
A Model-Driven Framework for Developing Web

Service Oriented Applications

Achilleas Achilleos, Georgia M. Kapitsaki, and George A. Papadopoulos

Department of Computer Science, University of Cyprus,
75 Kallipoleos Str., Nicosia, CYPRUS

{achilleas,gkapi,george}@cs.ucy.ac.cy
http://www.cs.ucy.ac.cy

Abstract. The advancements made in terms of the capabilities of mo-
bile devices have shifted the interest of service engineering towards frame-
works that are able to deliver applications rapidly and efficiently. The
development of services that can be fully functional in mobile environ-
ments and operable on a variety of devices is an important and complex
task for the research community. In this work, we propose a Model-
Driven Web Service oriented framework that combines Model-Driven
Engineering (MDE) with Web Services to automate the development of
platform-specific web-based applications. The importance of this work is
revealed through a case study that involves modelling and generation of
a representative Web Service oriented mobile application.

Keywords: model-driven, web applications, code generation, mobile
services, web services.

1 Introduction

Web Services (WSs) as the most representative implementation of the Service
Oriented Architecture (SOA) are usually exploited in the field of Web-based
applications for stationary devices. Lately, the advance of the field of mobile
computing has introduced the need for developing Web Services that can be
consumed through platform-specific clients in different environments, not only
static ones, but also those dominating the mobile computing world [1]. End-
users, constantly on the move, wish to be offered the same choices when working
on their smartphones as on desktop devices [2]. In such environments, where
users exploit a variety of devices in terms of complexity, size, computational
capabilities etc., the need of developing services and applications that can target
different mobile platforms arises.

At the same time the wide adoption of Model-Driven Engineering (MDE)
from the research community has led to the advance of platforms and tools
that facilitate the transformation of models between different abstraction levels
resulting to functional code fragments at the final stage. Many of the approaches
follow the paradigm of OMG’s Model Driven Architecture (MDA) [3]. In MDA,
a major separation mentioned includes the Platform Independent Model (PIM)

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 181–195, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.ucy.ac.cy

182 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

and the Platform Specific Model (PSM). PIM is a rather abstract representation
of a system and contains no information on implementation details. Conversely,
PSM represents the system and takes into account platform specific properties.
In the research community many attempts evolve around the issue of model
transformation, where model transformation can be performed from PIM to
PIM, PIM to PSM, PIM to code, etc. Although in MDE the model is the basic
software component, models that do not result in functional applications have
no practical use to the end-users and, consequently, nor to the service providers.
For this reason, this paper focuses on the practicalities of the transformation
conducted: the model to code step.

Taking the above challenges into account, in the framework of the current
work, the issue of mobile application development for different platforms focus-
ing on the Graphical User Interface (GUI) aspect is addressed. A number of code
generators targeting different mobile platforms are defined (e.g., J2ME, C#) us-
ing as input the application model represented in the Presentation Modelling
Language (PML). The PML, which was conceived and presented in previous
work of the authors [18], provides means for designing GUI models that facil-
itate the generation of Web Service clients. The application modelling is com-
plemented by the Web Services Description Language (WSDL) specification.
The set of developed generators covers all major mobile and stationary device
technologies. Using this approach, the development of functional Web Service
Oriented applications for the following categories of devices is supported: (i)
Resource-rich devices; e.g., desktops, laptops, (ii) Resource-competent devices;
e.g., Netbooks, IPad, Kindle and (iii) Resource-constrained devices; e.g., mobile
smartphones such as Google Nexus One, IPhone, HTC Desire, Nokia N8. This
category set is based on the categorisation performed by Ortiz et al. [4], which
was extended by adding the second category. The importance of the proposed
framework lies in the high-degree of automation achieved, which improves the
efficiency of the development process, since it allows developers to generate code
for various platforms with limited effort.

The rest of the paper is structured as follows: Section 2 gives an overview
of the related work in the field, whereas the description of the framework is
provided in Section 3. This section is dedicated specifically to the details of
the code generation process, which is the main and driving component of the
proposed framework. The framework’s applicability is exemplified in Section 4
through a mobile bookstore use case. Section 5 concludes the paper.

