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Abstract. The Internet of Things applies and has a large impact on a multitude 

of application domains, such as assistive technologies and smart transportation, 

by bringing together the physical and virtual worlds. Due to the large scale, the 

extreme heterogeneity and the dynamics of the IoT there are huge challenges for 

leveraging the IoT within software applications. The management of devices and 

the interactions with software services poses, if not, the greatest challenge in IoT, 

so as to support the development of distributed applications. This paper addresses 

this challenge by applying the service-oriented architecture paradigm for the dy-

namic management of IoT devices and for supporting the development of distrib-

uted applications. A service-oriented approach is a natural fit for both communi-

cation and management of IoT devices, and can be combined logically with soft-

ware services, since it is currently the paradigm that excels and dominates the 

virtual domain. Building on our past and ongoing work on middleware platforms, 

this work reviews middleware solutions and proposes a service-oriented middle-

ware platform to face IoT heterogeneity, the interactive functionality of IoT and 

promote modular-based development to scale as well as provide flexibility in the 

development of IoT-based distributed applications. 
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1 Introduction 

During the last decade, key trends have been observed in the world of embedded de-

vices, which refer mainly to miniaturization, increased computation, cheaper hardware 

and the shift of software approaches towards service-oriented integration in the Internet 

of Things (IoT). On the basis of the stated-by-many vision for the IoT, the majority of 

the devices will soon have communication and computation capabilities that they will 

use to connect, interact, and cooperate with their surrounding environment [1], [2], in-

cluding other devices and services. Business-oriented complex distributed applications 

are being developed on the basis of composition and collaboration among diverse ser-

vices, in many cases across different vendors.  

The Internet of Services (IoS) vision [3] assumes this on a large scale, where services 

reside in different layers of the enterprise, IT networks, or even running directly on 

devices and machines of the company [4]. As the Internet proved its merit both for 
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content and services, we are now facing a trend where service-based information sys-

tems blur the border between the physical and virtual worlds, offering a fertile ground 

for a new breed of real-world aware distributed applications. Therefore, for the success 

of the IoT, future research, vision and business ecosystems require a merge between 

cloud computing and the IoT, by enabling a model of “Everything as a Service”. 

Such a model will deliver an IoT paradigm, where applications rely on the coopera-

tion between heterogeneous devices and software applications, all of which are offered 

as dynamic web services. Thus, functions such as dynamic discovery, query, selection, 

and provisioning of web services will be needed for facilitating access and interaction 

between real-world objects (i.e. devices) and virtual objects (i.e. software services) [4]. 

The future Internet will provide the capability for embedded heterogeneous real-world 

entities, similar to virtual entities, to offer their functionalities (e.g. provisioning of sen-

sor data) as RESTful/Web APIs [6]. This will enable virtual entities (i.e. enterprise 

services) to interact with real-world entities since both will be offered as services in a 

realisation of the “Everything as a Service” model.        

The added value brought by real-world services, (i.e. services) provided by embed-

ded systems that are linked to the physical world, is the increased efficiency of the 

decision making process due to the fact that they offer real-time data about the world. 

Thus, the critical issue about such a model is that embedded heterogeneous devices will 

be able to offer their functionality as web services, which can be used by applications, 

other services, or even other devices. In this case, device drivers will not be needed 

anymore and a new level of efficiency will be achieved as web service clients can be 

generated dynamically at runtime [4]. This will result in a mashup of services where 

horizontal collaboration between devices will be possible, as well as vertical collabo-

ration of devices with software services and enterprise applications that provide corre-

spondingly interaction capabilities with people [5].  

In related work [4], [7], the key challenges continue to be open and need to be ad-

dressed [8], such as providing topology dynamics, high scalability and overcoming het-

erogeneity in such a dynamic IoT environment. In fact, such a highly dynamic environ-

ment is also further augmented by the fact that peoples’ needs evolve over time, so a 

scalable and reliable IoT environment needs to be designed with inherent built-in mod-

ularity, flexibility and a variety of components in order to meet diverse individual situ-

ations and to remain attractive to end-users over time. The following list outlines the 

key unresolved IoT challenges [8]: 

• Heterogeneity: Sensors and actuators are the main actors in an IoT environ-

ment, where due to the highly heterogeneous nature of IoT devices, enabling 

interoperability is a complex task.  

