
A Framework for Dynamic Validation of Context-Aware Applications

Achilleas P. Achilleos, Georgia M. Kapitsaki and George A. Papadopoulos

Department of Computer Science
University of Cyprus

Nicosia, Cyprus
Email: [achilleas, gkapi, george]@cs.ucy.ac.cy

Abstract—The development of context-aware applications
is a complex process that involves the tasks of analysis,
design, validation and implementation. This process is typically
performed using context modelling approaches that consider
context-awareness and apply static context model validation, at
the modelling level, using Object Constraint Language rules.
This paper proposes a framework that combines the Model
Driven Engineering paradigm with the Petri Nets formalism
to support the development of context-aware applications. In
contrast to existing context modelling approaches, the focus is
on dynamic validation of context-aware applications using Petri
Nets. Dynamic validation complements the static validation of
context models and ensures the validity of the operational
semantics of context-aware applications. The applicability of
the framework presented in this work is exemplified through
the development of a context-aware application prototype.

Keywords-model validation; Petri Nets; context-aware appli-
cations; context-awareness; model driven engineering

I. INTRODUCTION

Conventional applications are commonly deployed on a

specific device and platform to run specific computing tasks.

In contrast, context-aware applications have the capability

to run anytime, anywhere and on any device with minimal

or no user intervention. The advancements in hardware and

software technologies contribute towards the development

of mobile devices, which include sophisticated computing

and communication capabilities. This enables the implemen-

tation of complex and adaptive context-aware applications.

However, ”traditional” development approaches perform val-

idation at the late stage of software testing. In many cases, in

the interest of expediting delivery, changes are performed in

the implementation and not in the design and documentation.

This introduces a discrepancy and impacts the efficiency of

the development process.

The aforementioned issue driven research towards context

modelling approaches [1]. These techniques deal with the

definition of a context model. The context model defines

intelligent information and predefined adaptation rules that

allow adapting the application’s execution logic and thus

its interaction with the user. This information and the pre-

defined rules describe the context-awareness characteristic

of software applications [2], captured in the context model.

Furthermore, context modelling techniques support the val-

idation of context models using static Object Constraint

Language (OCL) [3] rules, prior to the generation of the

implementation using the context models.

In particular, OCL constraints ensure model integrity by

validating the elements, properties and relationships defined

in the model. This guarantees the integrity of the model’s

structure (i.e. typically defined as a class diagram with con-

text information and reasoning rules) but does not tackle the

validation of the behaviour of the context-aware application.

Hence, a formal modelling approach is necessary that allows

defining and validating both the static structure and the

dynamic behaviour of the application. This approach ensures

also the consistency of the application’s execution logic prior

to the generation of the implementation from the model.

This work proposes a framework that builds on existing

context modelling approaches but addresses also dynamic

modelling and validation to support the development of

context-aware applications. It combines for the first time, to

the best of our knowledge, the Model Driven Architecture

(MDA) paradigm [4] with the Petri Nets (PNs) formalism [5]

to support dynamic validation of context-aware applications.

The integration of MDA with Petri Nets enables the vali-

dation of the models structure using static OCL constraints

and their dynamic behaviour using the Petri Nets formalism.

Moreover, the MDA paradigm facilitates the application’s

generation from the defined models.

The contribution of this work lies in the use of the

Petri Nets formalism, which allows defining the dynamic

behaviour of context-aware applications via a suitable rep-

resentation that enables easy-comprehension and validation

of application’s execution logic. Existing context modelling

techniques fall short in terms of the representation of the

dynamic behaviour since the application’s execution steps

(i.e. context adaptation and reasoning rules) are concealed

within elements defined in the context model. In addition,

the application’s logic is best to be defined by a dynamic

modelling formalism (e.g. Petri Nets, statecharts).

The Petri Net based modelling and validation framework

is composed of three modelling components. These are:

(i) Presentation Modelling Component (PMC), (ii) Context

Modelling Component (CMC) and (iii) Petri Net Process

Modelling Component (PN-PMC). These components al-

2012 IEEE 15th International Conference on Computational Science and Engineering

978-0-7695-4914-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICCSE.2012.79

532

low defining presentation, context and Petri Net models,

which describe respectively the graphical user interfaces

(GUIs), the context-awareness and the dynamic behaviour

of context-aware applications. In this paper, the focus is on

the modelling and dynamic validation capabilities provided

by the PN-PMC, since it allows detecting inconsistencies

directly in the application specification. In this way errors are

found before the automatic transformation to implementation

code. The descriptions of PMC and CMC are out of the

scope of this work. Interested readers are referred to relevant

publications [6], [7].

