
Adaptive Runtime Middleware: Everything as a Service

Achilleas P. Achilleos1, Kyriaki Georgiou2, Christos Markides1,

Andreas Konstantinidis1 and George A. Papadopoulos2
1 Frederick University, 7 Y. Frederickou Str., Nicosia, Cyprus

{com.aa, com.mc, com.ca}@frederick.ac.cy
2 University of Cyprus, 1 University Avenue, Nicosia, Cyprus

{george, kgeorg04}@cs.ucy.ac.cy

Abstract. The Internet of Things applies and has a large impact on a multitude

of application domains, such as assistive technologies and smart transportation,

by bringing together the physical and virtual worlds. Due to the large scale, the

extreme heterogeneity and the dynamics of the IoT there are huge challenges for

leveraging the IoT within software applications. The management of devices and

the interactions with software services poses, if not, the greatest challenge in IoT,

so as to support the development of distributed applications. This paper addresses

this challenge by applying the service-oriented architecture paradigm for the dy-

namic management of IoT devices and for supporting the development of distrib-

uted applications. A service-oriented approach is a natural fit for both communi-

cation and management of IoT devices, and can be combined logically with soft-

ware services, since it is currently the paradigm that excels and dominates the

virtual domain. Building on our past and ongoing work on middleware platforms,

this work reviews middleware solutions and proposes a service-oriented middle-

ware platform to face IoT heterogeneity, the interactive functionality of IoT and

promote modular-based development to scale as well as provide flexibility in the

development of IoT-based distributed applications.

Keywords: middleware, IoT, services, mobile devices, distributed applications.

1 Introduction

During the last decade, key trends have been observed in the world of embedded de-

vices, which refer mainly to miniaturization, increased computation, cheaper hardware

and the shift of software approaches towards service-oriented integration in the Internet

of Things (IoT). On the basis of the stated-by-many vision for the IoT, the majority of

the devices will soon have communication and computation capabilities that they will

use to connect, interact, and cooperate with their surrounding environment [1], [2], in-

cluding other devices and services. Business-oriented complex distributed applications

are being developed on the basis of composition and collaboration among diverse ser-

vices, in many cases across different vendors.

The Internet of Services (IoS) vision [3] assumes this on a large scale, where services

reside in different layers of the enterprise, IT networks, or even running directly on

devices and machines of the company [4]. As the Internet proved its merit both for

2

content and services, we are now facing a trend where service-based information sys-

tems blur the border between the physical and virtual worlds, offering a fertile ground

for a new breed of real-world aware distributed applications. Therefore, for the success

of the IoT, future research, vision and business ecosystems require a merge between

cloud computing and the IoT, by enabling a model of “Everything as a Service”.

Such a model will deliver an IoT paradigm, where applications rely on the coopera-

tion between heterogeneous devices and software applications, all of which are offered

as dynamic web services. Thus, functions such as dynamic discovery, query, selection,

and provisioning of web services will be needed for facilitating access and interaction

between real-world objects (i.e. devices) and virtual objects (i.e. software services) [4].

The future Internet will provide the capability for embedded heterogeneous real-world

entities, similar to virtual entities, to offer their functionalities (e.g. provisioning of sen-

sor data) as RESTful/Web APIs [6]. This will enable virtual entities (i.e. enterprise

services) to interact with real-world entities since both will be offered as services in a

realisation of the “Everything as a Service” model.

The added value brought by real-world services, (i.e. services) provided by embed-

ded systems that are linked to the physical world, is the increased efficiency of the

decision making process due to the fact that they offer real-time data about the world.

Thus, the critical issue about such a model is that embedded heterogeneous devices will

be able to offer their functionality as web services, which can be used by applications,

other services, or even other devices. In this case, device drivers will not be needed

anymore and a new level of efficiency will be achieved as web service clients can be

generated dynamically at runtime [4]. This will result in a mashup of services where

horizontal collaboration between devices will be possible, as well as vertical collabo-

ration of devices with software services and enterprise applications that provide corre-

spondingly interaction capabilities with people [5].

