Pervasive and Mobile Computing 6 (2010) 281-296

pervasive
and mobile
computing

Contents lists available at ScienceDirect

Pervasive and Mobile Computing

journal homepage: www.elsevier.com/locate/pmc

Context modelling and a context-aware framework for pervasive service
creation: A model-driven approach”

Achilleas Achilleos **, Kun Yang?, Nektarios Georgalas b

2 Pervasive Systems Research Group, School of Computer Science and Electronic Engineering, University of Essex, Colchester, C04 3SQ, United Kingdom
b Centre for Information and Security Systems, British Telecom Innovate, Ipswich, IP5 3RE, United Kingdom

ARTICLE INFO ABSTRACT

Article history: Pervasive service creation entails a complex process that involves a diversity of
Received 28 February 2008 development aspects. Context-awareness is an important facet of pervasive service
Received in revised form 12 April 2009 creation, which deals with the acquisition, rendering, representation and utilisation of

Accepted 1 July 2009

Available online 19 July 2009 context information. In this paper we tackle context-awareness at the application level

dealing with the representation and utilisation of context by services. We propose a
model-driven approach that facilitates the creation of a context modelling framework
Pervasive service creation and simplifies the desi'gn and implement:ation of pervasiye services.' To conclude, we
Context-aware framework demonstrate the benefits of our model-driven approach via the creation of a pervasive
Context modelling museum service and its evaluation using selected software metrics.

Model-driven development © 2010 Published by Elsevier B.V.
Domain specific modelling

Keywords:

1. Introduction

Conventional services represent software applications that can be deployed on a specific device and platform to support
the execution of particular computing tasks. In contrast, pervasive services refer to software applications that can operate in
adynamic environment and have the capability to run anytime, anywhere and on any device with minimal user attention [1].
A pervasive service provides users with a specialised and personalised behaviour that allows performing dynamic computing
tasks.

One characteristic feature of pervasive services is context-awareness, which depicts the necessity to react in accordance
to certain predefined rules or on the basis of intelligent stimulus. This denotes the capability of the service to utilise context
information in order to adapt dynamically its behaviour. Context has acquired a variety of meanings over the course of
research [2]. In this work, we define context as: “Any information relevant to the interaction of the user with the service, where
both the user and the application’s environment are of particular interest”. Understanding which information is termed as
context, how to model and utilise them is particularly important in order to simplify the creation of pervasive services.

Service creation is a complex process, which involves a set of activities for the rapid analysis, design, implementation and
validation of services [3,4]. The process is usually supported by a service creation framework, which aims to simplify service
creation. Many technology-specific frameworks [3,5] have been developed to realise this objective. None of them though
provides a clear-cut solution, due to the technology-specific complexities introduced. These frameworks aid technology
experts but certainly do not assist novice users [4]. Hence, we argue that a model-driven generic framework [6] is required
to provide solutions to these issues.

* The work presented in this paper is partly supported by British Telecom under the Model-driven Component-based Systems Engineering (MOSE) project
and the UK Engineering and Physical Sciences Research Council (EPSRC) under project PANDA (Policy-based Model-driven Pervasive Service Creation and
Adaptation).

* Corresponding author. Tel.: +44 0 78400 65217; fax: +44 0 1206 872900.

E-mail address: aaxilleas79@yahoo.gr (A. Achilleos).

1574-1192/$ - see front matter © 2010 Published by Elsevier B.V.
doi:10.1016/j.pmcj.2009.07.014

http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
mailto:aaxilleas79@yahoo.gr
http://dx.doi.org/10.1016/j.pmcj.2009.07.014

282 A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296

When dealing with pervasive services the complexity of the process is augmented due to the diversity of sources from
which context information is obtained. In conventional services information comes mainly as input from the user and this
manually supplied information drives the service execution. Pervasive services though rely on information that arises from
a variety of sources; e.g. sensors, repositories, users. Therefore, the capability to effectively represent and manage context
must be provided, in order to aid the creation of pervasive services.

Context-aware service creation has been studied during the course of research following two complementary directives.
Several approaches [7,8] have been proposed that follow an infrastructure-based solution to the problem. These approaches
provide an infrastructure capable of sensing, gathering and processing context information required by the pervasive
service [9]. Although the process is simplified, the necessity to tailor the service implementation in accordance to the
infrastructure’s implementation arises. Consequently, these approaches restrict the developer to a specific implementation
technology.

The complementary directive introduces approaches operating at the application level [10]. These approaches do not
consider how information is acquired, gathered and processed to obtain an abstract context description. The primary
requirement is the representation of context information in a format that can be realised and utilised by context-aware
services. In principle these approaches are termed as context modelling techniques [10]. They deal with management tasks
such as representation, administration and distribution of context information to services to achieve their adaptation.

Context modelling primarily tackles the representation of context information in the form of an abstract context model.
The model is defined via the use of a context modelling framework, which comprises a modelling language and a supporting
editor with drag and drop capabilities. Subsequently, the mapping of the modelling language to an implementation
technology is defined, to facilitate the transformation of context models. The context model drives the generation of
the implementation, which acts as the bridging point (e.g. similar to an API: Application Programming Interface) that
allows context to be utilised by services [11]. The generated implementation typically serves tasks for managing a context
repository such as querying, administrating and distributing context information to services.

An ideal context model should go head to head with the service creation framework into which it is to be implemented.
A common software engineering technology that underpins both context modelling and a pervasive service creation
framework can naturally bring context-awareness into pervasive services at the stage of service creation. One such
technology is the Model Driven Architecture (MDA) [12,13] paradigm from the Object Management Group (OMG) [14].
In our previous work, a preliminary MDA-based service creation framework has been proposed and verified [15]. The work
in this paper follows on our previous research outcomes to bring context-awareness into service creation via a model-driven
technology, in particular, OMG’s MDA. MDA’s many advantageous features such as high-level abstraction and platform
independence not only facilitate but also simplify the process of context modelling and its eventual implementation to
particular programming languages [16].

The terms pervasive and context-aware are used interchangeably in this work. This is because we exclusively
consider context-awareness as the prime characteristic feature of pervasive services. The paper promotes the thought
of incorporating context-awareness into pervasive services at the static compile time, i.e., service creation stage. These
mechanisms built in at the service creation stage will be triggered at the service execution phase to provide inherent and
therefore much enhanced service adaptability. The proposed approach complements the main-stream service adaptation
methodology that is largely based on a complicated middleware infrastructure.

In this paper two main technical contributions are introduced. First, we propose a model-driven methodology based
on the MDA paradigm that facilitates the service creation process. We utilise MDA for context modelling and consider
context modelling as part of the whole process of pervasive service creation. Second, we practise the methodology to design
and develop a Context Modelling Framework (CMF) and verify its effectiveness using a pervasive service scenario. Note
that the CMF is integrated into the generic framework as one of its components to facilitate the design, validation and
implementation of pervasive services.

The remainder of this paper is structured as follows: Section 2 presents related research work on context-aware service
creation. Section 3 introduces the model-driven methodology and presents the generic framework’s software components
and architecture. In Section 4 we perform the necessary requirements analysis of the context domain and introduce the
proposed CMF, which is integrated into the generic framework to comprise the Context-Aware Pervasive Service Creation
Framework (CA-PSCF). Section 5 demonstrates the applicability of the CA-PSCF for the creation of a pervasive museum
service. An evaluation of the approach is also presented in this section using selected software metrics. Finally, in Section 6
we present the conclusions and future work.

2. Related work

Initial efforts on context-aware service creation focused on an infrastructure-based solution to the problem. In their work
Dey and Abowd [7] define an architecture and present a Java-based Context Toolkit that simplifies context-aware service
creation. The toolkit provides three abstract architectural components namely widgets, interpreters and aggregators. These
components are responsible for the acquisition of context information from sensors as raw data and the processing of those
data to obtain a high-level representation. As a result, this context information can be utilised by context-aware services to
achieve their adaptation.

