

Pervasive Service Creation using a Model Driven

Petri Net based Approach

Achilleas Achilleos and Kun Yang

Dept. of Computing and Electronic Systems

University of Essex

Colchester, CO4 3SQ, United Kingdom

Email: {aachila, kunyang}@essex.ac.uk

Nektarios Georgalas and Manooch Azmoodech

IT Futures Research Centre

British Telecom Group Chief Technology Office

Ipswich, IP5 2YE, United Kingdom

Email: {nektarios.georgalas, manooch.azmoodeh}@bt.com

Abstract— Service creation is a complex process that involves

service analysis design, implementation and testing.

Traditionally, the service is validated at the late stage of testing.

This increases development costs since any necessary

amendments would require an iterative improving cycle on

service design and implementation; until the desired result is

eventually reached. This paper proposes a service creation

methodology and tooling with a twofold contribution: (i) based

on its design, a service is validated early on and prior to

implementation, (ii) the service code is automatically generated

out of the validated service designs. To achieve this, our approach

integrates model-driven architecture (MDA) with Petri Nets

(PN). MDA is used to define the (i) Information, (ii) Service

Oriented Petri Net (SOPN) and (iii) User Interface modelling

languages, which support the service design and implementation

phases. Petri Nets facilitate the service validation phase through

the use of the SOPN language. By merging the two techniques we

obtain a systematic and cost-effective approach for the creation

of pervasive services. Concluding the methodology is applied in
practice for the creation of a Flight Itinerary booking service.

Keywords-Pervasive service creation; Petri nets; Model-driven

I. INTRODUCTION

The necessity to create agile services rapidly drives the
computing world to seek new effective software engineering
methodologies. Due to the advancements and diversity in
technologies currently present, development of pervasive
services becomes an increasingly complicated task. Pervasive
services are highly dynamic in nature due to the diversities in
the types of devices, the users and their increasing
requirements [1]. Pervasive services demonstrate increased
mobility since they should be able to run on any device, at any
time and with minimal user attention. Another important
characteristic of pervasive services is adaptability. Due to
changes in hardware and software resources available in an
environment the service requires to be able to adapt to the new
conditions.

Such a service requires a more sophisticated software
engineering approach to facilitate its creation process. Service
creation is one of the most important phases in the service life
cycle since it establishes the effectiveness and agility with
which services are being developed. Generally the service
creation process can be decomposed into the following
individual tasks: (i) requirements analysis, (ii) design, (iii)
implementation and (iv) validation through testing of the

service implementations [2]. The downside of this approach is
that the service is not validated until late in the process. If
amendments are necessary, respective changes should be
carried out in design and implementation, in an iterative cycle,
until eventually a valid service is developed. Sometimes even,
in the interest of expediting delivery, changes are only made in
the code and not in the designs, introducing thus a discrepancy
between design, documentation and implementation. This is
not very cost-effective and impacts on efficiency.

Our proposed approach to service creation introduces
service validation straight after the service design phase,
deferring implementation until later. In other words, the service
is validated through its design and not through its
implementation. Therefore, any changes detected are handled
early on and directly in the design specification. After certain
iterations and as soon as the design is stabilised meeting
exactly the service requirements, the implementation phase is
entered where the code is automatically generated out of the
design specification. This approach saves sufficiently in
development resource as (i) it reduces implementation time
through automatic code generation and (ii) it defers
implementation by excluding it from the validation iterative
cycles. The approach furthermore ensures that design
specifications and implementation are fully synchronised.

The methodology is facilitated by MDA and Petri Nets.
MDA [3] descended from the Unified Modelling Language
(UML) and aims at separating application reasoning from the
underlying implementation technology. Keeping the approach
at an abstract level avoids dealing with platform specific
implementation concerns. It also allows to produce rigorous
design specifications and to generate technology-specific
implementations. In order to validate service behaviour and
ensure service correctness, our approach uses Petri Nets. PN
theory [4] comprises a formal technique, suitable for modelling
service behaviour, due to its simple graphical representation
and its concurrent and asynchronous nature [5]. Furthermore
describing a service using a PN model allows the qualitative
analysis and validation via execution of its dynamic behaviour.