In related work [4], [7], the key challenges continue to be open and need to be ad-

dressed [8], such as providing topology dynamics, high scalability and overcoming het-

erogeneity in such a dynamic IoT environment. In fact, such a highly dynamic environ-

ment is also further augmented by the fact that peoples’ needs evolve over time, so a

scalable and reliable IoT environment needs to be designed with inherent built-in mod-

ularity, flexibility and a variety of components in order to meet diverse individual situ-

ations and to remain attractive to end-users over time. The following list outlines the

key unresolved IoT challenges [8]:

• Heterogeneity: Sensors and actuators are the main actors in an IoT environ-

ment, where due to the highly heterogeneous nature of IoT devices, enabling

interoperability is a complex task.

• Scalability: To accurately represent the real world, a sensing/actuating task will

more often require the cooperation and coordination of numerous things.

• Flexibility: Different configurations may be required for different situations.

A service-oriented approach that follows the concepts of the Internet can provide a

solution to the above mentioned challenges. Web technologies provide the base on

which a service-oriented approach for the IoT can be formulated to properly address

these restrictions. This enables different devices and software components to work to-

gether by ex-posing their functionalities to others as web services. Services are the

3

entities that enable users to access the capabilities through pre-defined interfaces in

accordance with the policies and constraints, which are part of the description of that

service [10]. Web services are platform-independent and can be accessed through the

Internet. The original contribution of the web was as a content-provisioning medium.

Today, the key role of the web is to act as a facilitator in service outsourcing [2]. This

role enables businesses to collaborate dynamically, thus reducing overheads. Therefore,

the service deployment model can be applied to any component, physical or virtual, so

as to make it available as a service [2], [9].

In the IoT, there is huge heterogeneity in both the communication technologies, and

the system level technologies. Therefore, apart from service-oriented computing, a mid-

dleware system can support heterogeneity of both communication and system-level

technologies that are diverse and many in the world of the IoT. In general, a middleware

abstracts the complexities of the system or hardware, allowing the application devel-

oper to focus all his effort on the task to be solved [10]. In fact, a middleware system

offers a software layer between applications, the operating system and the network

communications layers. Based on the above, it is evident that a middleware system can

offer an abstraction layer for handling the complexities of the IoT and addressing the

challenges faced in developing such applications.

This work aims to support the development of dynamic, flexible and distributed IoT

applications, by combining service-oriented computing and middleware technologies.

The proposed service-oriented system, coined Adaptive Runtime Middleware (ARM),

allows addressing heterogeneity, scalability and flexibility issues. The RESTful archi-

tectural pattern is adopted, which enables upon deployment of smart devices (e.g. sen-

sors, actuators), to discover these devices, detect their capabilities, regenerate and re-

deploy the middleware injecting new RESTful service interfaces (i.e. APIs).

ARM’s key capability is the annotation-driven runtime code generation that drives

dynamic injection of device capabilities in the form of new service interfaces. The

ARM’s self-adaptive nature enables interoperability amongst heterogeneous devices,

automates device discovery and management, and exposes these devices as services.

This offers simplicity for the developer, without introducing additional technologies

that increase the already profound complexity in the IoT. In fact, the developer will

only need to base its client application implementation on the generated documentation,

which describes the generated services that enable management of the IoT devices.

2 Related Work

2.1 Context-Aware Middleware

Several approaches and research work has been performed for the development of mid-

dleware systems in different research domains. The Cooltown project [11] supports

wireless mobile devices in interacting with a web-enabled environment by assigning

URLs to devices, people and things as a web-presence identifier – providing therefore

a “rich” interface to the entity. Middleware systems include the Gaia [12] that aims to

provide a distributed functionality similar to an operating system, the MiddleWhere

4

[13], which provides enhanced and enriched location information to applications by

utilizing a number of location sensing techniques based on a location model, and the

MobiPADS [14] that targets mobile environments and its services are provided through

various migrated entities from different MobiPADS environments.

A context-aware middleware is also developed in the MUSIC EU project [15], which

is a comprehensive open-source software development framework. MUSIC is an ubiq-

uitous OSGi-based context-management middleware system for developing adaptive

applications and services for ubiquitous environments.