The paper is structured as follows: Section 2 presents

related research work. Section 3 introduces the framework’s

architecture and describes the development process, with

explicit focus on the Petri Net based validation component

presented in Section 4. Section 5 showcases the applicability

of the framework by modelling, validation and implementa-

tion of a context-aware application. Concluding, Section 6

presents results and proposes future directions of this work.

II. RELATED WORK

This work follows the direction of context modelling ap-

proaches, which assume network-level context sensing, ag-

gregation and processing functionalities. Context modelling

techniques deal with the representation of context types and

their relationships, of high-level context abstractions describ-

ing real world situations using context information facts,

of histories of context information and of uncertainty of

context information [1]. This knowledge is then passed from

designers to developers, so as to implement the application

or apply code generation techniques to produce ”skeleton

code” that is subsequently extended.

Different techniques [8] have been proposed that use

ontologies for context modelling and reasoning. One of

the popular techniques is the SOUPA ontology [9] that

offers many advantages in terms of modelling, reasoning

and handling context at an abstract level. This approach

was adopted in the Context Broker Architecture (CoBrA) for

supporting context-awareness [10], but also in more recent

works [11]. However, ontology models are rather unsuitable

for human structuring purposes since their representation re-

stricts communication between designers and developers. In

specific, these models are inherently complex for developers

that are not familiar with their description logics [1].

The strengths of graphical modelling approaches are cer-

tainly on the structure level [1]. The context modelling tech-

nique proposed in [12] defines such an approach. It proposes

an infrastructure and a framework for modelling (Context

Modelling Language, CML), managing and disseminating

context information to context-aware applications for adapt-

ing their functionality. Although the approach has many

advantages, the lack of a widely-used representation and the

low-level abstractions introduced via the extension of the

Object-Role Modeling (ORM), limit the understanding of

context models. A tool support for modelling context using

CML can be found in [13]. Since ORM models are more

suitable for use in databases, the model is transformed into

a relational schema and SQL scripts. This makes the ap-

proach highly suitable for the process of context collection.

Additionally, the applied model validation is limited (i.e.

restricted to static validation by highlighting model errors)

and is indicated by the authors as future work.

The approach defined in [14] conveys well to the concept

of graphical context modelling since it exploits a widely-

used representation; i.e. the Unified Modelling Language

(UML). In specific, a Context Modelling Profile (CMP)

was developed that defines a domain-specific language using

UML stereotypes. The CMP allows modelling information

as UML-based context models that describe context-aware

applications. This is a key advantage of the approach because

it allows developers to use CMP in various UML tools. The

shortcoming is the inability to access CMP stereotypes in

many UML tools, so as to define constraints and transfor-

mations. Thus, the Eclipse Modelling Framework (EMF) is

used instead to define model constraints. Moreover, Simons

and Wirtz [14] state that model-to-code transformations are

considered as future work.

An approach that is highly-interlinked with the MDA

paradigm, proposes the use of the Meta-Object Facility

(MOF) specification for defining context modelling concepts

[15]. Using the MOF specification a metamodel is defined,

which describes a domain specific modelling language for

context-awareness and provides common understanding of

context information. Although the abstract syntax of the

language is defined using MOF, the concrete syntax of the

language is defined using a UML profile. Hence, as in the

case of the CMP, the approach suffers from the inability to

access model stereotypes in various UML tools for defining

OCL constraints and model transformations.

A key shortcoming of these techniques is that only

a subset considers validation, which is limited to static

model validation using OCL rules. The development of

context-aware applications involves dynamic and adaptive

computing tasks (i.e. application’s logic), which cannot be

clearly defined in a context model represented as a class

diagram. Thus, a dynamic modelling language is required

that allows defining behaviour. Moreover, such a formalism

should enable validation of the application’s behaviour. This

complements existing validation techniques that validate the

structure of context models using OCL rules.

The need for dynamic validation motivated us towards the

PNs formalism, through the study of its use in the domain

of Web Services (WSs). Dumez et al. state in [16] that static

validation is complemented by checking the dynamic struc-

ture of WSs defined using a UML extension [17]. In specific,

UML-WS models are transformed to high-level PNs. This

allows formalising UML and applying mathematical analysis

on the models. A similar approach uses the Business Process

533

Execution Language (BPEL) language to define WSs [18].