By integrating MDA with PN theory our approach provides
a rigorous design, validation and code generation process. In
the context of this paper we tackle the pervasiveness of a
service from the viewpoint of generating diverse
implementations from an abstract service model. With MDA
we keep the service design and implementation phases at an

978-1-4244-2202-9/08/$25.00 © 2008 IEEE 309

Authorized licensed use limited to: British Telecommunications via the BT Library. Downloaded on August 19, 2009 at 06:12 from IEEE Xplore. Restrictions apply.

abstract level and with Petri Nets we aid the validation phase.
In this way we are able to obtain an abstract and formal
specification of the service, validate its integrity and
automatically generate the executable service implementation.

The remainder of this paper is organised as follows.
Initially Section 2 presents related research work on the field
and following Section 3 describes the core of the paper, which
is the service creation methodology. Section 4 describes the
modelling languages of the methodology and Section 5
illustrates the methodology in practice through a realistic
example application. Section 6 discusses the results of the
approach and its application and identifies future work.

II. RELATED WORK

This paper is primarily associated with the work carried out
on service creation using high-level effective software
engineering methodologies. Several researchers attempted to
devise systematic methodologies for the rapid creation and
delivery of advanced services. In an example of the
conventional approach, Adamopoulos et al. [2] described
service creation as the most abstract and important stage of the
service life-cycle. Their approach proposes an iterative service
creation process, which is based on successive development
and refinement of a telematic service. Therefore when the
implementation phase is completed, the validation is performed
via testing to identify any problems. Subsequently the
implementation is refined accordingly and these steps are
repeated until eventually the desirable implementation is
achieved. This approach, although well formed, it does not
tackle the necessity to generate implementations for diverse
platforms and leaves validation at the implementation phase
where technological aspects are introduced. Additionally it
relies on multiple sub-processes something that hinders the
approach increasingly complex.

Andonoff et al. [6] used Petri Nets with Objects (PNO)
formalism to model Workflow Web Services (W2S). The
objective was to graphically and formally describe W2S and
derive OWL-S specifications automatically. The approach
provides the ability to gracefully design and verify the
workflow service using the PNO specification. Furthermore it
facilitates automatic generation of OWL-S specifications,
which provide a semantic Web accessible format that enables
W2S publication. However, OWL-S is quite complex in nature
with a cumbersome grammar. Moreover the capability to
transform PNOs to other specifications or implementations is
not provided as it is required for pervasive services. Manual
development of supporting tools is also a downside.

The necessity to formalise process behaviour for semantic
web services was stated by Kohler and Ortmann [7]. They
affirm the necessity to have a formalised and visual technique
for the representation of web services, which provides means
for refinement. They introduced Service Description nets to
capture the semantics of web services and provided the
mapping to Algebraic nets as defined in [8], to benefit from
their analysis techniques. The use of Algebraic nets assures the
executability of the service nets. Although this auspiciously
offers the benefit of a formal and graphical technique; it deals
only with the specification of web services.

Distinct research work by Roch H. Glitho et al. [9] focused
on the creation of Internet telephony services. This approach
uses a service creation environment (SCE) for defining
telephony services using pre-defined graphical Java
components. Subsequently from the service design a Java
based implementation is generated via the use of the SCE. The
authors justly support that a high-level SCE is necessary and
benefits non experts, since they can work at a high-level of
abstraction without requiring technology-specific knowledge.
The drawback is that once again validation is kept after the
implementation phase, resulting in costly iterations until the
desirable implementation is obtained. Moreover the SCE
generation capability is tailored around Java and the SCE is
manually developed from scratch. In this paper we attempt to
overcome these issues by proposing a platform-independent
framework and an approach for pervasive service creation.