• Scalability: To accurately represent the real world, a sensing/actuating task will 

more often require the cooperation and coordination of numerous things.  

• Flexibility: Different configurations may be required for different situations.  

A service-oriented approach that follows the concepts of the Internet can provide a 

solution to the above mentioned challenges. Web technologies provide the base on 

which a service-oriented approach for the IoT can be formulated to properly address 

these restrictions. This enables different devices and software components to work to-

gether by ex-posing their functionalities to others as web services. Services are the 
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entities that enable users to access the capabilities through pre-defined interfaces in 

accordance with the policies and constraints, which are part of the description of that 

service [10]. Web services are platform-independent and can be accessed through the 

Internet. The original contribution of the web was as a content-provisioning medium. 

Today, the key role of the web is to act as a facilitator in service outsourcing [2]. This 

role enables businesses to collaborate dynamically, thus reducing overheads. Therefore, 

the service deployment model can be applied to any component, physical or virtual, so 

as to make it available as a service [2], [9]. 

In the IoT, there is huge heterogeneity in both the communication technologies, and 

the system level technologies. Therefore, apart from service-oriented computing, a mid-

dleware system can support heterogeneity of both communication and system-level 

technologies that are diverse and many in the world of the IoT. In general, a middleware 

abstracts the complexities of the system or hardware, allowing the application devel-

oper to focus all his effort on the task to be solved [10]. In fact, a middleware system 

offers a software layer between applications, the operating system and the network 

communications layers. Based on the above, it is evident that a middleware system can 

offer an abstraction layer for handling the complexities of the IoT and addressing the 

challenges faced in developing such applications.  

This work aims to support the development of dynamic, flexible and distributed IoT 

applications, by combining service-oriented computing and middleware technologies. 

The proposed service-oriented system, coined Adaptive Runtime Middleware (ARM), 

allows addressing heterogeneity, scalability and flexibility issues. The RESTful archi-

tectural pattern is adopted, which enables upon deployment of smart devices (e.g. sen-

sors, actuators), to discover these devices, detect their capabilities, regenerate and re-

deploy the middleware injecting new RESTful service interfaces (i.e. APIs).  

ARM’s key capability is the annotation-driven runtime code generation that drives 

dynamic injection of device capabilities in the form of new service interfaces. The 

ARM’s self-adaptive nature enables interoperability amongst heterogeneous devices, 

automates device discovery and management, and exposes these devices as services. 

This offers simplicity for the developer, without introducing additional technologies 

that increase the already profound complexity in the IoT. In fact, the developer will 

only need to base its client application implementation on the generated documentation, 

which describes the generated services that enable management of the IoT devices. 

2 Related Work 

2.1 Context-Aware Middleware 

Several approaches and research work has been performed for the development of mid-

dleware systems in different research domains. The Cooltown project [11] supports 

wireless mobile devices in interacting with a web-enabled environment by assigning 

URLs to devices, people and things as a web-presence identifier – providing therefore 

a “rich” interface to the entity. Middleware systems include the Gaia [12] that aims to 

provide a distributed functionality similar to an operating system, the MiddleWhere 
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[13], which provides enhanced and enriched location information to applications by 

utilizing a number of location sensing techniques based on a location model, and the 

MobiPADS [14] that targets mobile environments and its services are provided through 

various migrated entities from different MobiPADS environments. 

A context-aware middleware is also developed in the MUSIC EU project [15], which 

is a comprehensive open-source software development framework. MUSIC is an ubiq-

uitous OSGi-based context-management middleware system for developing adaptive 

applications and services for ubiquitous environments. 