2.2 Middleware for the Internet of Things

Several middleware IoT architectures and frameworks have been proposed, aiming for

a more usable connection among, often, complex and already existing applications that

were not originally designed to be connected. The essence of the IoT is making it pos-

sible for just about anything to be connected and communicate data over a network,

where the middleware framework is part of the architecture thus enabling that connec-

tivity among heterogeneous devices and software services.

An example of a scalable and modular architecture that integrates various compo-

nents and technologies is openHAB [16]. OpenHAB is an open-source, agnostic auto-

mation software with an active community, which encompasses different home auto-

mation systems and technologies under the same umbrella of a single solution, enabling

the user to define the interaction of systems and devices through automation rules and

uniform user interfaces. It is also OSGi-based, and provides APIs for integration with

other systems, where REST API is used for remote communication.

OpenIoT is an open-source middleware for connecting cloud sensors and collecting

information, extending the IoT solution and exploring efficient ways to use and manage

cloud environments [17]. Through an adaptive middleware framework, which is de-

ployed on the basis of one or more distributed nodes, data are collected, filtered, com-

bined and semantically annotated from virtual sensors or physical devices. The pro-

posed middleware does not support though access via service interfaces.

2.3 Service-Oriented Middleware

The service-oriented design paradigm deals with the implementation of software or ap-

plications in the form of services by following the concepts and ideas of service-ori-

ented computing (SOC). SOC benefits, such as technology neutrality, loose coupling,

service reusability, service composability, and service discoverability [18], can be also

beneficial to IoT applications. However, IoT’s heterogeneity, scalability and flexibility

make service discovery, deployment and composition challenging.

The Hydra EU research project set out to develop a middleware for Networked Em-

bedded Systems. The Hydra middleware allows developers to incorporate heterogene-

ous physical devices into their applications by offering easy-to-use web service inter-

faces for controlling any type of physical device irrespective of its network technology

such as Bluetooth, RF, ZigBee, RFID, WiFi, etc. As stated in [19, 20], the software

middleware is based on Service-Oriented Architecture (SOA), which means that the

5

communication occurs transparently between the lower layers. The aim of the middle-

ware, coined LinkSmart, was to support diverse and heterogeneous connected devices,

which enable developers to implement applications that depend on and adapt to context

information. Services are defined statically in the proposed middleware.

CHOReOS [21] is a service-oriented middleware that enables large scale choreog-

raphies of adaptable and heterogeneous services in IoT. It aims to address scalability,

interoperability, and adaptability issues via static service interfaces. The SenseWrap

service-oriented middleware combines Zeroconf protocols with hardware abstraction

using virtual sensors [22]. A virtual sensor provides transparent discovery of resources,

through the use of Zeroconf protocols, which applications can use to discover sensor-

hosted services. SenseWrap also provides a standardized communication interface to

hide the sensor-specific details from the applications.

3 The Adaptive Runtime Middleware (ARM)

3.1 Our Contribution

This paper builds on our research work on middleware systems and in research projects

such as MUSIC, AsTeRICS and Prosperity4All, so as to design and develop an adaptive

middleware system for the IoT. Such a system will have the ability when a smart mod-

ule (e.g., sensor, actuator) is installed, to discover it, detect its capabilities, regenerate

and re-configure the middleware. The middleware supports annotation-driven runtime

code generation [23] of device capabilities in the form of dynamic services. The key

aspect is simplicity for the developer, without introducing additional technologies,

IDEs and platforms. The developer can use the generated service interfaces to manage

devices, and thus create cross-platform distributed applications (e.g. Android, iOS,

HTML5).

3.2 ARM Architecture

The proposed middleware takes advantage of the principles of RESTful architectural

pattern and exposes devices as services. The functionalities of each device (e.g., Smart

Light – turn light on, dim light) are implemented as annotated Java functions available

within each device-specific OSGi component. The key idea is that OSGi components

correspond to IoT devices, which can be accessed and managed using RESTful inter-

faces. In addition, there are two main services implemented as OSGi components,

which refer to the middleware core functionality and the REST server that hosts the

device resources. The middleware core functionality detects the device capabilities via

the annotations in the OSGi component that is installed and allows generating the ser-

vice interfaces that the REST server component exposes, which correspond to the func-

tionalities of the installed device.