The authors state that BPEL can experience inconsistency

and incompleteness, when modelling behaviour. Hence,

transformation rules are defined that allow transforming,

analysing and validating WSs using Synchronisation Nets

(i.e. Petri Net extension).

This work addresses dynamic validation by bridging the

MDA paradigm with the PNs formalism. MDA provides

a model-driven approach that expedites the design, static

validation using OCL rules and implementation of context-

aware applications. Complementing MDA, PNs provide a

formal method that enables definition and validation of the

dynamic behaviour of context-aware applications by means

of model execution. The applicability of the framework is

demonstrated through the design, validation and implemen-

tation of a context-aware application.

III. OVERVIEW OF THE PETRI NET BASED MODELLING

AND VALIDATION FRAMEWORK

The formulation of a consistent development process is

a crucial activity since it guides designers and developers

in a uniform way. This enables them to fully comprehend

their responsibilities and assigned tasks, so as to smoothly

accomplish the development of the necessary applications.

Moreover, a supporting development environment is im-

portant because it provides the necessary software tools

(e.g. modelling, code generators) that support actors in the

development process. In this work, a model-driven Petri Net

based process and a development environment are defined

that support the development of context-aware applications.

The modelling components of the development environ-

ment support the definition of the presentation, context and

Petri Net based modelling languages and the generation

of the supporting modelling components (Figure 1). These

components have been generated and integrated into the

model-driven environment as Eclipse plug-ins. They facil-

itate the definition of presentation, context and Petri Net

models that describe respectively the GUIs, the context

information and the dynamic behaviour of context-aware

applications. Note that the focus is on the PN-PMC, since it

supports integration of the modelling languages and dynamic

validation of the application’s execution logic.

The environment allows accessing stereotypes of the

modelling languages, in order to impose design rules (i.e.

OCL constraints) and enforce static model validation. This

is performed using the model-driven capabilities of the

Eclipse Modelling Framework (EMF) and the Graphical

Modelling Framework (GMF). In addition, the Atlas Trans-

formation Language (ATL) and the openArchitectureWare

(oAW) provide respectively model-to-model and model-to-

text transformation capabilities. These components enable

model transformation, so as to support validation of the

dynamic behaviour and code generation. In overall, the en-

vironment includes all necessary software tools that support

Figure 1. Architecture of the Model-Driven Engineering Environment.

the development of context-aware applications.

Figure 2 illustrates the development process supported by

the environment. First, the modelling components support

the design of the application’s models and serve their vali-

dation using static OCL constraints. The Petri Net process

model defines the execution logic and includes references to

entities defined in the presentation and context models. In

this way the validation of the dynamic behaviour is possible

through the transformation of the PN process model to the

standardised Petri Net Markup Language (PNML) ISO/IEC

15909-2 International Standard [19]. The PNML format is

supported by various PN simulator tools that enable the

execution of the model so as to guarantee the validity of its

operational semantics. In case inconsistencies are detected

in the PN model, the corresponding errors (e.g. execution

deadlock) are raised and presented to the designer, which is

responsible to rectify them prior to code generation.

Figure 2. Model-driven Petri Net based process.

The validation of the static structure and dynamic be-

haviour, provides an unambiguous specification prior to code

generation. This ensures that the generated implementation

will not contain erroneous semantics. Figure 2 illustrates

the defined code generators, which support models trans-

formation to different implementations. In this work, J2ME

534

and Java code generators have been defined. Each code

generator is composed of three sets of templates that support

respectively the transformation of presentation, context and

PN models. This allows generating a large part of the

implementation, which is subsequently extended by the

developer. In effect, automatic code generation reduces the

implementation effort and speeds up the development of

context-aware applications.

IV. PETRI NET PROCESS MODELLING COMPONENT

This work addresses the development of context-aware

applications with explicit focus on dynamic validation. Thus,

the PN-PMC is introduced in detail since it enables the

validation of the dynamic behaviour of these applications.

Further details on the PMC and CMC are out of the scope of

this paper but can be found in relevant work [6], [7]. The PN-

PMC integrates the different modelling languages since it

allows designing PN process models that include references

to the entities defined in the presentation and context models.