III. A MODEL PETRI NET BASED METHODOLOGY

Combination of the model-driven technique with the PN
formalism provides the capability to define an effective and
systematic service creation methodology. The model-driven
technique provides the potential to develop a supporting
framework for the methodology. Petri Nets on the other hand
serve as the formal specification of service functionality, i.e.
the service tasks, and facilitate service validation.

Figure 1. Model-driven Petri Net based methodology.

Figure 1 presents the approach that allows the analysis,
design, validation and code generation of services. Primarily
the core Service Oriented Petri Net (SOPN) modelling
language was defined as an MDA metamodel. It facilitates the
definition of service behaviour in the form of a PN which can
then be validated. Furthermore two complementary modelling
languages were defined; Information and User Interface. These
languages are used by designers to define respectively the
service information objects and graphical user interfaces that
complement the service behaviour. Each language is
accompanied by a dedicated graphical editor, used to produce
the design specifications, and dedicated code generators. SOPN
is specifically accompanied by two code generators. In the
validation phase, the SOPN code generator transforms the
SOPN-expressed behaviour to the Petri Net Markup Language
(PNML); explained later in more detail. The PNML format is
used then by the RENEW Petri-Net tool [10] to validate the
service behaviour model. In implementation phase the
languages’ code generators produce the executable code of the
service from the three platform independent models.

310

Authorized licensed use limited to: British Telecommunications via the BT Library. Downloaded on August 19, 2009 at 06:12 from IEEE Xplore. Restrictions apply.

The Integrated Eclipse Modelling Environment (IEME)
[11] model-driven capabilities facilitate the automatic
generation of the languages, their editors and the generators as
distinct modelling frameworks. These are namely the
Information modelling framework (IMF), the SOPN modelling
framework (SOPNMF) and the UI modelling framework
(UIMF). The frameworks are generated in the form of Eclipse
plug-ins and are integrated into the IEME to compose the
model-driven Petri Net based framework used for supporting
pervasive service creation.

The metamodel definitions of the aforementioned
languages were produced using the concept of meta-modelling
as presented in [12]. According to this, a metamodel represents
a language’s abstract syntax, concrete syntax and semantics.
The Eclipse Modelling Framework (EMF) and the Graphical
Modelling Framework (GMF) capabilities provided by the
IEME facilitated the metamodel definition in practice.

Figure 2. Developing the domain specific modelling frameworks.

Figure 2 illustrates the procedure of defining each language
and its dedicated editor. The domain metamodel includes the
semantics of the language and is defined using the abstract
syntax provided by the EMF meta-meta language; an
implementation of the Meta Object Facility (MOF). From the
domain metamodel the graphical and tooling metamodels are
automatically generated, which represent the concrete syntax of
the language. These metamodels include the corresponding
graphical elements and the palette tooling of the editor to be
generated. Mapping the distinct metamodels we obtain a
mapping metamodel that includes all the necessary artefacts.
From the mapping metamodel we automatically generate a
distinct modelling framework for each language.

Initially, service analysis and design, are performed using
the three devised modelling languages. Via these languages we
define Platform Independent Models (PIMs). These models
capture service requirements and provide a precise service
definition. Subsequently we proceed to the realization of the
service validation phase. In this phase the SOPN model must
be validated to guarantee the completeness and correctness of
the service model. To achieve this step we have developed a
template based extensible generator that is able to transform the
SOPN model to an equivalent PNML representation. The
transformation is carried out using the openArchitectureWare
(oAW) feature of the IEME. Using the model and the generator
we execute the transformation with the aid of the oAW
workflow engine.