A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296 283

Table 1

Mapping the MDD process to the service creation process.

MDD process Service creation process

Domain specific language definition Service analysis

Domain model definition Service design

Domain model validation Service validation/testing

Domain model-to-model transformation Service implementation/management
Domain model-to-code generation Service implementation

Chen and Kotz [8] describe a graph abstraction for acquiring context in the form of raw data. These data are then processed
to obtain a suitable abstract representation, which enables the distribution of context to services. The aforementioned
initiatives help to accomplish low-level tasks that are important to application level approaches. Our work aligns with
complementary application level approaches, which assume that this infrastructure level functionality exists and focus
principally on context modelling [10] to simplify context-aware service creation.

Bauer in [17] proposes an extension to the Unified Modelling Language (UML), which allows modelling context
information relevant to air traffic management in the form of a context model. The strength of the approach lies in the use
of graphical models, defined using the widely accepted UML, which makes it easy to realise and transform context models.
Despite the benefits of its approach, Bauer’s model lacks a formal basis and consequently model evaluation is considered a
downside. Furthermore, only a partial validation of models is applicable [10].

The UML based Context Modelling Profile (CMP) defined by Simons and Wirtz [18] allows one to model context for mobile
distributed systems. UML stereotypes have been defined for the context modelling domain and Object Constraint Language
(OCL) [19] constraints are enforced to ensure the validity of models. The approach benefits from the use of the widely
accepted UML, since the CMP can be used in various UML tools. Despite that fact, these tools do not provide a standard way to
access model stereotypes and enforce constraints [18]. Hence, constraints are imposed and enforced in this approach using
the Eclipse Modelling Framework (EMF) [20]. Furthermore, mapping models to implementation is considered as future work.

Henricksen and Indulska in [9,21] propose an infrastructure and a framework to gather, manage and disseminate context
to services. Context modelling concepts are introduced that facilitate the generation of a context management system
from models. These are namely the context modelling language, the situation abstraction, the preference, branching and
programming models. In their work formality of models is considered, diverse context sources are addressed and validation
capabilities are provided. The approach is slightly hindered by the absence of a context modelling editor and the degree of
automation provided for software generation.

In this paper we propose a model-driven approach that provides a higher level of automation in software generation.
The approach is strictly based on the MDA paradigm and provides the capability to semi-automatically generate service
creation environments (frameworks) for different application domains [15]. Hence, the approach and the generic framework
are utilised to define and generate the CMF in the form of an Eclipse plug-in. The plug-in is then integrated into the generic
framework, comprising a new software capability. Consequently, merely the modelling, validation and implementation tasks
must be carried out for the creation of pervasive services. In addition the capability to generate diverse implementations
and deploy pervasive services on different devices is provided. This simplifies the process and enables the rapid creation of
pervasive services at the static compile time.

3. Generic model-driven methodology for pervasive service creation

3.1. The proposed model-driven development process

The model-driven development (MDD) process proposed in this paper aims to provide a systematic methodology that
facilitates the generation of modelling frameworks and supports the overall service creation process. In this work we make
explicit use of the devised methodology to support the creation of pervasive services. Table 1 presents a mapping between
the phases of the MDD process and the phases of the service creation process.

The domain specific language (DSL) [22,23] definition phase reflects the service analysis phase. Fig. 1 illustrates the
Steps 1-4 required for the definition of a DSL and the generation of a domain specific modelling framework. Initially the
semantics of the domain are identified and mapped to modelling language constructs. The language is defined in the form
of a metamodel, which comprises the elements, relationships and properties of the modelling domain. Furthermore domain
rules are identified, mapped to constraints and imposed onto the language definition. The constraints are most commonly
applied explicitly and separately of the domain metamodel definition; some rules are implicitly stated in the metamodel.

The metamodel definition and the successful imposition of constraints provide the capability to define coherent models.
In order to design domain models, a graphical modelling framework is required. Implementing a modelling framework
from scratch is often cumbersome and costly. Especially its maintenance introduces quite an overhead on the process
and subsequently increases development time and costs. The generic framework provides the capability to simplify the
creation and the maintenance of the modelling framework. This is performed by mapping the language constructs (domain
metamodel) to graphical elements, forming the graphical metamodel. The domain and graphical metamodels define the
entire set of artefacts required to enable the automatic generation of the domain specific modelling framework.

284 A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296

Step 1 identify Step 2 identify

Domain semantics

map to map to
@g{:ig& - impose on Constraints)
Step 3 v map to Step 4
Graphical Elements)—9°1IC g mo?j‘éﬁ.'?r?é”ff;’riiifork)

Domain
rules

Fig. 1. Domain specific language definition; service analysis.

Step 5 Step 6

Domain specific enforce
modelling framework _/

models validate

Domain

Fig. 2. Domain model definition and validation; service design and validation.

Step 7

Source domain Transformation Target domain
language language language

A A

define

Mapping

conforms to conforms to

Source domain
model

Fig. 3. Model-to-model transformation; service implementation/management.

Target domain
model

Step 8
Domain Template
Language language
conforms to define

Domain Template based - Service
model code generator o code

Fig. 4. Model-to-code generation; service implementation.

The generated domain specific modelling framework facilitates primarily the definition of models (Step 5), as illustrated
in Fig. 2. Furthermore, the framework provides the capability to enforce the constraints (Step 6) imposed during the language
definition phase. In this way the domain models can be validated to ensure their completeness and coherency. Consequently,
non-erroneous implementations are automatically generated from the validated domain models.

The model-driven development process entails a model-to-model transformation phase (Step 7), which assists either
the service implementation or the service lifecycle management. As illustrated in Fig. 3, via the use of the transformation
language the mapping of the source language to the target language is defined. The transformation takes as input a model
conforming to a metamodel and produces an output model conforming to another metamodel. In the case of the service
implementation phase the transformation accepts as input a platform independent model (PIM) and generates an output
platform specific model (PSM). The PSM includes implementation specific details and conforms to a metamodel, which
reflects the operational semantics of a programming language. Besides the service implementation phase, transformations
can be used for the configuration management of services when porting from one service version to another version; PIM
to PIM transformation.

The final phase is model-to-code generation (Step 8), which corresponds to the service implementation phase. In case
the intermediary PIM to PSM transformation phase is omitted, implementation specific details are hard-coded within the
code generator. The implementation is obtained via a semi-automatic process that transforms models (PIM or PSM) to code.
Fig. 4 illustrates the definition of the code generator in the form of templates, via the use of a template language. The code

A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296 285

Generic Framework ‘

‘ EMF ‘ ‘ GMF ‘ ‘ ATL ‘ ‘ 0AW ‘

Eclipse platform

Fig. 5. Generic meta-modelling framework architecture.

generator accepts as an input the domain model defined in accordance to the language and generates the corresponding
software application code.

3.2. Generic service creation framework architecture

In order to apply the methodology in practice a generic framework is required. The proposed framework comprises
of existing software components integrated together on top of the Eclipse platform. Its extensible component-based
architecture facilitates the integration of software components in the form of Eclipse plug-ins. The core components
integrated into a common generic framework [6] are namely the Eclipse Modelling Framework (EMF) [20], the Graphical
Modelling Framework (GMF) [24], the Atlas Transformation Language (ATL) [25] and openArchitectureWare (0AW) [26]. Fig. 5
presents the Eclipse platform as the foundation and the container of the combined modelling frameworks.

The EMF is the core component that interlinks and enables the functionality of the rest of the frameworks. These com-
ponents are regarded as EMF-based frameworks because they rely on EMF-based metamodels to carry out their individual
operations. For instance transformations in the ATL language are defined on the basis of the EMF domain metamodel. Simi-
larly, the definition of template-based code generators is performed according to the EMF domain metamodel. Consequently,
EMF acts as the bridge and ensures horizontal integration of the framework’s individual software components.