The Petri Net Process Modelling Language (PN-PML)

of the PN-PMC is defined in the form of an EMF-based

metamodel. It extends the PNML standard that is also

defined in this work as an EMF-based metamodel. The

PNML standard defines a universal XML-based transfer

syntax for PNs and provides an exchange format, which

enables the compatibility and interoperability among hetero-

geneous PN modelling and simulator tools. The definition

of the PN-PML by extending the PNML standard enables

transformation of the designed PN models to the PNML

format. This allows importing and validating models using

various existing PN simulator tools.

The environment supports the definition of the PN-PML

metamodel by extending (using the EMF import and in-

heritance mechanism) the PNML metamodel not presented

in this paper due to space limitations. Figure 3 illustrates

the metamodel that defines the elements, associations and

properties that support modelling the application’s logic.

The DocumentRoot metaclass is the container of model

elements and represents the PN model. Containment rela-

tionships are depicted through the aggregation associations

of the root metaclass. The places aggregation defines that

each model can include zero to many instances of the Place
metaclass, which extends respectively the Node metaclass of

the PNML metamodel and inherits its properties. Each place

represents a state in the application’s execution and can be

marked using inscriptions, which can be initialisation tokens

”[]”, primitive datatypes or tuples of primitive datatypes.

Tokens depict the pre-conditions that enable the firing of

a transition or the post-conditions when firing an enabled

transition. Tokens are defined using the Token element,

which extends the Inscription metaclass that allows defining

syntactically correct conditions.

Six subclasses define different types of transitions that

enhance the dynamic nature of the language in terms of

model hierarchy and concurrency. The Transition element is

the parent metaclass of the Basic, Object, Downlink, Uplink,
Action and Guard transitions. The basic transition does not

carry any expressions or inscriptions. It is defined using

the Basic metaclass and it is enabled when the required

tokens reside in its input places. The second subclass refers

to the object transition and is defined using the ObjectNet
metaclass. This allows creating instances of the entities (i.e.

objects) defined in the presentation and context models. In

this way a hierarchical structure is provided since the PN

model contains objects that refer to instances of the entities

included in the presentation and context models. Therefore,

once an object transition fires, it creates the necessary objects

that are deposited as tokens into the respective output places.

The concept of synchronous communication is introduced

also in the modelling language. This notion of synchronous

channels defines that two transitions can synchronise and

fire atomically, provided that they initially agree on the

name of the channel and the parameters involved in the

synchronisation. The metamodel defines the Downlink and

Uplink metaclasses, which describe the two transitions that

allow establishing a synchronisation channel. The downlink

transition is the initiator of the synchronisation channel and

defines the invocation of a method that may carry one

or more arguments. Respectively, the uplink transition is

the terminating element of the synchronous channel, which

serves requests delegated by the downlink transition. In

terms of object-oriented programming this denotes a method

defined in a class that implements the needed functionality

and accepts one or more input parameters.

The Action metaclass allows defining action transitions

that resemble user-generated actions; e.g. clicking a button.

These actions have side effects that influence the state of

objects circulating within the PN model. The guard is the

final transition defined in the metamodel, which describes a

basic transition extended by a logical expression. The Guard
metaclass inherits its properties from the Inscription meta-

class, which allows defining logical expressions associated

to the guard transition.

Finally, the metamodel defines arc elements that pro-

vide additional control over the execution of the context-

aware application. Arcs are defined using the Arc metaclass,

which is associated to the Attribute metaclass that allows

defining arc inscriptions by extending the Inscription meta-

class. Inscriptions define either primitive datatypes, tuples

of primitive datatypes, object nets or tuples of object nets

and are used to evaluate the tokens consumed or generated

by transitions. It is important to note that inscriptions and

expressions are defined as Reference Nets [20] operators,

which are equivalent to Java binary, logical and assignment

operators. The following section presents the development

of a context-aware prototype. Explicit focus and details are

provided on the validation of the dynamic behaviour using

the PN capabilities of the proposed framework.

535

Figure 3. Petri Net based Process Modelling Language.

V. CONTEXT-AWARE PROTOTYPE: A MUSEUM TOURIST

GUIDE

A. Overview

The prototype presented in this work allows showcasing

the applicability of the proposed framework for modelling,

validating and implementing context-aware applications.