The smallest components in the architecture are the individual OSGi bundles. Each

one of these bundles implements the device capabilities, which could be as simple as

turning a light on/off, or could be as complex as the interactions between multiple

6

actuators and sensors. The middleware core functionality detects the capabilities of

newly installed bundles, thus generating the RESTful interfaces that expose and enable

access to these capabilities.

Fig. 1. ARM middleware architecture.

The communication between the components of the proposed adaptive runtime mid-

dleware system is illustrated in Figure 1, where the architecture of the middleware sys-

tem. The middleware bundle contains the application server that enables communica-

tion with the installed bundles via the generated service interfaces. Furthermore, the

REST-based architecture enables to access devices over the network in distributed end-

user locations (e.g., home, office). The developer is able to develop client applications

that make use and even allow interaction between devices in distributed locations, since

the service interfaces can be accessed seamlessly via the middleware system available

in these locations.

3.3 ARM Implementation

The dynamic middleware is realized as an OSGi bundle, which utilizes the benefits

of the OSGi specification for enabling the modularity and scalability of the system. The

implemented middleware is built on top of the OSGi Equinox framework, used also in

the Eclipse IDE, which is actually an implementation of the OSGi specification. In ad-

dition, the REST architecture satisfies and offers solutions in terms of the flexibility

needed in an IoT environment. For the implementation of the REST OSGi bundle, the

Java API for RESTful Web Services (JAX-RS) specification and its analogous Jersey

implementation were used. The OSGi-JAX-RS Connector (i.e., Staudacher) was used,

since it packages the Jersey implementation in the form of a bundle and thus integrating

consistently the Jersey and OSGi frameworks.

Apart from the core bundles, the middleware and REST server, each device or soft-

ware service can be defined in a separate OSGi bundle. For instance, a WiFi smart

socket can be implemented as an OSGi bundle. This approach offers many advantages

since it enables above all flexibility, heterogeneity and scalability as new devices and

software services can be supported. The requirement is that developers create a new

bundle that enables communication to the device or software service.

7

Java annotations are syntactic metadata that can be added in the code. Hence, when

a new bundle is installed, the middleware detects and starts the component, parses the

annotations of public methods and generates the service interfaces that enable direct

access to the new resource. The middleware will also generate the documentation for

the service, based on the annotations of each public method defined in the bundle. These

annotations define the functionality of the bundle, the signature of public methods in-

cluding the input and output parameters of the method. This mechanism is exploited to

enable runtime code generation of the service interfaces.

Descriptor and Annotations

The developer of each IoT device bundle needs to follow a set of guidelines, in order

to utilize the adaptive runtime functionality of the middleware. Each bundle can be

implemented and exported as a JAR file, which contains a descriptor (i.e. XML file)

and the implementation classes. The descriptor defines only the full name of the imple-

mentation class for the bundle. This refers to the package followed by the symbolic

name for the bundle as defined in the component manifest, in the form of: "<Ex-

ported-Package>.<Bundle-Symbolic-Name>". For instance, if the pack-

age is phillipshue and the symbolic name is SmartLight, then the full name

will be phillipshue.SmartLight. The developer should use Java annotations

on top of the public methods for documenting the functionalities provided by, e.g. the

SmartLight, which are used to generate the service interfaces as defined next.

Service Interfaces

The generated service interfaces need to be consistent and adhere to a simple resource

path definition logic, which enables developers of client applications to easily access,

and learn how to invoke and thus make use of device functionalities. Table 1 presents

the generic definitions for the service interfaces that provide access to device or soft-

ware services. These refer to the resource paths automatically generated by the middle-

ware.

Table 1. Middleware path hierarchy for generated service interfaces.