In this work we utilise the capabilities of the generic framework to define the Context Modelling Language (CML) and
generate in a semi-automatic manner its supporting Context Modelling Framework (CMF). The CMF is the new software
component generated as an Eclipse plug-in, which is integrated with the main frameworks to deliver the Context-Aware
Pervasive service creation framework (CA-PSCF). It provides its own modelling and validation software capabilities but
additionally makes use of the existing components’ capabilities to execute the phases of model-to-model transformation
and model-to-code generation.

4. Context-aware pervasive service creation framework (CA-PSCF)

4.1. Requirements analysis

Context-awareness refers to the capability of devices to detect changes in context information and react accordingly to
adapt the service behaviour. The primary context categories we acknowledge and build upon are explicitly stated by Dey
and Abowd in [2]. These are namely the Identity, Time, Location and Activitycategory types. Apart from these we introduce
the Preference category type. This is of particular importance since it depicts different service behaviours in accordance to
individual user preferences. For example a specific user might prefer to contact a particular friend by sending a simple SMS
message and another friend via an email message. Therefore, a distinct behaviour should be realised by the service for each of
the two recorded cases. Furthermore, recording users’ preferences and providing a rating to individual preferences enables
the service to undertake the appropriate actions on behalf of the user; with increased probability of correctness.

In addition to the primary category types, secondary context categories are introduced that denote explicit information of
the context-aware service. For instance a restaurant’s details, e.g. name, address, describe a secondary context category that
is explicit to a particular service. Furthermore, primary and secondary categories facilitate the derivation of simple pieces
of context information [2]. For instance, if the Identity of the person is known we can realise primitive context information
about that individual such as his name, email, gender etc.

Fig. 6 illustrates the different abstraction levels of context information. Each particular entity (i.e. Person, Device) is
described by different context information. At the top abstraction level context represents information objects (i.e. Identity,
Location), which are composed by complex datatypes such as Profile, Address and Message; at the second level. These complex
datatypes are composed of primitive datatypes such as Integers, Strings, and Booleans residing at the third abstraction level.
For instance the Identity of a person is defined in the form of a Profile complex datatype, which is composed by the forename
and the surname String primitive datatypes.

In conventional services information can be managed in a common way since it is mainly acquired from a single input
source; profiled by the user. On the contrary, in context-aware services information needs to be managed differently since
it is obtained from diverse input sources (e.g. sensors, repositories). Consequently, a classification of context sources is
essential in order to distinguish and manage context information accordingly. In this work we follow the classification
defined in [9], which segregates context types as follows:

286 A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296

Entity
Identity Time Location Activity Preference Secondary
Profile Address Message
forename surname number street city country postcode sms email mms

Fig. 6. Context information abstraction levels.

e Static: information of high persistence (e.g. date of birth).
e Profiled: user-supplied information.

e Sensed: information captured from sensors.

e Derived: derived on the basis of other context information.

Context validity can be determined by the persistence of context information. The persistence property defines the
frequency with which context information are subject to change. Conventionally, static context sources disclose a permanent
correlation between the entity and its associated context information. Profiled sources reveal infrequent (seldom) context
changes since information remain fixed over long periods of time; unless altered by the user. Conversely, sensed and derived
context sources denote information that change frequently and are extremely unstable (frequent or volatile). This is because
context obtained from sensors or derived from other information is highly unpredictable.

Moreover, context validity can be determined via the use of temporal constraints. These are defined either as comparative
or absolute time constraints. A comparative constraint establishes an expiration time for information obtained from
a context source. Alternatively, absolute temporal constraints designate both the starting and expiring interval values.
Temporal constraints are of prime importance since they designate when information becomes outdated.

Context quality is also considered on the basis of diverse context sources. Static information contained within a repository
is usually of superior quality than profiled information input by the user; assuming correct information is defined. This is
because a user might neglect or forget to update the information. Correspondingly, sensed context is of inferior quality than
the static and profiled ones. This is because context acquired from sensors can be inaccurate or erroneous and consequently
unreliable. Furthermore, context can be derived on the basis of other information. For instance, potential restaurants for
dining can be derived from the food preference of the person. Therefore, the quality of derived information relies both on
the quality of other context information (e.g. sensed) and the derivation rule.

Context privacy is another major issue that needs to be addressed in order to achieve the acceptance of context-aware
services by users. Different context information requires to be treated differently in terms of privacy. For instance a user
might want to keep its profile information accessible to all users of the service. Opposed to this, some context information
such as credit card details must not be accessible to other users. Hence, different permissions should be set on each context
source to restrict accordingly the access to context information.

Apart from categories and input sources, contextual situations are crucial for the modelling and creation of context-
aware services. Context situations represent the conditions that must be valid in order to trigger an explicit behaviour in
the case a context event occurs. For instance the change of context information related to a person (e.g. location) results in
the alteration of the person’s situation (e.g. in office or at a meeting). If the person is currently at a meeting its mobile phone
device must be set automatically to silent mode in accordance to the occurring contextual situation. Therefore, it can be
realised that contextual situations are imperative for modelling the rules that guide explicit behaviours and are valuable to
the interaction between the user and the service.

The categorisation, classification and the situations definition facilitate the mapping of the context model and the gen-
eration of the corresponding implementation. Primarily categorisation supports the generation of information classes in
accordance to the requirements of each distinct category. Moreover, context classification aids the generation of different
context management classes for handling diverse context information as required in a distributed environment. Also the def-
inition of contextual situations supports the generation of distinct situation classes that handle explicit service behaviours.
Via the generated classes the developer can query, obtain and distribute context information to the pervasive service to
achieve its adaptation. Hence, the generated implementation aids and simplifies the pervasive service creation process.

4.2. The proposed Context Modelling Framework: CMF

The requirements analysis provides the capability to identify the essential artefacts for the definition of the CML and the
generation of the CMF. Fig. 7 presents Steps 1-4 (Fig. 1) of the model-driven development process and illustrates how these
are accomplished using the software tools and the functionality of the generic framework.

According to Step 1 (Fig. 1) of the process the identified semantics must be mapped to language constructs. This denotes
in particular the definition of the CML in the form of a context metamodel. The Meta Object Facility (MOF) [27] formal
specification is the foundation of our meta-modelling approach. Although MOF conceptually facilitates the metamodel

A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296 287

Graphical Domain Tooling
editor editor editor
customise define customise
y w
Graphical context extract Domain context extract Tooling context
metamodel metamodel metamodel
map to
Mapping define Mapping context
editor constraints metamodel
generate

Context Modelling
Framework

Fig. 7. Creating the Context Modelling Framework.

| DocumentRoot enumerations
) name [‘ - <
- - = name
entities | 0.°
ECAsource enumeration
[] Entity o datatypes | 0.* o1
= type REE " " . i T o [] ContextDatatype - IiteralsT 1.*
arge! categories " -
« P = name . || EnumLiteral
0. B C iation 0. -
0.1 = wvalue
[Relation o “":':P‘k“y [Context
relations. = multi
ERsource | — M2TMC . © multiplicityType cdproperties | 1.* = name
0. 0. © persistence CACtarget = Smestamp
situations | 0.* : = permission 0.* e
. | Prope
] ContextSituation E = :me) Py | Composite
= attribute . Sonproporties .
0.1 <1 o e e
= expression L 1. l Atomic
1.~
ZF‘ E] Atomic
] Static] Profiled T Sensed [Derived
i Constraint = expression — {j_ﬂ
= name
0.r :
| Identity | Time || Location | Activity || Preference| | || Secondary
[] Comparative] Absolute
= expireTime = etartTime = Multiplicity = Multiplicity Type = Persistence = Permission
= endTime — ZeroToMany — Unique — Fixed — Private
= OneToMany = Collection = Seldom = Group
= ZeroToOne = Alternative = Volatile = Restricted
— OneToOne - Frequent = Unrestricted

Fig. 8. Context modelling language.

definition, it does not contribute any software tools to support the metamodel definition and the concrete syntax definition.
Hence, the Ecore meta-modelling language of the EMF component is used for the definition of the context metamodel. The
motive for selecting EMF as the core of the generic framework is its one-to-one mapping with MOF [28,29]. Furthermore,
both EMF and GMF influenced heavily the MOF 2.0 specification towards the critical direction of tools integration to achieve
the overall objective of model-driven development. The context metamodel definition can be performed either using the
EMF or the GMF based editor. The GMF domain editor is preferred, as shown in Fig. 7, since it facilitates the metamodel
definition using a comprehensible graphical notation; on the basis of the ECore language.