An excerpt of the SOPN-to-PNML generator template is
presented in Figure 3 revealing the one-to-one mapping of
SOPN model transitions to the PNML representation. Template

based generators are defined using the oAW xPand language.
The language provides the capability to refer to elements of the
domain metamodel, acquire the values from the model and
transform them into a text-based representation. Specifically
the keyword FOREACH points to the entire set of transitions
defined in the model. Graphical properties such as position and
dimension are required to enable the redraw function, when the
resulted PNML-expressed model is imported into the PN tool,
which will eventually validate the service behaviour.
Additional semantics generated, such as type and value, are
also imperative to the execution of the SOPN model.

«FOREACH net_transitions AS transition»

<transition id= "«transition.id»">

«IF transition.transition_expression != null»

<«transition.transition_expression.type»>

<graphics> <offset x= "«transition.transition_expression.offset_x»"

y="«transition.transition_expression.offset_y»"/> </graphics>

 <text> «transition.transition_expression.element_value» </text>

</«transition.transition_expression.type»>

«ENDIF» <graphics> <position x="«transition.possition_x»"

y="«transition.possition_y»"/>

<dimension x="«transition.dimension_x»"

y="«transition.dimension_y»"/>

 <fill color="«transition.fillType_color»"/>

 <line color="«transition.lineType_color»"/>

 </graphics> </transition>

«ENDFOREACH»

Figure 3. Extract of the PNML template generator.

The PNML syntax is a well recognised and widely accepted
standard supported by a variety of Petri Net tools.
Consequently when the PNML file is generated, the model is
imported into the PN tool. At this stage the service model
behaviour is validated via dynamic execution. In case the
execution halts, it is signified that the service process model is
erroneous. Hence the SOPN-represented model is further
refined and undergoes the service validation phase again.
Conversely if the service execution process is carried out
successfully, the model integrity is assured. Thus the service
validation phase is effectively complete and we subsequently
proceed to the service implementation phase.

The implementation phase is accomplished by
transformation of the PIM models to executable service code.
Intermediate transformation of PIMs to Platform Specific
Models (PSMs) can be executed to ease the transition from
models to code as shown in [1]. Prior to generating the
implementation from the models we impose further
implementation specific constraints onto the models; using the
Object Constraint Language (OCL). This step is carried out to
guarantee that the executable service code to be generated is
not an erroneous one. To perform the code generation phase we
developed code generators in the form of templates as it is
illustrated in Figure 3. These generators aim to deliver
executable service code from the Information, UI and SOPN
models; instead of PNML syntax. A specific programming
language (e.g. Java, C#, EJB) is selected and the code
generators are tailored and built around that implementation
technology. Although the PIM models do not require being
altered, different code generators are needed for transforming
the models to different programming languages. This is the last
stage of the methodology from which the executable service
code is generated and being deployed onto the chosen platform.

311

Authorized licensed use limited to: British Telecommunications via the BT Library. Downloaded on August 19, 2009 at 06:12 from IEEE Xplore. Restrictions apply.

IV. THE MODELLING LANGUAGES

A. Information model

The Information model represents different Entities of the
service with their corresponding Properties. Properties can be
either structural or behavioural denoting respectively Attributes
or Operations. Figure 4 represents the metamodel definition,
which is similar to an Entity-Relationship (ER) diagram and
can be used to define abstract object models. Every entity has a
set of attributes and operations that characterize the entity.
Primarily an entity has a specific name declaration that denotes
the name of the entity. Additionally each entity’s attribute or
operation has a corresponding name and type declaration,
which denote the name and type definition of the attribute or
name and return type definition of the operation. Examples of
such attributes’ type declarations are: String, Boolean, Integer
and Array.

Figure 4. Information model metamodel definition.

B. Service Oriented Petri Net model

Petri nets are a widely accepted formalism particularly
suited for modelling concurrency mainly due to the principle of
locality [5]. Additionally PN provide both a graphical and
algebraic representation something that makes them easily
understandable. It is one of the most constructive languages
available for modelling concurrent and distributed processes.

Definition 1 (Petri Nets): The base of all PN extensions is

a Net structure),,(FTPN = where:

1) },...,,{ 21 mpppP = , where 0≥m , is a set of Places.