This case study is selected since this application requires

to be deployed on different platforms and be used by

mobile users. The framework provides this capability since it

ensures validation of the static and operational semantics of

the models and allows generating different implementations

from the models. The prototype refers to a museum tourist

guide that aids and adapts the browsing experience of

visitors. The application defines four zones that refer to the

historic sites of the museum. Also, user-generated events are

emulated in the code, so as to perform the required actions

and adapt the behaviour of the application. For instance, the

event generated by sensors when a user enters a historic site

is emulated in the code. This event is captured by listeners,

so as to dynamically present to the user related historical

information (i.e. media, text-based).

B. Presentation and Context models

The prototype is initially defined in the form of models

that represent the graphical user interfaces, the context infor-

mation and the dynamic behaviour of the application. Figure

4 presents a small part of the presentation model (due to

space limitations), which defines the GUIs of the prototype.

The Display element is the main component (e.g. J2ME

Display) that contains various container components (e.g.

J2ME Form) that act respectively as carriers of additional

graphical components (e.g. J2ME StringItem).

Figure 4. Part of the presentation model.

Figure 4 shows the init Container component with all

its associated child components. This component defines

a login form that enables the user to enter the required

authentication information, in order to use the context-

aware application. The component acts as the container of

secondary graphical components (e.g. submit Button) and

includes also properties defined using the modelling editor’s

properties view. For instance, the title property defines the

title that appears on this container.

The context model describes the context-awareness char-

acteristic in the form of an advanced information model.

536

Figure 5. Small part of the context model.

It defines the entities, context sources, context information

and contextual situations relevant to the application. Figure

5 illustrates a fraction of the context model, which presents

the Person entity that resembles the user of the service.

This part of the model captures the user of the application,

which is associated using the static identity source to the

Identity context. The user’s profile includes information such

as the forename and surname; defined in the form of String
primitive datatypes. This source is static since information

can be retrieved from a database. An additional static context

source (i.e. Site) is defined in the model, which associates

each user with the different historic sites of the museum.

The modelling components allow designing the models

and validating their structure by enforcing static OCL con-

straints. This ensures the consistency of the structure of

the models that define the context-aware application. The

following section presents details on the definition of the

PN process model and its validation by means of dynamic

model execution.

C. Petri Net process model

The functionality of the application is defined in the form

of a PN model. In this model entities of the presentation and

context models are defined in the form of tokens circulating

through the model during its execution. This approach allows

composing a unified application specification through the PN

model. Moreover, the operational semantics of the applica-

tion can be validated using external PN simulation tools by

transforming the model to the PNML format. This enables

the validation of the dynamic behaviour, complements the

validation of the static structure of the models and ensures

the correctness of the generated code.

Figure 6 illustrates the functionality of the application,

which kicks off its execution from states p1, p3 and p5 that

are populated with initialisation tokens. Therefore, transi-

tions t1, and t2 fire and create instances of the Person and

Device entities defined in the context model. In addition,

transition t3 is enabled and creates an instance of the

PsMuseum entity defined in the presentation model. This

hierarchical structure reflects the concept of object-oriented

programming (OOP), where the main class is aware of

other classes and can utilise their parameters and functions.

Following, the downlink transition t4 is enabled, defining

a communication channel with the uplink transition t19. In

terms of OOP t4 refers to a method invocation, while t19
refers to the method that implements the needed functional-

ity. In this case the method returns the login form that allows

the user to enter his authentication details.

At this stage the user enters his credentials and clicks

the submit button. Transition t5 defines this user-generated

action and enables upon firing the downlink transition t6
and its associated uplink transition t20. The communication

channel represents the functionality that authenticates the

credentials of the user. In case authentication is unsuccessful

transition t29 is enabled and the user is asked to re-enter his

credentials. Otherwise transition t30 is enabled and the most

important state is reached; i.e. p9. The non-deterministic be-

haviour of the context-aware application is exhibited at this

state, since different execution paths can be undertaken. This

enables designers to define the complex behaviour of the

application without any restrictions in terms of concurrency

and non-deterministic requirements.

In particular, the user is able to quit the application (i.e.

action transition t31) reaching the final state p20 in the

model execution. The user may also generate an action

(i.e. transition t7) and choose a historic site (i.e. transition

t8 and t9), so as to be presented with relevent historical

information. Synchronised transitions t10 and t22 compose

the method that allows retrieving the information and

presenting them to the user. Apart from user generated

events, different contextual situations may occur from state

p9. For instance, the site contextual situation composed by

the synchronised transitions t17 and t26 indicates that the

user has entered a historic site. Hence, the behaviour of

the application defines that related media and text-based

context information should be presented to the user. By

following the same reasoning the execution paths of all

contextual situations are defined in the model.