Fig. 8 illustrates the defined metamodel, which describes context elements (e.g. Entity), properties (e.g. multiplicity)
and relationships (e.g. ECAsource). The metamodel includes the artefacts required for the definition of a context model;
an instance of the metamodel. The DocumentRoot metaclass is the container of the elements of the context model. Its
aggregation associations (e.g. contexts) define the containment relationships with the rest of the elements.

The Entity metaclass represents objects that can be associated via the ContextAssociation metaclass to a variety of context
information. The object type (e.g. Person, Device) can be defined via the type property designated in the metaclass. Entities can
contain one or more situations defined by the ContextSituationmetaclass. Contextual situations are defined via the attribute
and expression properties of the ContextSituation metaclass. The attribute property describes a Boolean variable. In accordance
to the expression defined as an OCL constraint the variable value is evaluated either to true or false, which denotes the
occurrence or not of the contextual situation. Finally an entity can be associated to other entities via the Relation metaclass
and the ERsource and Retarget associations. Conceptually the Relation metaclass denotes a relationship between two entities
and it is interpreted as a specific behaviour bound to the two entities; e.g. Person — owns — Device.

ContextAssociation is defined as an abstract metaclass from which the Static, Profiled, Sensed and Derived metaclasses
inherit their properties. The first property denotes the name of the context source. The multiplicity property designates

288 A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296

|
| > EMF - I
|
. | | |
——————- GMF |F—————— | |
| | | I ATL F = 0AW -4 | CMF
I | | | |
: mT ———a | | : : : | | T
| | | |
Y \J |/ v [*
Graphical Tooling Mapping Domain Semantic Transformation Text Workflow Template | Context
editor editor editor editor editor execution engine editor execution engine editor : editor
|

Fig. 9. CA-PSCF components and tools.

a collection of information and can be assigned the values defined by the Multiplicity enumeration. Moreover, the
multiplicityType property determines the number of simultaneous valid occurrences of context information and obtains
its values from the MultiplicityType enumeration. The persistence property is bound to the Persistence enumeration, which
describes the frequency with which context is subject to change. Finally the permission property discloses the access
restrictions imposed upon context information. The values defined via the Permission enumeration show the access
restrictions that can be imposed on context information in order to safeguard the privacy of the user.

Additionally the Derived metaclass includes an expression property, which is used to define the dependence of context
information on other context information via an OCL constraint. Furthermore each context source is associated via the
constraint relationship to the abstract Constraint metaclass, which defines a time constraint for the specific context source.
This temporal constraint can be defined either by establishing a valid expiration time for the context type or by setting an
absolute time interval designating both the starting and expiration time.

Context information is defined as an instance of the Context abstract metaclass and can be either Atomic or Composite
according to the inheritance relationship. The Atomic context contains simple properties, which represent the lowest level
of context information. The Composite context contains both simple properties and atomic context. Moreover, the Atomic
context is also defined as an abstract metaclass since it is extended by the context categories. Properties can be defined as
primitive datatypes or even complex datatypes via the complextype association. Additionally a property can be associated
to an enumeration (instead of a context datatype) as depicted by the enumeration relationship.

Although the metamodel definition includes the elements, relationships and properties required to define a context
model, invalid metamodel instances can be still defined by the designer. Consequently, domain rules need to be identified
and imposed onto the modelling language definition; according to Step 2 of the process (Fig. 1). A portion of the defined OCL
constraints is illustrated next to showcase their importance.

Domain Element Target: Entity::EClass

i Entity.alllnstances()->forAll(el, e2 | el <> e2 implies el.type <> e2.type)

ii. Entity.alllnstances()->forAll(el, e2 | el<>e2 implies el.ERsource <> e2.ERsource)

Domain Element Target: Context::EClass

i. self.conproperties->forAll(p: Property | p.type = 'char' or p.type = 'String' or p.type = 'boolean’ or p.type =
'Integer’ or p.type = 'double' or p.type = 'float' or p.type = 'long' or p.type = 'short' or p.type =
p-complextype.name or p.type = p.enumeration.name)

ii. self.conproperties->forAll(p1: Property, p2: Property | p1 <> p2 implies pl.name <> p2.name)

The first group of OCL expressions targets the Entity metaclass. The primary constraint restricts the model definition
so that duplicate entity instances cannot be defined. In addition the second rule applied onto the metaclass prohibits the
definition of cyclic relationships between entities. Following, the second group of OCL expressions targets the Context
metaclass. The first constraint restricts the context model definition and ensures that the type property of the Property
metaclass is set to one of the following: (i) primitive datatype, (ii) complex datatype, (iii) enumeration. Moreover, the second
rule complements the first since it prevents the definition of the same name property for distinct context properties. Hence,
the definition of context properties is restricted via these two constraints to valid Property instances.

The definition of constraints provides a coherent abstract syntax for the CML. Subsequently, according to Step 3 of
the process (Fig. 1) the metamodel must be mapped to a corresponding concrete syntax. Fig. 7 illustrates the automatic
interpretation of the metamodel and the extraction of the graphical and tooling context metamodels; concrete syntax.
The graphical metamodel defines the graphical components that will be used to define visually the context model within
the modelling editor. Likewise, the tooling metamodel defines the palette components that enable the drag-and-drop
functionality of the modelling editor. Both metamodels can be customised using the graphical and tooling editors to optimise
the appearance of the CMF.

Finally, as shown in Fig. 7, the three distinct metamodels are merged automatically into a mapping metamodel that
enables the generation of the CMF in the form of an Eclipse plug-in. The generation of the CMF is driven by the existing
EMF Java Emitter Templates (JET) and the GMF XPand templates, which transform the mapping metamodel to the required
implementation. The CMF comprises of the Context Modelling Language as its core constituent and a context modelling
editor with drag and drop capabilities for the definition and validation of context models. Fig. 9 illustrates the architecture
of the Context-Aware Pervasive Service Creation Framework, which comprises of the generated CMF component integrated

A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296 289

Context
metamodel
T
| conforms
oAW define | Code
editor "1 template
inputs Workflow generate | gervice
validate "] execution engine o code
Context define [context
editor o model
inputs | Transformation generate Target
ATL define _ "] execution engine g model
editor » Mapping
/ \
/ \
/ between A
/™ A\
Vi A
Context Target
metamodel metamodel

Fig. 10. Context model definition, validation, transformation and code generation.

with the core components of the generic framework. Moreover, the software tools of each component that support the
pervasive service creation process are also presented in the figure.

4.3. Context model definition and validation

The definition of the context model is of prime importance for the subsequent steps of the pervasive service creation
process. Therefore the designer needs to ensure that the context model defined is precise and coherent. Fig. 10 presents the
context model as the key input for the model-to-model transformation and model-to-code generation phases. Initially via
the use of the context editor the model definition is performed (Step 5— Fig. 2). Moreover, the modelling editor restricts
the designer from defining an invalid model and supports the validation of the context model in accordance to the imposed
OCL constraints (Step 6— Fig. 2). The validation reveals any inconsistencies detected and presents accordingly descriptive
messages to the designer in order to revise the model definition.