2 Related Work

In the literature various approaches exploiting the principles of MDE exist, ei-
ther for the development of software applications in general or specifically for
GUI development. Concerning modelling, it is important to keep the applica-
tion’s presentation independent from other layers (i.e., application’s logic) so
as to facilitate the integration with different technologies. Additionally, mod-
elling GUIs in an abstract way facilitates mapping to different implementations.

A Model-Driven Framework for Developing WS Oriented Applications 183

Thus, we argue that a framework should provide components (e.g., architecture,
code generators) to model and implement independently the GUIs and the WS
implementation logic.

Initial work on GUI modelling focuses on the definition of the GUI structure
using presentation diagrams and its behaviour using hierarchical statechart dia-
grams [5]. The definition of GUI structural and behaviour models is supported
by the GuiBuilder tool, which allows the transformation from models to Java
code. This work focuses simply on the development of Java-based GUIs, which
can be used for implementing fully-functional multimedia desktop applications.
Other examples of GUI modelling can be found in [6] and [7], although no details
on the support for transformations to code are given.

Dunkel and Bruns [8] propose a simple and flexible approach for the devel-
opment of mobile applications. They present a model-driven approach that al-
lows defining the client’s GUIs and the service workflow using graphical models,
which are then transformed into XML-based descriptions (i.e., XForms code).
The XForms W3C standard has been chosen because of its close correlation
with the Mobile Information Device Profile (MIDP) of J2ME, which facilitates
the mapping of XForm elements to MIDP elements. The approach is thus tai-
lored towards J2ME and does not exploit the interoperability benefits of Web
Services technology. Additional approaches [9], [10] overcome the issues faced
by pure XML-based approaches, such as being data centric and the inability to
expressively model behaviour, by developing graphical modelling environments
that ”speak” XML. This imposes though the overhead of developing and main-
taining the modelling environments, which is a laborious and costly task. An
extended discussion on various solutions for user interface design in application
development is present in the survey of Perez-Media et al. [12].

Kapitsaki et al. [11] present an approach that automates the development of
composite context-aware Web applications. The defined model-based approach
proposes complete separation of the Web application functionality from the
context adaptation. In particular, the methodology adopted utilises the Uni-
fied Modelling Language (UML) for the design and automatic generation of a
functional context-aware Web application. The approach tackles and automates
the development of context-aware Web applications, intended mainly for mobile
users, which are formulated by third-party WSs. The use of UML should be re-
placed by standards that provide methods of accessing model stereotypes across
different modelling tools.

The heterogeneity of mobile platforms in conjunction with the use of WSs is
discussed also by Ortiz et al. [13]. The authors propose a service-side, aspect-
oriented approach that allows developers to extend the implemented WS in order
to enable the adaptation of the WS invocation result in accordance to the client
device. The actual WS code is not directly affected, since additional aspect
code is implemented, which intercepts the invocation of the service operation
and adapts it according to the device type detected. This approach suffers from
three main issues: the client-side implementation needs to include code that
allows declaring from which device the WS is invoked, response time is slightly

184 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

increased since the service-side aspect code requires to process and adapt the
result, and implementation of different platform-specific service-clients is not
considered.

In the area of Web development, not specific to Web Services, a number of
tools have been proposed offering the means to model Web applications. Good
examples can be found in UML-based Web Engineering (UWE1), where the
application is modelled in UML notation containing a presentation model for the
GUI properties, and Object-Oriented Hypermedia Design Method (OOHDM)
[14], which targets hypermedia Web applications. Significant works, where Web
Service-enabled applications are partially supported, can be found in the WebML
CASE tool [15], a visual language used to represent the content structure of a
Web application, and Hera [16], which focuses on Web Information Systems
and hypermedia applications exploiting tools from the semantic Web, i.e., RDF
(Resource Description Framework)) and RDFS. Although most of these works
are quite mature, they differ from our approach in the motivation and in the
target platforms supported, i.e., stationary devices in the above cases and mobile
devices, which are the main focus in our case.

3 The proposed Framework

In this section the main steps of the development process are described; PML
is briefly introduced, while particular emphasis is devoted to the transformation
step. We emphasise on the specifics of the code generation phase in order to
reveal the practicality and applicability of the transformation approach, which
enables targeting different mobile but also stationary platforms. The description
of the earlier steps is required and has been included in order to provide a com-
prehensive view of the proposed model-driven Web Service oriented framework.