Listing 1. Part of the PNML transformation template using pseudocode.

1. FOREACH downlinks AS downlink
2. Generate downlink id
3. IF (downlink.expression != null)
4. Generate expression graphics
5. Generate expression operator
6. ENDIF
7. Generate transition graphics
8. ENDFOREACH

The definition of the dynamic behaviour concludes the

design of the context-aware application. Following the static

structure of the models is validated and the transformation

of the PN model to the PNML format is performed. This

enables the validation of the operational semantics of the

application by means of model execution. Listing 1 shows

part of the defined transformation template in the form of

pseudocode. In particular, it illustrates the transformation

of a downlink transition to the corresponding PNML

format. It initially defines an iteration that allows parsing

downlink transitions defined in the PN model. In case the

537

Figure 6. The Petri Net process model.

downlink transition defines an expression, the graphical

representation and value of the expression are generated

in PNML format. Then, the graphical representation of

the downlink transition is also generated. This enables to

import elements, properties and relationships in existing

PNML-enabled simulators that support PN model execution.

Listing 2 shows the resulting PNML format of the downlink

transition t10 (i.e. Figure 6) generated after execution of

the aforementioned transformation template.

Listing 2. The PNML representation of downlink transition t10.

1. <transition id="t10">
2. <downlink>
3. <graphics>
4. <offset x="0" y="-30" />
5. </graphics>
6. <text>this:setSitePreferences()</text>
7. </downlink>
8. <graphics>
9. <position x="696" y="165" />
10. <dimension x="25" y="45" />
11. <fill color="rgb(112,219,147)" />
12. <line color="rgb(0,0,0)" />
13. </graphics>
14. </transition>

The transformation of the model allows to import, redraw

and validate the dynamic behaviour of the context-aware

application. In this work the Renew PN simulator [20] is

used to carry out the model simulation. Figure 7 illustrates

a snapshot of a part of the model during the executed

simulation. The model execution allows validating the cor-

rectness of the operational semantics of the application;

e.g. detect and rectify deadlocks. Hence, the successful

model execution ensures the integrity and correctness of

the operational semantics of the code to be generated.

Following, the code generation phase is executed, where

a significant part of the implementation is generated from

the presentation, context and PN process model. The meta-

models, the complete models of the prototype and a demo

video showing the PN model validation can be found at

http://www.cs.ucy.ac.cy/∼aachila/research.html.

Figure 7. Validation of the model using a Petri Net simulator tool.

VI. CONCLUSIONS AND FUTURE WORK

In this paper a Petri Net based validation framework

is proposed, which combines MDA with Petri Nets to

538

support the validation of the static and dynamic structure

of context-aware applications. This complements existing

context modelling approaches that undertake validation by

enforcing static OCL constraints defined in class diagrams.

The framework defines a systematic process and a model-

driven engineering environment that enable designers to

define context-aware applications in the form of models.

The adoption of the widely-used EMF provides a common

understanding of the modelling languages and improves

communication between designers and developers. More-

over, the OCL language and the Petri Nets formalism allow

validating both the static and dynamic structure of context-

aware applications. This ensures the integrity of the spec-

ification prior to generating the implementation. An added

benefit of the approach is the capability to rapidly adapt

the code generation phase to address new platforms (e.g.

Android, iOS) by defining the required code generators.
The limitations of the approach are the initial effort

required to define the modelling languages and the necessary

code generators, which is compensated to a degree by the

dynamic validation and automatic code generation capabili-

ties. Future work will examine the development of an Eclipse

plug-in for the development environment, which will avoid

generating an intermediary PNML format and using external

PN tools (e.g. Renew) for the validation of the dynamic

behaviour of the context-aware application.

REFERENCES

[1] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas,
A. Ranganathan, D. Riboni, ”A survey of context modelling
and reasoning techniques”, Elsevier Pervasive and Mobile
Computing Journal, Volume 6, Issue 2, Pages 161-180, ISSN
1574-1192, 10.1016/j.pmcj.2009.06.002, April 2010.

[2] V. Dhingra and A. Arora, ”Pervasive Computing: Paradigm for
New Era Computing”, Proc. of the IEEE International Con-
ference on Emerging Trends in Engineering and Technology,
Nagpur, India, July 2008, pp. 349-354.