2) },...,,{ 21 ntttT = , where 0≥n , is a set of

Transitions, 0=∩ TP .

3))()(PTTPF ×∪×⊆ , is a flow relation for the set

of Arcs.

• ∞→ TPI : , is the Input Arc, a mapping from

places to bags of transitions.

• ∞→ PTO : , is the Output Arc, a mapping from

transitions to bags of places.
Definition 2 (Markings/Tokens/Firing): A

marking }....,,{ ,21 tpppm = , is a mapping that assigns a

number of tokens to each place. The holding of a condition is
represented by a token in the corresponding place. Figure 5

shows the simplest possible net N , its initial marking

}0,1{1 =m and the occurrence rule for the transitions using

the example 1t transition. A transition t is enabled and can fire

in a marking m if 1)(: ≥∈∀ • pmtp , i.e. there is at least one

token in each of its input places. Firing a transition removes
tokens from its input places and deposits it to its corresponding

output places, resulting to a new marking m′ . In our example

of Figure 5 the net marking becomes }1,0{2 =m .

Figure 5. The basic Petri Net model.

The simplest extension to basic PN is the Place/Transition

(P/T) nets, which introduce the arc weight function W .

Consequently the PN structure becomes),,,(WFTPN = .

The input arc weight determines the number of tokens required
at an input place to enable the firing of a transition. In contrast
the output arc weight determines the number of tokens
generated and deposited to an output place when an enabled
transition fires. Several extensions [13] have been
conceptualized to provide solutions to systems engineering.

One such extension is Reference Nets (RN) [10], an object-
oriented Java based extension, which is well suited for
modelling concurrent systems. The idea put forward in this
paper is to make use of a required subset of RN to formulate
the SOPN modelling language, which can facilitate the entire
process of service creation. Keeping only the abstract
properties of RN preserves the technology-neutral nature of the
approach, avoiding technology specific implementation
concerns. SOPN incorporates high-level concepts that provide
the capability to define the service behaviour unambiguously.
Definition 3 describes the semantics included in a SOPN model
definition. These provide the formal definition of SOPN
models and guide the service execution process. Furthermore
each semantic property is mapped accordingly to a graphical
representation.

Definition 3 (SOPN): The abstract RN

structure),,,,,(WEDFTPN = , where:

1) },...,,{ 21 idddD = , where 0≥i , is a finite set of

primitive data types or objects that can be assigned as

tokens to places.

2) },...,,{ 21 jeeeE = , where 0≥j , is a finite set of

service execution control expressions.

3) },...,,{ 21 kwwwW = , where 0≥k , is a finite set of

primitive data types or objects that can be assigned as

weights to input and output arcs.

Figure 6 outlines the artefacts of the SOPN modelling
language defined in the form of a metamodel. It extends the

1
p

1
t

1
p

2
p

1
t

Place Input/Output Arc Transition Token

fire 2
p

312

Authorized licensed use limited to: British Telecommunications via the BT Library. Downloaded on August 19, 2009 at 06:12 from IEEE Xplore. Restrictions apply.

implemented standard PNML Core metamodel [14], which
defines the basic properties of a Petri Net. The Core metamodel
is in fact at an abstract level and provides only the basis for
implementing concrete Petri Net types; e.g. P/T nets. The
SOPN metamodel is produced using the import and inheritance
capabilities provided by EMF, to extend the abstract PNML
Core metamodel concepts. This process is used as an
alternative of the UML merge concept, since EMF does not
natively support the merge concept.

Figure 6. Service Oriented Petri Net model metamodel definition.

A SOPN model represents a single Net that has a specific
value declaration and includes Places and Transitions
interconnected using Arcs. Each Place is assigned a Token that
is represented in the form of a Label with a corresponding
element_value. Additionally each Transition is assigned an
Expression which includes several declarations; e.g.
operation_type that represents the return type of the method
call and operation_name that represents the name of the
corresponding method. The set of declarations that an
expression possesses depends on the TransitionType
enumeration, which reveals the type of the Transition.
Furthermore an Arc is assigned an Attribute that is represented
also in the form of a Label with a corresponding
element_value. An arc has a specific source and target Node. A
Node represents the parent class of Places and Transitions.

