com/articles/aaabzm.htm

4 Bruce G, Naughton B, Trew D, Parsons M and Robson P, 'Streamlining
the telco production line', BT Technology Journal, ibid

5 Glass WG, 'BT's matrix architecture', BT Technology Journal, vol.26,
no.1, September 2008, pp.86-96

6 Glass WG, 'BT's matrix architecture', BT Technology Journal, vol.26,
no.1, September 2008, pp.86-96

7 Batelle J,'The 70 percent solution', Business 2.0 Magazine, December
2005, http://money.cnn.com/magazines/business2/business2_archive/
2005/12/01/8364616/index.htm

8 The TMF Product Lifecycle Management Team, 'Holistic product
lifecycle management: a framework for PLM in the communications
industry', TeleManagement Forum, TMF TR137, September 2007

9 The TMF Product Lifecycle Management Team, 'Team activities',
TeleManagement Forum, http://tmforum.org/BestPracticesStandards/
TeamActivities/5277/Home.html

10 The TMF Product Lifecycle Management Team, 'Lifecycle management
process specification', TeleManagement Forum, TMF TR142, January
2009

11 Bruce G, Naughton B, Trew D, Parsons M and Robson P, 'Streamlining
the telco production line', BT Technology Journal, vol.26, no.2, April
2009, pp.35-50

12 Silva N et al, 'Service oriented architectures for convergent service
delivery platforms', EURESCOM Project P1652, Deliverable 2,
December 2006, http://www.eurescom.de/~pub/deliverables/
documents/P1600-series/P1652/D2/P1652-D2.pdf

13 Service Delivery Framework Programme, 'Service delivery framework
overview', TeleManagement Forum, TMF TR139, September 2008

14 Muschamp P, 'Service innovation (in a software world)', BT Technology
Journal, vol.26, no.1, September 2008, pp.97-111

15 Glass WG, 'BT's matrix architecture', BT Technology Journal, vol.26,
no.1, September 2008, pp.86-96

16 Achilleos A, Georgalas N and Yang K, 'An open source domain-specific
tools framework to support model driven development of OSS',
Proceedings of the Third European Conference on Model Driven
Architecture - Foundations and Applications (ECMDA-FA 2007),
Haifa, Israel, June 2007

17 The Eclipse Framework, http://www.eclipse.org
Daphne Economou holds a degree in Graphic
Arts Technology from the School of Graphic
and Arts Technological Educational Institute
in Athens, an MA in Design for Interactive
Media (Multimedia) from Middlesex
University and a PhD in Computer Science
from Manchester Metropolitan University.
Since January 2004, she has been a lecturer
in interactive multimedia and hypermedia at
the University of the Aegean. Her research
interests include collaborative virtual reality
environments for learning and archaeology,
human computer interaction and multimedia
application design for mobile devices.

Vangelis Freskos holds a Diploma in Electrical
and Computer Engineering from the
University of Patras, Greece. He specialises in
VLSI design. In 2008, he worked as a
research contractor at BT under the EU's
ERASMUS programme, working on the
construction of PLM tools based on model-
driven development principles.