4.4. Context model-to-model transformation

The model-to-model transformation phase is performed using the ATL component of the integrated framework (Step
7-Fig. 3). The core constituent of the component is the Atlas Transformation Language that allows writing transformations in
the form of a mapping. Fig. 10 illustrates that via the use of the ATL editor the mapping is defined between the CML semantics
and the target metamodel. The context model and the mapping are accepted as the inputs of the transformation execution
engine that drives the translation of the context model, e.g. to a relational model. Transformations are important since they
provide the capability to translate the context model to a platform specific model to ease the code generation phase. Another
form of transformation supports porting context models to extended or improved versions. This is performed by defining
a mapping between the current context metamodel and an extended version of the context metamodel. The procedure is
known as software configuration management and supports the service evolution.

4.5. Context model-to-code generation

The model-to-code generation phase aims to complement and simplify the implementation of pervasive services
(Step 8-Fig. 4). This is performed by mapping context models using a template-based approach to a corresponding
programming language and automatically generating the implementation. Although the implementation is not generated
fully, a considerable portion of the pervasive service implementation is obtained from the context models. This includes
information classes, context management classes and contextual situations classes. In this work we assume that low-level
architectural components (e.g. widgets, interpreters) for acquiring, processing and distributing raw data from sensors either
exist or require to be implemented manually. Moreover, graphical user interfaces and complex computations must be also
implemented manually.

Model-to-code generation is realised via the)AW component of the context-aware pervasive service creation framework.
Fig. 10 illustrates the use of the 0AW editor for the definition of code templates in accordance to the component’s template
language. The language provides the capability to define advanced code generators for transforming context models to any
implementation technology. As can be realised from the figure, the code generators are defined on the basis of the context

290

A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296

<~ <<ContextDatatype>3

< <<AtomicConte...

<~ <<AtomicContext>>]

< <<AtomicContext>>]

< <<AtomicContext>>

Date 4 <Location> 4 <Identity= Site 4 <Time>
yearinteger section:Section forename:String name.Section time:Time
month:integer sumame:String room:String
dayinteger email:String description:String
< <<ContextDatatype>3 T T i -

Time - <<Sensed> < <<Static>> < <<Static>> < <<Profiled>>

name:location name:identity name:sites name:currentTime
hourinteger : N S
minutes-Integer multiplicity:1...1 multiplicity:1..* multiplicity:1...1

seconds:Integer

& <<Entity>> 4’

Person

+ <<Entity>>

7 <<Relation>’ Device
owWns lunchTime_attribute

leaving_attribute
greece_atribute

egypt_attribute closingTime_attribute
rome_atlribute
4 <<ContextEnum>>
Section 4 <<Profiled>> <+ <<Derived>> 4 <<Static>>
-Greece name:historicSites name:currentActivity name:exhibitions
-Rome multiplicity0..* multiplicity:1...1 Itiplicit:0..*

-Egypt
-Exit

- <<AtomicContext>3 [¢ <<AtomicContext>3 [¢ <<AtomicContext>3

& <<ContextEnum>

<Preference> <4 <Activity> Exhibition
ActivityStatus
- section:Section status:ActivityStatus name:String
-Browsing description:String
-Leaving date:Date

time:Time

Fig. 11. Pervasive museum service context model.

metamodel definition. This means in particular that the artefacts of the CML are mapped to the operational semantics of the
corresponding programming language. Subsequently the context model and the code templates are accepted as inputs of
the workflow execution engine, which drives the transformation of models to service implementation code.

5. Case study: Creation of a museum tourist guiding service

5.1. Museum context model definition and validation

The case study detailed in this section presents the execution of Steps 5-8 (Figs. 2-4) of the model-driven development
process for the creation of the pervasive museum service. The museum guiding service aims to ease the visitors’ touring
experience by providing information concerning historic sites, exhibitions and facilities available in the museum. This
information is delivered to the user either due to the occurrence of a contextual situation or because the user has explicitly
requested the information. For instance, when a user enters a museum virtual zone a proximity sensor detects his presence.
The occurrence of this contextual situation denotes that the user should be presented with information on historic sites
available within this virtual zone.

Fig. 11 presents the context model designed via the use of the CMF, which defines the entities, situations, context sources
and context information required for the creation of the pervasive museum service. The core element of the context model is
the Person entity that identifies any particular user of the service. Each person is associated to relevant context information
via the context source elements, which are defined as instances of the ContextAssociation metaclass. For instance each user
is associated to the Identity context information, which defines a simple user profile.

The identity ContextAssociation denotes the necessary properties that characterise the context source from which profile
information can be obtained. Primarily the type of the identity context source is termed as Static. This designates that the
user’s profile information is stored within a context repository. Moreover the persistence of this profile information is set as
fixed and the multiplicity property is set as 1. .. 1. The persistence property denotes that profile information remains unal-
tered for large periods of time. In addition the multiplicity property designates that only a single profile exists for each user.
Furthermore, the multiplicityType property is defined as unique and the permission property is set as private. These properties
determine correspondingly that a distinct profile exists for each user and only the user can access this context information.
The profile properties are defined as String primitive datatypes and are named accordingly as forename, surname and email.

The sites and exhibitions associations denote two additional static sources defined in the context model. These designate
static repositories that contain correspondingly information on historic sites of the museum and exhibitions taking place at
the museum within the current calendar month. Each historic site is defined as a Site secondary context, which comprises
of the name, room and description properties. Both the room and description properties are defined as String primitive
datatypes. In contrast the name property is defined as an enumeration and can be assigned the literal values defined by
the Section enumeration (ContextEnum). Furthermore, the Exhibition secondary context comprises the name and description
String primitive datatypes and the date and time complex context datatypes (ContextDatatype).

Apart from the static context sources, sensed and profiled sources are defined in the context model. The location source
depicts the association to the Location context, which describes the current position of the user within the museum. For

A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296 291

] Properties 53 (EE
+ Derived currentActivity

Cowe Property Value
T CA Ctarget 4 Activity Activity
Constraint

Expression *Z derive inv: if self ECAsource->any{c: ContextAssaciation | c.name = 'location’).CACtar..
Multiplicity ~ ¥= 1..1

Multiplicity Type *= Unique

Name TE cumentActivity

Permission “Z Group

Persistence *i Seldom

Fig. 12. Activity context association properties view.

this example case study we have separated the museum premises into four virtual zones, which are defined by the Section
context enumeration. These virtual zones define the possible locations of the user within the museum, which are obtained
and processed via the use of proximity sensors. Moreover, the historicSites profiled association determines a context source
that obtains input information directly from the users. This input context information denotes preferences on historic sites
of the museum, which are of particular interest to the user. These preferences are defined via the section property of the
Preference context, which derives its values also on the basis of the Section enumeration.

The example model includes also the currentActivity context source, which determines the derived Activity context
information on the basis of the Location context. This denotes in particular that the current activity of the user is directly
related to his current location. The derivation rule is expressed in the model as an OCL constraint, which is defined using
the expression property of the context association. In specific the OCL expression presented next defines the condition for
deriving the status context information of the user, which depicts his current activity derived from the relevant section
context information. The value of the status property is derived by evaluating the conditional part of the logical expression.
In the case the user is located at the “Exit” of the museum the expression returns the result “Leaving”, which denotes that
the user is currently leaving the museum premises.

context Entity

derive inv: if self. ECAsource->any(c: ContextAssociation | c.name = 'location’).CACtarget.conproperties->any(p:

Property | p.name = 'section').enumeration.literals->any(l: EnumLiteral | l.value = 'Exit').value = 'Exit'

then self. ECAsource->any(c: ContextAssociation | c.name = 'currentActivity').CACtarget.conproperties->any(p:

Property | p.name = 'status').enumeration.literals->any(l: EnumLiteral | l.value = 'Leaving').value else " endif