C. User Interface model

A service besides its objects and behaviour it additionally
requires graphical user interfaces (GUIs) with which the user
interacts in order to utilize the service. Therefore a
corresponding abstract metamodel definition was devised for
defining graphical user interfaces as illustrated onto Figure 7.
Based on our practical experience in implementing graphical
user interfaces we included in the metamodel only basic set of
entities characterising the structure and operation of a GUI.
Since the language is represented as a metamodel definition it
is easily extensible and allows the developer to extend it
including more entities, such as certain types of GUI
components like combo-box, radio-button etc.

Referring to the metamodel concepts each Component
element has a name and a type declaration and can contain
other components. It additionally owns different properties e.g.
a Frame can have a location Property. A Property element
includes the name and value declarations. Furthermore a
component can generate an event or implement an event

listener. Both the Event and Listener elements have a unique
name declaration. An event includes also a source property,
which pinpoints to the component that generates that event.

Figure 7. User Interface model metamodel definition.

V. A REALISTIC PERVASIVE SERVICE

In this section we present a case-study that uses our
approach in practice for the creation, i.e. specification,
validation and implementation of a pervasive service. The
pervasiveness of the service is depicted by generating diverse
implementations from the same platform independent models.

Figure 8. Flight itinerary booking example interface model.

Let’s assume that Peter, who is the user of the service,
forgot to make a reservation for a flight while he was at the
office due to a very busy day. A reminder on his laptop device
notifies him of the scheduled conference he will attend in two
days. Despite being in a taxi on his way home, he can directly
access the flight reservation service using his laptop to book his
trip. Peter connects to the internet using his phone’s GPRS,
makes use of the service and completes his flight booking
itinerary. An example user interface model of the service Peter
used on his laptop device is illustrated in Figure 8. The model
illustrates the main Frame component that owns three different
properties. Properties are signified using keywords, which are
recognised by the code generator. OCL constraints can be
applied to check the validity of the keywords prior to
transformation. Additionally the main Frame contains two
child components, which also possess their corresponding
individual properties. From the interface model the equivalent
code was automatically generated. The resulting graphical user
interface is illustrated in Figure 10.

Figure 9 presents the second PIM model of the service; the
SOPN process model. At the start of the net we have
initialization tokens in places p1, p3, p5, p7, p9, p11 and p13,
which signify the start of the service execution process.
Transitions t1-t7 are named creation transitions since t1 refers

313

Authorized licensed use limited to: British Telecommunications via the BT Library. Downloaded on August 19, 2009 at 06:12 from IEEE Xplore. Restrictions apply.

Figure 9. Flight itinerary booking SOPN process model.

to the creation of the initial interface FindFlightsInterface and
t2-t7 refer to the creation of the entities required to search for a
specific flight. For instance transition t2 refers to the departure
airport object da:new AirportObject.

Figure 10. Flight itinerary booking service interface.

Transitions t8, t12 and t15 refer to action transitions
generated by the corresponding components. For instance the
button Book Flight shown onto Figure 10 generates the action
associated with transition t12. Additionally we have downlink
transitions that represent operation calls and uplink transitions
that enable the execution of the operation. Particularly uplink
transitions point to the operation statements which we assume
to be implemented manually. Furthermore each arc is assigned
an attribute/weight that refers to a specific entity of the net and
controls the service execution flow similarly to transitions.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented an effective model-driven Petri
Net based approach for the creation of pervasive services. The
effectiveness of the approach lies on the integration of the two
techniques. Primarily, the model-driven paradigm keeps the
approach at an abstract level avoiding implementation
complexities. Secondly, Petri nets blend the essential service
validation phase into the approach. Finally we established the
applicability of the devised methodology by generating a
realistic service. Forthcoming work aims in the improvement
of the methodology by enhancing the modelling languages; i.e.
through the imposition of metamodel level constraints.