2.2 Middleware for the Internet of Things 

Several middleware IoT architectures and frameworks have been proposed, aiming for 

a more usable connection among, often, complex and already existing applications that 

were not originally designed to be connected. The essence of the IoT is making it pos-

sible for just about anything to be connected and communicate data over a network, 

where the middleware framework is part of the architecture thus enabling that connec-

tivity among heterogeneous devices and software services. 

An example of a scalable and modular architecture that integrates various compo-

nents and technologies is openHAB [16]. OpenHAB is an open-source, agnostic auto-

mation software with an active community, which encompasses different home auto-

mation systems and technologies under the same umbrella of a single solution, enabling 

the user to define the interaction of systems and devices through automation rules and 

uniform user interfaces. It is also OSGi-based, and provides APIs for integration with 

other systems, where REST API is used for remote communication.  

OpenIoT is an open-source middleware for connecting cloud sensors and collecting 

information, extending the IoT solution and exploring efficient ways to use and manage 

cloud environments [17]. Through an adaptive middleware framework, which is de-

ployed on the basis of one or more distributed nodes, data are collected, filtered, com-

bined and semantically annotated from virtual sensors or physical devices. The pro-

posed middleware does not support though access via service interfaces.  

2.3 Service-Oriented Middleware 

The service-oriented design paradigm deals with the implementation of software or ap-

plications in the form of services by following the concepts and ideas of service-ori-

ented computing (SOC). SOC benefits, such as technology neutrality, loose coupling, 

service reusability, service composability, and service discoverability [18], can be also 

beneficial to IoT applications. However, IoT’s heterogeneity, scalability and flexibility 

make service discovery, deployment and composition challenging.  

The Hydra EU research project set out to develop a middleware for Networked Em-

bedded Systems. The Hydra middleware allows developers to incorporate heterogene-

ous physical devices into their applications by offering easy-to-use web service inter-

faces for controlling any type of physical device irrespective of its network technology 

such as Bluetooth, RF, ZigBee, RFID, WiFi, etc. As stated in [19, 20], the software 

middleware is based on Service-Oriented Architecture (SOA), which means that the 
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communication occurs transparently between the lower layers. The aim of the middle-

ware, coined LinkSmart, was to support diverse and heterogeneous connected devices, 

which enable developers to implement applications that depend on and adapt to context 

information. Services are defined statically in the proposed middleware.  

CHOReOS [21] is a service-oriented middleware that enables large scale choreog-

raphies of adaptable and heterogeneous services in IoT. It aims to address scalability, 

interoperability, and adaptability issues via static service interfaces. The SenseWrap 

service-oriented middleware combines Zeroconf protocols with hardware abstraction 

using virtual sensors [22]. A virtual sensor provides transparent discovery of resources, 

through the use of Zeroconf protocols, which applications can use to discover sensor-

hosted services. SenseWrap also provides a standardized communication interface to 

hide the sensor-specific details from the applications.  

3 The Adaptive Runtime Middleware (ARM) 

3.1 Our Contribution 

This paper builds on our research work on middleware systems and in research projects 

such as MUSIC, AsTeRICS and Prosperity4All, so as to design and develop an adaptive 

middleware system for the IoT. Such a system will have the ability when a smart mod-

ule (e.g., sensor, actuator) is installed, to discover it, detect its capabilities, regenerate 

and re-configure the middleware. The middleware supports annotation-driven runtime 

code generation [23] of device capabilities in the form of dynamic services. The key 

aspect is simplicity for the developer, without introducing additional technologies, 

IDEs and platforms. The developer can use the generated service interfaces to manage 

devices, and thus create cross-platform distributed applications (e.g. Android, iOS, 

HTML5).  

3.2 ARM Architecture 

The proposed middleware takes advantage of the principles of RESTful architectural 

pattern and exposes devices as services. The functionalities of each device (e.g., Smart 

Light – turn light on, dim light) are implemented as annotated Java functions available 

within each device-specific OSGi component. The key idea is that OSGi components 

correspond to IoT devices, which can be accessed and managed using RESTful inter-

faces. In addition, there are two main services implemented as OSGi components, 

which refer to the middleware core functionality and the REST server that hosts the 

device resources. The middleware core functionality detects the device capabilities via 

the annotations in the OSGi component that is installed and allows generating the ser-

vice interfaces that the REST server component exposes, which correspond to the func-

tionalities of the installed device. 