3.1 Scope of Use and Overall Development Process

The proposed development process combines the characteristics of Web Services
with the development directives given by Model-Driven Engineering. The pre-
sentation layer and the Web Service layer are kept distinct, in order to allow
each one to be mapped to different implementations. This transformation logic
is presented in Fig. 1, where each client is defined and developed in the form
of GUIs and collection of Web Service communication classes. In the presenta-
tion particular focus is given on the GUI-related part depicted on the left side
of the figure. Note that the Web Service implementation is conducted by the
developer through a manual process. Nevertheless, the technology employed for
implementing the WS main functionality does not restrict the client implemen-
tation to a specific platform. This is because Web Services allow the exchange of
XML-based messages between entities regardless of the implementation details
or the programming language used for the WS development.

1 http://uwe.pst.ifi.lmu.de/

A Model-Driven Framework for Developing WS Oriented Applications 185

Fig. 1. Model-Driven, Web Service-oriented Architecture

The PML and WSDL models are designed at modeling time and act as input
for the code generators that produce the respective code fragments. Regarding
the WS part, existing WSDL code generation tools are used that enable the
transformation of WSDL models to platform-specific proxy classes exploited for
sending and receiving information via WS request and response messages.

In particular, the PML allows modelling GUIs in the form of screen layouts; as
desired by the developer. The presentation models include the necessary abstract
information on GUI elements (e.g., text box, label), properties (e.g., label’s text)
and relationships (e.g., panel contains button) of existing major mobile and
stationary devices and platforms. A brief overview of PML is provided next. In
accordance to the PML notation a number of platform specific code generators
have been implemented for the technologies indicated in Fig. 1.

3.2 Brief Overview of PML

The Presentation Modelling Language is defined as an Eclipse Modeling Frame-
work (EMF) based metamodel, using the Graphical Modelling Framework (GMF)
Ecore diagram tool included in the environment presented in previous work [17].
The PML metamodel is presented in Fig. 2 and describes the graphical mod-
elling elements, their associations and graphical properties, which enable the
design of GUIs in the form of visual abstract models. The metamodel definition
is based on an analysis and evaluation performed to identify elements, properties
and associations that share similarities across different major platforms. Fig. 3
showcases that the metamodel definition is complemented by the Model-2-Code

186 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

Fig. 2. Presentation Modelling Language metamodel

(M2C) transformation rules, which map abstract PML elements, properties and
associations to platform specific implementation components, properties and as-
sociations (i.e., platform-specific code).

Most elements defined in the metamodel are self-explainable. DocumentRoot
is the basic metaclass, where the rest of the model elements are aggregated,
such as a number of displays corresponding to the screen of the mobile device
(metaclass Display). The discontainers aggregation defines the containment rela-
tionship between the display and its container elements. The common graphical
components are defined as children of the Component metaclass (e.g., Message,
Label, Button). Similarly typical associations that exist between objects, such
as the fact that container (e.g., panel) includes component (e.g., label), are also
visible in the metamodel. The Property metaclass is an important element of the
PML since it allows describing different graphical properties for the modelling el-
ements. Each modelling element may contain various graphical properties, which
are defined as instances of the Property metaclass. This provides the capability
to extend easily and efficiently the PML by introducing new properties simply
by adding parsing support within code generators.

The elements included in instances of the PML metamodel are analysed based
on a number of transformation rules defined in the code generators. A deeper

A Model-Driven Framework for Developing WS Oriented Applications 187

Fig. 3. Mapping PML to platform-specific implementations

analysis on the elements comprising PML is not included in the current paper.
More information on the initial version of PML can be found in [18].

3.3 The Transformation Mechanism

The generation of the Web Service invocation part (from the client) is not ad-
dressed; instead, existing literature works on generating this part from WSDL
descriptions are employed. WSDL, serving as the specification descriptor lan-
guage for WSs, offers an abstract layer depicting the service functionality. Clients
that wish to consume specific WSs rely on this WSDL specification, in order to
discover the operations supported, the input arguments needed and the expected
response details. WSDL code generators can be found in Java WS frameworks,
such as the Novell exteNd Director development environment and the Axis2 Ser-
vice Archive Generator Wizard offering the wsdl2java tool. .NET offers its own
custom wsdl code generation tool. In the proposed framework the two latter
tools have been employed along with the J2ME generator that forms part of the
Sun Java Wireless Toolkit for CLDC. However, since no such tool is available
for the Android platform, in the current stage of the presented work the WS
communication classes were developed manually.