Path Description
<baseURL> Lists information on the available bundles, including de-

scription and interface definition. The baseURL represents

the service interface of the middleware.
<baseURL>/<BundleName> Provides information on a specific bundle. BundleName

is the middleware name for the bundle. The BundleName

can be retrieved by invoking the baseURL.
<baseURL>/<BundleName>/

<MethodName>
Invokes functionality by the MethodName, which is ap-

pended after the BundleName (no parameters).
<baseURL>/<BundleName>/

<MethodName>/<Parameter-

Data>

Invokes functionality by the MethodName, which is ap-

pended after the BundleName (accepts parameters).

<baseURL>/<BundleName>/

<MethodName>/def
Presents information related to the functionality offered by

this method of the specified bundle.

8

4 Smart Light Use Case Demonstrator

The use case demonstrator introduced in this section presents the installation of the

bundle, as well as accessing, communicating and controlling the Philips Hue smart

light. In this use case scenario, an HTML5 client is implemented and used for demon-

strating the middleware capabilities. The bundle implementation offers access to four

device capabilities: 1) turn light on, 2) turn light off, 3) dim light and 4) set light level.

First the bundle descriptor needs to be defined by the bundle developer as follows:

<bundle-definition>

 <fullname>

 osgi_SmartPhilipsHUELight.SmartPhilipsHUELight

 </fullname>

</bundle-definition>

Figure 2, presents a fraction of the code that showcases how annotations are defined

for the “turn light on” method implementation of the Phillips Hue. The next step in-

volves exporting the bundle. The middleware will then parse the descriptor containing

the bundle’s full name. If the bundle is not already installed, the middleware will auto-

matically install and start it. Using reflection, the middleware detects all device capa-

bilities, re-configures the middleware via runtime code generation and injects/publishes

the discovered functionalities as RESTful service interfaces.

Fig. 2. Code snippet of the Phillips Hue implementation class.

Figure 3 showcases the resource paths for invoking the device capabilities. The devel-

oper of the client application is now able to invoke the base URL, which will return the

description of the bundles currently installed and the paths for retrieving details on how

to invoke each device capabilities. Figure 4 presents the currently installed Phillips Hue

bundle and exposes the description and paths for invoking the implemented function-

alities of the device. An HTML5 client has been implemented, which allows showcas-

ing the use of the dynamically generated service interfaces that enable accessing and

controlling the Phillips Hue Smart Light device (demo video1).

1 Available at: https://www.youtube.com/watch?v=NQ0tzv5Ob48&sns=em

9

Fig. 3. Generated RESTful service interfaces for the Phillips Hue Smart Light.

Fig. 4. Generated RESTful service interfaces for the Phillips Hue Smart Light.

5 Conclusions and Future Work

The research work presented in this paper aims to provide an Adaptive Runtime Mid-

dleware (ARM). The proposed middleware allows utilizing the benefits of the OSGi

framework, the Java reflection mechanism and the RESTful architectural pattern in or-

der to provide solutions to the IoT challenges of scalability, heterogeneity and flexibil-

ity. The presented use case scenario demonstrates the adaptive capabilities of the pro-

posed ARM. The architecture of ARM enables to address the aforesaid IoT issues, since

for each IoT device or Cloud service a corresponding bundle can be developed follow-

ing the guidelines presented in this work. The bundle can be then exported and the

ARM - can install, start and parse the bundle so as to generate at runtime the required

service interfaces. Future research work aims to extend the middleware capabilities so

as enable dynamic generation of Server-Sent Events (SSE) for handling sensor devices

data as soon as they become available. Finally, a rules engine will be implemented for

defining dependencies between device and/or software services, for example motion

detected � turn on camera.

References

1. E. Fleisch and F. Mattern (2005) Das Internet der Dinge: Ubiquitous Computing und RFID

in der Praxis: VTAH. Springer-Verlag.

10

2. F. Zeshan, et al. (2014). Service Discovery Framework for Distributed Embedded Real-

Time Systems. In I. Ghani, W. Kadir, & M. Ahmad (Eds.), Handbook of Research on Emerg-

ing Advancements and Technologies in Software Engineering.