The smallest components in the architecture are the individual OSGi bundles. Each 

one of these bundles implements the device capabilities, which could be as simple as 

turning a light on/off, or could be as complex as the interactions between multiple 
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actuators and sensors. The middleware core functionality detects the capabilities of 

newly installed bundles, thus generating the RESTful interfaces that expose and enable 

access to these capabilities. 

 

Fig. 1. ARM middleware architecture.  

The communication between the components of the proposed adaptive runtime mid-

dleware system is illustrated in Figure 1, where the architecture of the middleware sys-

tem. The middleware bundle contains the application server that enables communica-

tion with the installed bundles via the generated service interfaces. Furthermore, the 

REST-based architecture enables to access devices over the network in distributed end-

user locations (e.g., home, office). The developer is able to develop client applications 

that make use and even allow interaction between devices in distributed locations, since 

the service interfaces can be accessed seamlessly via the middleware system available 

in these locations.    

3.3 ARM Implementation 

The dynamic middleware is realized as an OSGi bundle, which utilizes the benefits 

of the OSGi specification for enabling the modularity and scalability of the system. The 

implemented middleware is built on top of the OSGi Equinox framework, used also in 

the Eclipse IDE, which is actually an implementation of the OSGi specification. In ad-

dition, the REST architecture satisfies and offers solutions in terms of the flexibility 

needed in an IoT environment. For the implementation of the REST OSGi bundle, the 

Java API for RESTful Web Services (JAX-RS) specification and its analogous Jersey 

implementation were used. The OSGi-JAX-RS Connector (i.e., Staudacher) was used, 

since it packages the Jersey implementation in the form of a bundle and thus integrating 

consistently the Jersey and OSGi frameworks. 

Apart from the core bundles, the middleware and REST server, each device or soft-

ware service can be defined in a separate OSGi bundle. For instance, a WiFi smart 

socket can be implemented as an OSGi bundle. This approach offers many advantages 

since it enables above all flexibility, heterogeneity and scalability as new devices and 

software services can be supported. The requirement is that developers create a new 

bundle that enables communication to the device or software service.    
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Java annotations are syntactic metadata that can be added in the code. Hence, when 

a new bundle is installed, the middleware detects and starts the component, parses the 

annotations of public methods and generates the service interfaces that enable direct 

access to the new resource. The middleware will also generate the documentation for 

the service, based on the annotations of each public method defined in the bundle. These 

annotations define the functionality of the bundle, the signature of public methods in-

cluding the input and output parameters of the method. This mechanism is exploited to 

enable runtime code generation of the service interfaces. 

Descriptor and Annotations 

The developer of each IoT device bundle needs to follow a set of guidelines, in order 

to utilize the adaptive runtime functionality of the middleware. Each bundle can be 

implemented and exported as a JAR file, which contains a descriptor (i.e. XML file) 

and the implementation classes. The descriptor defines only the full name of the imple-

mentation class for the bundle. This refers to the package followed by the symbolic 

name for the bundle as defined in the component manifest, in the form of: "<Ex-

ported-Package>.<Bundle-Symbolic-Name>". For instance, if the pack-

age is phillipshue and the symbolic name is SmartLight, then the full name 

will be phillipshue.SmartLight. The developer should use Java annotations 

on top of the public methods for documenting the functionalities provided by, e.g. the 

SmartLight, which are used to generate the service interfaces as defined next. 

Service Interfaces 

The generated service interfaces need to be consistent and adhere to a simple resource 

path definition logic, which enables developers of client applications to easily access, 

and learn how to invoke and thus make use of device functionalities. Table 1 presents 

the generic definitions for the service interfaces that provide access to device or soft-

ware services. These refer to the resource paths automatically generated by the middle-

ware. 