[3] Object Management Group (OMG), ”Object Constraint
Language Specification (OCL) 2.2”, Available online:
http://www.omg.org/spec/OCL/2.2/, 2010.

[4] A. Kleppe, J. Warmer and W. Bast, MDA Explained: The
Model Driven Architecture: Practice and Promise, Boston,
USA, Addison-Wesley Professional, 2005.

[5] C. Girault and R. Valk, Petri Nets for System Engineering: A
Guide to Modelling, Verification and Applications, Springer,
2003.

[6] A. Achilleos, K. Yang and N. Georgalas, ”Context modelling
and a context-aware framework for pervasive service creation:
A model-driven approach”, Elsevier Pervasive and Mobile
Computing, July 2009.

[7] A. Achilleos, N. Paspallis and G. A. Papadopoulos, ”Au-
tomating the Development of Device-Aware Web Services:
A Model- Driven Approach”, in Proceedings of the IEEE
Signature Conference on Computer Software and Applications
(COMPSAC), 2011.

[8] F. Ay, ”Context Modelling and Reasoning Using Ontologies”,
Technical Report, University of Technology, Berlin, July 2007,
pp. 1-9.

[9] H. Chen, F. Perich, T.W. Finin and A. Joshi, ”SOUPA: Standard
Ontology for Ubiquitous and Pervasive Applications”, 1st
Annual International Conference on Mobile and Ubiquitous
Systems, MobiQuitous 2004, IEEE Computer Society (2004).

[10] H. Chen, T. Finin and A. Joshi, ”Semantic Web in the
Context Broker Architecture”, Proceedings of the Second IEEE
International Conference on Pervasive Computing and Com-
munications, PerCom 2004, IEEE Computer Society, (2004).

[11] E. Serral, P. Valderas and V. Pelechano. ”Towards the Model
Driven Development of context-aware pervasive systems”.
Pervasive and Mobile Computing Journal. vol. 6, no. 2, pp.
254-280, Apr. 2010.

[12] K. Henricksen and J. Indulska, ”Developing Context-Aware
Pervasive Computing Applications: Models and Approach”,
Pervasive and Mobile Computing Journal, vol. 2, no. 1, pp.
37-64, Feb. 2006.

[13] J. Indulska, J. Fong and R. Robinson, ”Tool Support for De-
signing CML Based Context Models in Pervasive Computing”,
Proc. of the 4th Workshop on Software Engineering Challenges
for Ubiquitous and Pervasive Computing (UPC’2010) held in
7th International Conference on Pervasive Services, Jul. 2010,
pp. 232-238.

[14] C. Simons and G. Wirtz, ”Modelling Context in Mobile Dis-
tributed Systems with the UML”, Journal of Visual Languages
and Computing, vol. 18, no. 4, pp. 420-439, Aug. 2007.

[15] C. R. G de Farias, M. M. Leite, C. Z. Calvi, R. M. Pessoa
and J. G. P. Filho, ”A MOF metamodel for the Development
of Context-Aware Mobile Applications”, Proc. of the ACM
symposium on Applied computing, Seoul, Korea, Mar. 2007,
pp. 947-952.

[16] C. Dumez, J. Gaber and M. Wack, ”Model-driven Engineering
of Composite Web Services using UML-S”, Proc. of the
International Conference on Information Integration and Web-
based Applications and Services, 2008, pp. 395-398.

[17] C. Dumez, A. Nait-Sidi-Moh, J. Gaber and M. Wack, ”Mod-
elling and Specification of Web Services Composition using
UML-S”, Proc. of the International Conference on Next Gen-
eration Web Services Practices, Oct. 2008, pp. 15-20.

[18] H. Dun, H. Xu, L. Wang, ”Transformation of BPEL Processes
to Petri Nets”, Proc. of the IFIP/IEEE International Symposium
on Theoretical Aspects of Software Engineering, China, June
2008, pp.166-173.

[19] E. Kindler, ”Software and Systems Engineering - High-level
Petri Nets: Part2 Transfer Format - Proposed Draft Addendum
to International Standard”, ISO/IEC 15909 Part 2 - Version
0.6.3, June 2005.

[20] O. Kummer, F. Wienberg, M. Duvigneau and L.
Cabac, ”Reference Net User Guide”, Available online:
http://www.informatik.uni-hamburg.de/TGI/renew/renew.pdf,
Theoretical Foundations Group, Department of Informatics,
University of Hamburg, 2009.

539