3. D. Lizcano et al. (2008). Leveraging the Upcoming Internet of Services through an Open

User-Service Front-End Framework. In: Mähönen P., Pohl K., Priol T. (eds) Towards a Ser-

vice-Based Internet. ServiceWave 2008. LNCS, vol 5377. Springer, Berlin, Heidelberg.

4. D. Guinard, et al. (2010) Interacting with the SOA-Based Internet of Things: Discovery,

Query, Selection, and On-Demand Provisioning of Web Services. IEEE Trans. on Services

Computing, vol. 3, no. 3.

5. V. Issarny, et. al. (2016) Revisiting Service-Oriented Architecture for the IoT: A Middle-

ware Perspective. In: Sheng Q., Stroulia E., Tata S., Bhiri S. (eds) Service-Oriented Com-

puting. ICSOC 2016. Lecture Notes in Computer Science, vol 9936. Springer, Cham.

6. D. Guinard and V. Trifa, (2009). Towards the Web of Things: Web Mashups for Embedded

Devices, In: Proc. Workshop Mashups, Enterprise Mashups and Lightweight Composition

on the Web (MEM’09).

7. T. Teixeira, et al. (2011). Service Oriented Middleware for the Internet of Things: A Per-

spective. In: Towards a Service-Based Internet, LNCS, vol. 6994, pp. 220–229. Springer

Berlin Heidelberg.

8. F. Paganelli, et al. (2012). A DHT-based discovery service for the Internet of Things. In:

Journal of Computer Networks and Communications.

9. Y. Zhu, Xiao-hua M. (2010). A Framework for Service Discovery in Pervasive Computing.

2nd Int. Conference on Information Engineering and Computer Science (ICIECS).

10. S. Neely, et al. (2006). Adaptive middleware for autonomic systems, In: Ann. Técommun.,

vol. 61, no. 9–10, pp. 1099-1118.

11. J. Barton and T. Kindberg. (2001). The Cooltown user experience.

12. M. Román, et al. (2002). Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE

Pervasive Computing , pp. 74-83.

13. A. Ranganathan, et al. (2004). Middlewhere: A middleware for location awareness in ubiq-

uitous computing applications. Springer.

14. A. Chan and S.-N. Chuang. (2003/12). Mobipads: a reflective middleware for context-aware

mobile computing. IEEE Trans. on Software Engineering , 29 (12), 1072-1085.

15. N. Paspallis, et al. (2009). Developing Self-Adaptive Mobile Applications and Services with

Separation-of-Concerns', At Your Service: Service-Oriented Computing from an EU Per-

spective, MIT Press, chapter 6, pp. 129-158.

16. openHAB (2017). Retrieved January 24, 2017, from http://www.openhab.org/

17. J. Soldatos, et al. (2015). OpenIoT: Open Source Internet-of-Things in the Cloud. Interop-

erability and Open-Source Solutions for the Internet of Things, 9001, 13-25.

18. OpenIoT Consortium. (2016). OpenIoT - Open Source cloud solution for the Internet of

Things. Retrieved January 24, 2017, from http://www.openiot.eu/

19. M. Papazoglou. (2003). “Service-oriented computing: Concepts, characteristics and direc-

tions,” in Proc. 4th Int. Conf. Web Inf. Syst. Eng. (WISE’03), pp. 3–12.

20. M. Sarnovsky, et al. (2008). First demonstrator of hydra middleware architecture for build-

ing automation, Václav Snášel. pp. 204–214, FIIT STU Bratislava.

21. A. M. C. Souza et al. (2013). A Novel Smart Home Application Using an Internet of Things

Middleware, Smart SysTech 2013,Erlangen/Nuremberg, Germany, pp. 1-7.

22. A. B. Hamida, Fabio Kon, et al. (2013). Integrated CHOReOS middleware - Enabling large-

scale, QoS-aware adaptive choreographies.

23. A. Azzara, et al., Middleware solutions in WSN: The IoT oriented approach in the ICSI

project, Int. Conf. SoftCOM, 2013.