Moreover, supplementary OCL expressions are defined in the context model for the three virtual zones (e.g. Greece, Rome),
to derive accordingly the current activity status of the user. In the example case study the presence of the user in any of the
virtual zones designates that he is still “Browsing” the museum historic sites. The OCL constraint illustrated next presents the
condition that allows deriving the activity status of the user, when he is located at the historic site of “Greece”. In contrast to
the aforementioned constraint the evaluation of the logical expression returns the (derived) value “Browsing”, which denotes
the presence of the user in one of historic sites; i.e. Greece. Furthermore, the derivation rules defined for the other two virtual
zones are analogous to the constraint designated below. Note that the OCL constraints that characterise the status derived
context are defined in the form of textual constraints. Consequently the specified constraints are evaluated merely using
the OCL engine of the EMF component; i.e. Interactive OCL console. The utilisation of the EMF-based implementation of the
OMG OCL specification provides the capability to define well-formed invariant constraints, derived attribute and reference
constraints and operation constraints.

context Entity

derive inv: if self. ECAsource->any(c: ContextAssociation | c.name = 'location’).CACtarget.conproperties->any(p:

Property | p.name = 'section') .enumeration.literals->any(l: EnumLiteral | l.value = 'Greece').value = 'Greece'

then self. ECAsource->any(c: ContextAssociation | c.name = 'currentActivity').CACtarget.conproperties->any(p:

Property | p.name = 'status') .enumeration.literals->any(l: EnumLiteral | l.value = 'Browsing').value else " endif

Fig. 12 illustrates the properties view of the currentActivity derived source, which comprises of the defined properties that
guide the generation of the required functionality (implementation). The properties view defines the target of the context
source, which is the Activity context information. Accordingly the multiplicity is set to 1...1 and the multiplicityType is set as
Unique to denote that a person can be engaged in one distinct activity at any given time. Moreover the permission property is
set to Group, something that defines that only a group of people can access this context information. For instance the security
personnel of the museum might require having access and being able to identify the current activity (or location) of the user.
The persistence of the source is defined as Seldom to depict the infrequent change of the activity context information; user
is either Browsing or Leaving. Finally the expression property defines the context derivation rules that can be validated for
consistency, as aforementioned, using the Interactive OCL console of the CA-PSCF.

The final context source depicted in the model associates the user’s Device to the corresponding Time context information.
This information is profiled by the user on its own device (e.g. mobile, laptop) and can be acquired and managed in
accordance to the properties defined for the currentTime context source. The set of context associations introduced in
the model and their individual properties, realise the main prerequisite to distinguish between diverse classes of context
information and manage this information differently.

292 A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296

In addition to entities, sources and context information the model comprises of contextual situations, which are defined
for each entity. Contextual situations designate in essence the necessary condition(s) that must be valid in order to undertake
a corresponding action. One contextual situation defined in the context model describes the following: “As soon as the user
leaves the museum premises details of forthcoming exhibition tours within the current calendar month should be presented
to the user”. This condition is expressed by the OCL constraint illustrated next, which describes a contextual situation defined
for the Person entity. The evaluation of the logical expression determines accordingly the occurrence or not of the behaviour
that is directly associated to this particular contextual situation. Note that the specified constraint defines the contextual

condition and does not describe the actual action or event that must be triggered as a result.

context Entity

init inv: self.situations->any(c: ContextSituation | c.attribute = 'leaving_attribute').attribute > derive inv: if self.

ECAsource->any(c: ContextAssociation | c.name = 'currentActivity').CACtarget.conproperties->any(p: Property |

p-name = 'status').enumeration.literals->any(l: EnumLiteral | l.value = 'Leaving').value = 'Leaving' then true else false

endif

In particular the OCL expression defines that if the person activity status changes from Browsing to Leaving this denotes
that the user is currently leaving the museum. Therefore, in accordance to the evaluated logical expression the value of the
Boolean variable leaving_attribute becomes true. Consequently, monitoring the state of the attribute using different instances
of the contextual situation provides the capability to detect the context event and react accordingly. In this case the action
triggered as a result of the change in the context condition will present to the user the exhibition tours within the current
calendar month.

An additional contextual situation expressed in the model depicts the following: “When the user enters the historic site
of “Egypt”, he should be presented with information concerning this particular site”. The subsequent constraint describes
this location-specific condition, which allows detecting the context change and reacting accordingly, so as to present to the
user the necessary historical information. Similarly, each situation attribute defined in the context model is accompanied
by an OCL expression, which describes every contextual situation that must be depicted in the model.

context Entity

init inv: self.situations->any(c: ContextSituation | c.attribute = 'egypt attribute').attribute > derive inv: if self.

ECAsource -> any(c: ContextAssociation | c.name = 'location'). CACtarget.conproperties->any(p: Property | p.name =

'section') .enumeration.literals->any(l: EnumLiteral | l.value = 'Egypt').value = 'Egypt' then true else false endif

Following the model definition phase, the validation of the museum context model is performed using the CMF
capabilities in accordance to the imposed metamodel level constraints. This prevents the developer from attempting to
transform or generate implementations out of erroneous context model definitions. In the case that an inconsistency
is detected in the context model a corresponding error message is displayed suggesting possible resolutions using an
informative description. Subsequently, the designer can undertake the necessary actions to rectify the problems discovered
in the model definition.

5.2. Pervasive museum service implementation and evaluation

The implementation phase is carried out primarily by means of context model-to-code generation. For this purpose we
have defined the mapping between the context metamodel and the operational semantics of two programming languages.
The mapping was defined in the form of code templates to facilitate the transformation of context models (e.g. museum
context model) to the Java and J2ME implementation technologies.

Appendix A illustrates an extract of the template mapping defined for transforming context associations to J2ME
implementation code. From the mapping (lines 6-8), we can observe that for each context source defined in the context
model a corresponding class is being generated. Furthermore, the conditional statements defined at lines 15 and 17 drive
the generation of the required implementation in accordance to the multiplicity property depicted in the context source.
Another important section of the mapping is presented in lines 10-13 where each property of the context source is mapped
accordingly to a corresponding class variable. Accordingly, utility functions are defined that allow accessing these variables
from other classes to facilitate and simplify the implementation of the required functionality.

Appendix B illustrates the utility functions defined for the association properties, using the extension language of the
0AW component. The extension language facilitates the definition of rich libraries of utility functions, which can be accessed
within code templates to aid the code generation process. These helper functions are imported in the code template
definition via the Extensions statement defined at line 1 and accessed via the < ecas.SourceHelperFunctions() >> statement
defined at line 19 of Appendix A.

The implementation generated from the context model eradicates the requirement to manually implement repetitious
code such as information and context management classes [9]. This simplifies and enables the rapid creation of context-
aware services. Despite that fact, complex computations and graphical user interfaces require to be manually implemented
by extending or modifying the generated service code. Table 2 demonstrates an evaluation of the developed pervasive
museum service according to selected software metrics. The analysis results are obtained via the use of the CCCC analysis
tool [30]. The selected metrics for the evaluation are: (i) Lines of Code (LOC) and (ii) McCabe’s cyclomatic complexity [31].
The analysis shows the effectiveness of the approach in minimising the cost and effort required to implement the pervasive
service.

A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296 293
Table 2
Pervasive museum service evaluation.
Implementation Metric Generated service code Overall service code
Overall Per module Overall Per module
Number of modules 40 - 53 -
J2ME Lines of code 1768 44.200 2330 43.962
Cyclomatic number 128 3.200 181 3.415
Lines of comment 560 14.000 648 12.226
Number of modules 33 - 53 -
Java Lines of code 1282 38.848 1859 35.075
Cyclomatic number 49 1.485 101 1.906
Lines of comment 543 16.455 564 10.642
—
Tl o] =21 Foumr] EE))
Pretference Context Event Leaving Contextual Situstion
ee Preferences ome M n Tours Historic Site
MGreece Personal Details: Exhibition Details: 5ite Detalls:
lZ‘I User: Achilleas Achilleos Courtry: Greece Country: Egypt
Egypt Emall:aachila@essex ac.uk Dezcription & guided tour to the Foom Mumber: TMW.1.3
Site Details: history of ancient Greece Description: Vist the history ot
Courtry: Gresce Date: 12:11:2008 Egypt to learn and discover the
Room Nurmber: 1R 1 Time: 14:0:0 zecrets of a myatical civiisation
Descrigtion: Visit the history of Exhibition Details:
ancient Greece to discover the Courtry: Rome
heauty of Parthenan, the glory of Dezcription: & guided tour to the
| cet| JExi 4 meru | [Back o fack
Eg]“'\ vasive Museum G BE‘E’]
E Pareonal Details:
| Tourist User:achilleas achilleos
=d Information Email:aachilaflessex.ac.uk
Greece Site details: -]
Rome \..Dl\:\t:?: lm.'.r . ~ N N . o .
Favt i:z:;\;)il _1;;.‘,:1:: history of Egypt bo learn and discover the secrets of a
Museum Tours X
on: A guided wour vo the history of ancienc
L1/2008
¢ 14040
Exhibition details:
Countoy: Fome -
Description: A guided tour to the history of Home.
Dace: 23/11/2008
Time: 15:0:0
Exhubaition delails:
Country: Fqypt
Darcriprion: A quidsd cour to tha hirzery of Iguype.
Date: L1/2008
Time: 12:0:0 had
Room Wurber: 1MW 1.3

Fig. 13. Pervasive museum service running on a J2ME device emulator.