Further discussion on code generators for WSs has not been included, since
the focus is given on the applicability of the presentation code generation tools
on multi-platform environments. However, some works that exploit WS models
and introduce tools for model transformation procedures in the framework of
MDE exist. The reader can refer to relevant publications [19], [11].

In terms of the presentation layer, the code generation process allows trans-
forming PML models to the appropriate platform-specific code. A set of genera-
tors targeting the following platforms of stationary and mobile devices have been

188 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

implemented: Java, J2ME, Android, Windows Mobile and Windows Desktop. In
this subsection two of the above generators have been chosen for demonstration
purposes; specifically, the versions targeting Android and Windows Mobile are
described in order to showcase also the main differences between the two tech-
nologies. In order to keep the paper comprehensive and due to space limitations,
it is not possible to describe the whole generators set.

The Eclipse-based MDE environment, proposed in previous work [17], includes
the openArchitectureWare (oAW) software tool that enables the development of
code generators by defining model-to-text transformation rules. The tool com-
prises the Xpand template language, a text-editor, the workflow execution engine
and two supplementary languages (i.e., Check, Xtend) with their individual text
editors. Foremost, the Xpand language supports the definition of advanced code
generators as templates, which capture the transformation rules and control the
output document generation (e.g., XML, Java, C#, HTML). The transformation
rules are defined using the Xpand text-editor and include references to extension
functions specified using the Xtend language. In particular, extension functions
are considered as utility functions (i.e., similar to Java utility functions), which
support the definition of well-formulated generators and improve the structure
of the generated code. Moreover, the Check language supports the definition of
additional constraints using a proprietary language. Finally, the workflow exe-
cution engine drives the code generation on the basis of the defined templates
and the input model.

The combination of the components supports the code generation process
as depicted in Fig. 4. The transformation is executed via the workflow engine
of oAW, on the basis of a workflow script that specifies information, such as
the classes and components participating in the generation, output folders etc.
The template definition, which drives code generation, constitutes the most im-
portant part of the transformation process. Appropriate templates have been
defined for all participating platforms (i.e., C#, Java, J2ME, Android).

Listing 1 presents a sample part of the Android-specific template definition
that allows demonstrating how code generation is achieved. Lines containing in-
formation such as generated files and package names have been omitted. The
main part of the sample generator presented in this work is included in lines 31-
74. This part is repeated for all display containers of the model enabling access
to the graphical properties of the containers and the secondary components asso-
ciated to them. For instance, line 34 illustrates how we can generate an Android
TableLayout object and set accordingly its name in accordance to the name of

Fig. 4. The PML code generation process

A Model-Driven Framework for Developing WS Oriented Applications 189

the current container in the iteration, i.e., << discon.name >>. The iteration
through the collection of secondary components associated with each container
is performed in the lines that follow (36-72). Depending on the type of element
visited during the parsing of the PML model (indicated by the properties of con-
comp), the respective object creation with the appropriate name is generated.
For example a new TextView object corresponds to each Label model element
as indicated in lines 37-39, where the keyword/property ”text” used at line 39
provides the capability to set the text on the label to the value parsed from the
Label modelling element. The list of conditional statements allows to parse and
generate other types of secondary components using the same reasoning.