Table 1. Middleware path hierarchy for generated service interfaces. 

Path Description 
<baseURL> Lists information on the available bundles, including de-

scription and interface definition. The baseURL represents 

the service interface of the middleware. 
<baseURL>/<BundleName> Provides information on a specific bundle. BundleName 

is the middleware name for the bundle. The BundleName 

can be retrieved by invoking the baseURL. 
<baseURL>/<BundleName>/ 

<MethodName> 
Invokes functionality by the MethodName, which is ap-

pended after the BundleName (no parameters). 
<baseURL>/<BundleName>/ 

<MethodName>/<Parameter-

Data> 

Invokes functionality by the MethodName, which is ap-

pended after the BundleName (accepts parameters). 

<baseURL>/<BundleName>/ 

<MethodName>/def 
Presents information related to the functionality offered by 

this method of the specified bundle. 
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4 Smart Light Use Case Demonstrator 

The use case demonstrator introduced in this section presents the installation of the 

bundle, as well as accessing, communicating and controlling the Philips Hue smart 

light. In this use case scenario, an HTML5 client is implemented and used for demon-

strating the middleware capabilities. The bundle implementation offers access to four 

device capabilities: 1) turn light on, 2) turn light off, 3) dim light and 4) set light level. 

First the bundle descriptor needs to be defined by the bundle developer as follows: 

<bundle-definition> 

 <fullname> 

  osgi_SmartPhilipsHUELight.SmartPhilipsHUELight 

 </fullname> 

</bundle-definition> 

Figure 2, presents a fraction of the code that showcases how annotations are defined 

for the “turn light on” method implementation of the Phillips Hue. The next step in-

volves exporting the bundle. The middleware will then parse the descriptor containing 

the bundle’s full name. If the bundle is not already installed, the middleware will auto-

matically install and start it. Using reflection, the middleware detects all device capa-

bilities, re-configures the middleware via runtime code generation and injects/publishes 

the discovered functionalities as RESTful service interfaces.  

 

 

Fig. 2. Code snippet of the Phillips Hue implementation class.  

Figure 3 showcases the resource paths for invoking the device capabilities. The devel-

oper of the client application is now able to invoke the base URL, which will return the 

description of the bundles currently installed and the paths for retrieving details on how 

to invoke each device capabilities. Figure 4 presents the currently installed Phillips Hue 

bundle and exposes the description and paths for invoking the implemented function-

alities of the device. An HTML5 client has been implemented, which allows showcas-

ing the use of the dynamically generated service interfaces that enable accessing and  

controlling the Phillips Hue Smart Light device (demo video1). 

                                                           
1 Available at: https://www.youtube.com/watch?v=NQ0tzv5Ob48&sns=em  
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Fig. 3. Generated RESTful service interfaces for the Phillips Hue Smart Light.  

 

Fig. 4. Generated RESTful service interfaces for the Phillips Hue Smart Light.  

5 Conclusions and Future Work 

The research work presented in this paper aims to provide an Adaptive Runtime Mid-

dleware (ARM). The proposed middleware allows utilizing the benefits of the OSGi 

framework, the Java reflection mechanism and the RESTful architectural pattern in or-

der to provide solutions to the IoT challenges of scalability, heterogeneity and flexibil-

ity. The presented use case scenario demonstrates the adaptive capabilities of the pro-

posed ARM. The architecture of ARM enables to address the aforesaid IoT issues, since 

for each IoT device or Cloud service a corresponding bundle can be developed follow-

ing the guidelines presented in this work. The bundle can be then exported and the 

ARM - can install, start and parse the bundle so as to generate at runtime the required 

service interfaces. Future research work aims to extend the middleware capabilities so 

as enable dynamic generation of Server-Sent Events (SSE) for handling sensor devices 

data as soon as they become available. Finally, a rules engine will be implemented for 

defining dependencies between device and/or software services, for example motion 

detected � turn on camera. 
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