Table 2 illustrates the analysis results for both the]J2ME and Java implementation of the museum context-aware service.
Primarily, the LOC metric shows the number of non-comment and non-blank lines of code. From the table it is calculated that
75.879% of the]2ME service code and 68.96% of the Java service code is generated from the context model. The percentages
calculated in this case study provide the capability to derive the necessary conclusions but do not serve in any case as an
explicit baseline for future case studies. These analysis results indicate simply that the effort required for the implementation
of the pervasive museum guide service has been significantly reduced.

Code complexity is another valuable metric, which denotes the degree of code understandability and indicates the code
amenability to modification. Moreover it is a dominant indicator of the code testability [31]. From the table it is clear that
the complexity of the generated code (indicated by the cyclomatic number) is lower than that of the overall service code.
This indicates that the generated code can be easily modified and be subjected to testing. Furthermore, it is realised that
the mapping can be optimised further to decrease the generated service code complexity. Conversely, it is very difficult to
achieve optimisation and reduce the code complexity when manual implementation is involved.

Fig. 13 illustrates the pervasive museum service running on a J2ME device emulator and a Java enabled laptop device.
The screen capture on the top left of the figure shows the historic sites preference selection list. In accordance to the user’s
preferences the service retrieves and loads the appropriate information on historic sites, as illustrated onto the second
screen capture. Following, onto the next screen capture we can observe the occurrence of the leaving contextual situation,
which causes a list of upcoming exhibitions tours to be displayed to the user. Moreover, we have the occurrence of the

294 A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296

location contextual situation, which signifies that the user has entered the virtual zone of Egypt. Consequently, the user is
presented with information on historic sites located in this virtual zone, as illustrated onto the fourth screen capture. Finally,
the screenshot shown at the bottom of the figure presents respectively the occurrence of the leaving contextual situation,
while the service is running on the Java enabled laptop device.

6. Conclusions and future work

In this paper we proposed a model-driven development process that is purely based on the MDA paradigm and supports
exclusively every phase of the service creation process. On the basis of the approach we have defined the Context Modelling
Language and generated the Context Modelling Framework. The CMF was then integrated into the generic service creation
framework to deliver the CA-PSCF and simplify the design, validation and implementation of pervasive services.

The usage of the CA-PSCF enables the designer to define context models at an abstract level using a comprehensible
visual representation. Furthermore, it supports the validation of context models to determine invalid definitions and rectify
them prior to the implementation phase. Subsequently from these context models a significant part of the implementation
can be generated, reducing in overall the effort and cost required for the creation of the pervasive service. In this work the
effectiveness of the framework has been showcased via the creation of the pervasive museum service and evaluated on the
basis of selected software metrics.

The definition of proactive rules for modelling context-aware behaviours is also important and therefore has been
considered by a dynamic Petri net model introduced in [32]. The Petri net model facilitates the definition of proactive
actions and events that depict the overall pervasive service behaviour. Moreover, the dynamic model supports the formal
validation and implementation of the pervasive service. The work presented in this paper focuses though on the context
modelling domain, which tackles the structural and more static part of pervasive service creation. This structural part
involves the definition of context categories, context sources (i.e. sensed, derived), temporal constraints and contextual
situations (i.e. conditions).

Our aim as part of future work is to utilise or develop an OCL generator to facilitate the transformation of the textual
constraints to implementation code. Furthermore, we intend to carry out additional case studies that will aid in the identi-
fication of any further requirements that must be expressed in the context modelling language. In addition supplementary
case studies will assist in the optimisation of the existing context modelling and implementation capabilities of the CMF.
This will provide the capability to enhance both the CML and the CA-PSCF for the benefit of pervasive service creation.

Appendix A

«EXTENSION extensions::functions»

«DEFINE Root FOR cml::DocumentRoot»

«EXPAND Entity FOREACH entities»

«ENDDEFINE»

«DEFINE Entity FOR cml::Entity»

«FOREACH this.ECAsource AS ecas-»

«FILE ecas.ext1()+"java"»

public class «ecas.ext1()» {

private static final String atomic_context = "« this.ext2()+""+ecas.CACtarget.first().ext3()»";

D A A e e

10: private static final String multiplicity = "«ecas.multiplicity»";

11: private static final String multiplicity Type = "«ecas.multiplicityType»";
12: private static final String persistence = "«ecas.persistence»";

13: private static final String permission = "«ecas.permission»";

14:

15: «IF ecas.multiplicity =="0...1" || ecas.multiplicity =="1...1"»

16:

17: «ELSEIF ecas.multiplicity =="0...*" || ecas.multiplicity =="1...*"»
18:

19: «ecas.SourceHelperFunctions()»

20:

21: «FOREACH ecas.CACtarget.conproperties AS cp-»

22: public static String «cp.get1(»() {

23: return «cp.name»; |}

24: «<ENDFOREACH)» }

25: «ENDFILE»

26: «ENDFOREACH»

27: «ENDDEFINE»

A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296 295
Appendix B

String SourceHelperFunctions(ContextAssociation ca) :
'public static String getMultiplicity() {

return multiplicity; }

public static String getMultiplicityType() {

return multiplicity Type; }

public static String getPersistence() {

return persistence; }

public static String getPermission() {

return permission; }';

xR

References

[1] K. Yang, S. Ou, M. Azmoodeh, N. Georgalas, Policy-based model-driven engineering of pervasive services and the associated OSS, British Telecom
Technical Journal (BTT]) 23 (3) (2005) 162-174.

[2] AK. Dey, G.D. Abowd, Towards a better understanding of context and context-awareness, in: Conference on Human Factors in Computing Systems,
2000.

[3] D.X. Adamopoulos, G. Pavlou, C.A Papandreou, Advanced service creation using distributed object technology, IEEE Communications Magazine 40 (3)
(2002) 146-154.

[4] R.H.Glitho, F.Khendek, A. De Marco, Creating value added services in internet telephony: An overview and a case study on a high-level service creation
environment, IEEE Transactions on System, Man and Cybernetics- Part C: Applications and Reviews 33 (4) (2003) 446-457.

[5] J. Lennox, H. Schulzrinne, Call processing language framework and requirements, RFC 2824, Internet Engineering Task Force (2000) [Online]
http://www.ietf.org/rfc/rfc2824.txt.

[6] A.Achilleos, N. Georgalas, K. Yang, An open source domain-specific tools framework to support model driven development of OSS, in: Proc. ECMDA-FA
’07, in: Lecture Notes in Computer Science, vol. 4530, Springer-Verlag, Berlin, 2007, pp. 1-16.

[7] AK. Dey, G.D. Abowd, The context toolkit: Aiding the development of context-aware applications, in: ICSE workshop on software engineering for
wearable and pervasive computing, 2000.