ACKNOWLEDGEMENT

The work presented in this paper is partly supported by
British Telecom under the MOSE project and the UK
Engineering and Physical Sciences Research Council (EPSRC)
under project PANDA.

REFERENCES

[1] K. Yang, S. Ou, M. Azmoodeh and N. Georgalas, “Policy-based model-

driven engineering of pervasive services and the associated OSS”, BT
Technology Journal, vol. 23, no.3, pp. 162-174, July 2005.

[2] D. X. Adamopoulos, G. Pavlou and C. A Papandreou, “Advanced

Service Creation Using Distributed Object Technology”, IEEE
Communications Magazine, vol. 40, no.3, pp. 146-154, March 2002.

[3] A. Kleppe, J. Warmer and W. Bast, “MDA Explained: The Model

Driven Architecture: Practice and Promise”, Addison-Wesley, 2005.

[4] C. Girault and R. Valk, “Petri Nets for System Engineering: A Guide to
Modelling, Verification and Applications”, Springer, 2003.

[5] R. Tan and S-U. Guan, “A Dynamic Petri Net Model for Iterative and

Interactive Distributed Multimedia Presentation”, IEEE Transactions on
Multimedia, Vol. 7, No.5, pp. 869- 879, October 2005.

[6] E. Andonoff, L. Bouzguenda and C. Hanachi, “Specifying workflow

web services using Petri nets with objects and generating of their OWL-
S specifications”, EC-Web, Copenhagen, Denmark, LNCS 3590, pp. 41-

52, Springer, August 2005.

[7] M. Kohler and J. Ortmann, “Formal aspects for semantic service

modelling based on high-level Petri nets”, CIMCA-IAWTIC, Vol. 1, No.
28-30, pp. 107-112, Vienna, Austria, November 2005.

[8] W. Reisig, “Petri nets and algebraic specifications”, In K. Jensen and G.

Rozenberg, editors, High-level Petri Nets - Theory and Application, pp.
137-170, Springer, 1991.

[9] R. H. Glitho,F. Khendek and A. De Marco, “Creating value added

services in Internet Telephony: An overview and a case study on a high-
level service creation environment”, IEEE Transactions on System, Man

and Cybernetics, Vol. 33, No. 4, pp. 446-457, November 2003.

[10] Reference Net User Guide, Theoretical Foundations Group, Dept. of
Informatics, University of Hamburg, [Online] Available:

http://www.informatik.uni-hamburg.de/TGI/renew/renew.pdf , 2006.

[11] A. Achilleos, N. Georgalas, K. Yang, “An Open Source Domain-
Specific Tools Framework to Support Model Driven Development of

OSS”, in ECMDA-FA, LNCS 4530, pp. 1–16, Springer, June 2007.

[12] J.P. Nytun, A. Prinz, M. S. Tveit, “Automatic Generation of Modelling
Tools”, in ECMDA-FA, LNCS 4066, pp. 268–283, Springer, June 2006.

[13] C. A-Yahia, N. Zerhouni, A. E. Moudni, and M. Ferney, “Some
Subclasses of Petri Nets and the Analysis of Their Structural Properties:

A New Approach”, IEEE Transactions on Systems, Man and
Cybernetics, Vol. 29, No.2, pp. 164-172, March 1999.

[14] E. Kindler, “Software and Systems Engineering – High-level Petri Nets:

Part2 Transfer Format, Proposed Draft Addendum to International
Standard ISO/IEC 15909 Part 2 – Version 0.6.3”, June 2005.

314

Authorized licensed use limited to: British Telecommunications via the BT Library. Downloaded on August 19, 2009 at 06:12 from IEEE Xplore. Restrictions apply.