[8] G.Chen, D. Kotz, Context aggregation and dissemination in ubiquitous computing systems, in: 4th IEEE Workshop on Mobile Computing Systems and
Applications, 2002.

[9] K. Henricksen, J. Indulska, Developing context-aware pervasive computing applications: Models and approach, Pervasive and Mobile Computing 2 (1)
(2006) 37-64.

[10] T. Strang, C. Linnhoff-Popien, A context modelling survey, In: UbiComp 1st International Workshop on Advanced Context Modelling, Reasoning and
Management, 2004, pp. 34-41.

[11] T. McFadden, K. Henricksen, J. Indulska, Automating context-aware application development, in: UbiComp 1st International Workshop on Advanced
Context Modelling, Reasoning and Management, 2004, pp. 90-95.

[12] A.Kleppe, J. Warmer, W. Bast, MDA Explained: The Model Driven Architecture: Practice and Promise, Addison-Wesley, Boston, 2005.

[13] D.S. Frankel, Model Driven Architecture: Applying MDA to Enterprise Computing, Wiley Publishing Inc, Indianapolis, 2003.

[14] Object Management Group (OMG), Model Driven Architecture (MDA) Specification Guide v1.0.1 [Online]. http://www.omg.org/docs/omg/03-06-
01.pdf, 2003.

[15] A. Achilleos, K. Yang, N. Georgalas, A model-driven approach to generate service creation environments, in IEEE Globecom 2008, in: Proc. of the IEEE
Globecom, 2008, pp. 1-6.

[16] G. Ortiz, B. Bordbar, J. Hernandez, Evaluating the use of AOP and MDA in web service development, in: Proc. of Conference on Internet and Web
Applications and Services, 2008, pp. 78-83.

[17]]. Bauer, Identification and modelling of contexts for different information scenarios in air traffic, Diplomarbeit, Faculty of electrical engineering and
computer sciences, Technische universitat Berlin, 2003.

[18] C.Simons, G. Wirtz, Modelling context in mobile distributed systems with the UML, Journal of Visual Languages and Computing 18 (2007) 420-439.

[19] Object Management Group (OMG), Object Constraint Language (OCL) Specification version 2.0 [Online]. http://www.omg.org/docs/formal/06-05-
01.pdf, 2005.

[20] Eclipse Foundation Inc., Eclipse Modelling Framework (EMF) [Online]. http://www.eclipse.org/modelling/emf/, 2008.

[21] K. Henricksen, J. Indulska, A software engineering framework for context-aware pervasive computing, in: Proc. 2nd IEEE International Conference on
Pervasive Computing and Communications, 2004, pp. 77-86.

[22] J.Evermann, Y. Wand, Towards formalizing domain modelling semantics in language syntax, IEEE Transactions on Software Engineering 31 (1) (2005)
21-37.

[23] S.A. Thibault, R. Marlet, C. Consel, Domain specific languages: From design to implementation application to video device drivers generation, IEEE
Transactions on Software Engineering 25 (3) (1999) 363-377.

[24] Eclipse foundation inc., Graphical Modelling Framework (GMF) [Online]. http://www.eclipse.org/gmf/, 2008.

[25] INRIA Research Institution, Atlas Transformation Language (ATL) [Online]. http://www.eclipse.org/m2m/atl, 2008.

[26] openArchitectureWare.org, openArchitectureWare (0AW) [Online]. http://www.eclipse.org/gmt/oaw, 2008.

[27] Object Management Group (OMG), Meta Object Facility (MOF) Core Specification version 2.0 [Online]. http://www.omg.org/docs/formal/06-01-01.pdf,
2005.

[28] A. Gerber, K. Raymond, MOF to EMF: There and back again, in: Proc. of the OOPSLA Workshop on Eclipse Technology eXchange, 2003, pp. 60-64.

[29] M. Mohamed, M. Romdhani, K. Ghedira, EMF-MOF alignment, in: Proc. 3rd International Conference on Autonomic and Autonomous Systems, 2007,
pp. 1-6.

[30] T. Littlefair, An investigation into the use of software code metrics in the industrial software development environment, Ph.D. Thesis, Faculty of
Communications, Health and Science, Edith Cowan University, 2001.

[31] P.V.Bhansali, Complexity measurement of data and control flow, ACM SIGSOFT Software Engineering Notes 30 (1) (2005) 1-2.

[32] A. Achilleos, K. Yang, N. Georgalas, M. Azmoodech, Pervasive service creation using a model-driven Petri Net based approach, in: Proc. 3rd IWCMC
(2008) 309-304.

http://www.ietf.org/rfc/rfc2824.txt
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.eclipse.org/modelling/emf/
http://www.eclipse.org/gmf/
http://www.eclipse.org/m2m/atl
http://www.eclipse.org/gmt/oaw
http://www.omg.org/docs/formal/06-01-01.pdf

296

A. Achilleos et al. / Pervasive and Mobile Computing 6 (2010) 281-296

Achilleas Achilleos is currently a Ph.D. student in the School of Computer Science and Electronic Engineering at the University of
Essex. He received his M.Sc. with distinction from the same department and a B.Sc. with excellence from the Budapest University
of Technology and Economics in Hungary. His research interests include model-driven development, pervasive service creation,
context-modelling and mobile computing. Currently he is also employed by BT as a research contractor and his research work is
co-funded by BT and the UK Engineering and Physical Sciences Research Council (EPSRC). He has recently published his research
work in several conference papers, a book chapter and a journal. He served as a referee and a TPC member in several conferences
related to his research area. He is a member of the Institute of Electrical and Electronic Engineers (IEEE).

Kun Yang received his Ph.D. from the Department of Electronic & Electrical Engineering of University College London (UCL),
UK, and M.Sc. and B.Sc. from the Department of Computer Science of Jilin University, China. He is currently a Reader in the
School of Computer Science and Electronic Engineering, University of Essex, UK. Before joining in University of Essex at 2003, he
worked at UCL on several European Union research projects such as FAIN, MANTRIP, CONTEXT. His main research interests include
heterogeneous wireless networks, fixed mobile convergence, pervasive service engineering, and IP network management. He has
published more than 100 peer-reviewed technical papers in journals and major international conference. At Essex, he principally
or collaboratively investigates projects such as PANDA, MOSE, HIPnet, PAL, EU project GEYSER, etc. He serves on the editorial boards
of both IEEE and non-IEEE journals (such as Wiley Wireless Communications and Mobile Computing, Springer Telecommunication
Systems, etc.). He is a Senior Member of IEEE, a Member of IET and ACM.

Nektarios Georgalas holds a Diploma in Electrical and Computer Engineering from the University of Patras, Greece, an MPhil in
Computation from University of Manchester (UMIST) and a PhD in Computer Science from the University of London. He joined
British Telecom (BT) in 1998 and is now a principal researcher in the company’s Centre for Information and Security Systems
Research. During his career with BT, he has participated and managed research projects in areas including active networks, market-
driven data management systems, policy-based management, distributed information systems, service-oriented architectures and
web services. His research is currently focused on product lifecycle management, particularly migration planning and concept-to-
market, and rapid service assembly. Nektarios has led numerous international collaborations on the application of model-driven
architecture and New Generation Operations Systems and Software (NGOSS) standards in telecoms operational support systems
and has both led and contributed to the work of the TeleManagement Forum. He holds five patents, has authored more than 30
papers and has frequently been invited to speak at international conferences.

	Context modelling and a context-aware framework for pervasive service creation: A model-driven approach
	Introduction
	Related work
	Generic model-driven methodology for pervasive service creation
	The proposed model-driven development process
	Generic service creation framework architecture

	Context-aware pervasive service creation framework (CA-PSCF)
	Requirements analysis
	The proposed Context Modelling Framework: CMF
	Context model definition and validation
	Context model-to-model transformation
	Context model-to-code generation

	Case study: Creation of a museum tourist guiding service
	Museum context model definition and validation
	Pervasive museum service implementation and evaluation

	Conclusions and future work
	Appendix A
	Appendix B
	References