Listing 1. Sample for the Android-specific template

1. <<EXTENSION templates::AndroidPresentation>>
2. <<DEFINE Root FOR presentation::DocumentRoot>>

.....
30. <<REM>>Starts iteration and creates a View for each container.<<ENDREM>>
31. <<FOREACH this.discontainers AS discon->>
32. public View <<discon.name+"View">>(){
33. this.setTitle(<<discon.conproperties.select

(e|e.name.contains("title")).value.first()>>);
34. <<discon.name>> = new TableLayout(this);
35. <<REM>>Create the respective components contained in each View.<<ENDREM>>
36. <<FOREACH discon.concomponents AS concomp->>
37. <<IF concomp.metaType.name.matches("presentation::Label")->>
38. <<concomp.name>> = new TextView(this);
39. <<concomp.name>>.setText(<<concomp.compproperties.select

(e|e.name.contains("text")).value.first()>>);
40. <<ELSEIF concomp.metaType.name.matches("presentation::TextField")->>
41. <<concomp.name>> = new EditText(this);

.....
71. <<REM>>Ends the loop associated with the components collection.<<ENDREM>>
72. <<ENDFOREACH>>
73. <<REM>>Ends the loop associated with the containers collection.<<ENDREM>>
74. <<ENDFOREACH>>

.....
98. <<ENDDEFINE>>

For the template definition targeting Windows Mobile a sample part is illus-
trated in Listing 2. The same approach has been employed for the remaining
platform-specific code generators.

Listing 2. Sample for the Windows mobile-specific template

1. <<EXTENSION templates::WindowsMobilePresentation>>
2. <<DEFINE Root FOR presentation::DocumentRoot>>

.....
23. <<REM>>Create the constructor that creates Windows mobile main form.<<ENDREM>>
24. public <<this.toFirstUpper()+"WindowsMobile">>(){
25. <<FOREACH discontainers AS discon->>
26. <<REM>>Set the name and title of the Windos mobile main form.<<ENDREM>>
27. this.Name = <<discon.conproperties.select

(e|e.name.contains("title")).value.first()>>;
28. this.Text = <<discon.conproperties.select

(e|e.name.contains("title")).value.first()>>;
29. <<REM>>Create the components associated to each layout of the main Form.<<ENDREM>>
30. <<FOREACH discon.concomponents AS concomp ITERATOR it->>
31. <<IF concomp.metaType.name.matches("presentation::Label")->>
32. <<concomp.name>> = new Label();

190 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

33. <<concomp.name>>.Name = "<<concomp.name>>";
34. <<concomp.name>>.Location = new System.Drawing.Point(0, 0);
35. <<concomp.name>>.Size = new System.Drawing.Size(0, 0);
36. <<concomp.name>>.TabIndex = <<it.counter0>> ;
37. <<concomp.name>>.Text = <<concomp.compproperties.select

(e|e.name.contains("text")).value.first()>>;
39. <<ELSEIF concomp.metaType.name.matches("presentation::TextField")->>
40. <<concomp.name>> = new TextBox();
41. <<concomp.name>>.Name = "<<concomp.name>>";
42. <<concomp.name>>.Location = new System.Drawing.Point(0, 0);
43. <<concomp.name>>.Size = new System.Drawing.Size(0, 0);
44. <<concomp.name>>.TabIndex = <<it.counter0>>;
45. <<concomp.name>>.Text = "";
46. <<REM>> Ends the loop associated with the components collection. <<ENDREM>>
47. <<ENDFOREACH>>
48. <<REM>> Ends the loop associated with the containers collection. <<ENDREM>>
49. <<ENDFOREACH>>

.....
70. <<ENDDEFINE>>

4 The Book Store Use Case

4.1 Overview

The chosen use case consists of a BookStore WS that provides means for search-
ing and purchasing books. Specifically, the user exploiting the service can search
for books, providing as input the book title. The WS returns all details of the
book and gives the opportunity to the user to purchase the book. This latter
operation is invoked by filling a number of necessary fields to complete the order
and payment (including the customer information and the details of the payment
method). Upon successful completion of the transaction a result page is shown.

Although not directly exploited in the context of the current work, the model
of the BookStore WS is depicted in Fig. 5. The server side part of the BookStore
prototype has been manually implemented in Java. The demonstration of this
section concentrates on the generation of the presentation layer of the client side.

Fig. 5. The BookStore Web Service Description Language Model

A Model-Driven Framework for Developing WS Oriented Applications 191

4.2 Models Design and Code Generation

Due to the complexity of the WS and space limitations the PML model, which
is degined manually by the application developer, is not provided in full; its
basic parts demonstrating the use of the PML metamodel are given instead.
The modeling part of the containers corresponding to distinct screens is shown
in Fig. 6. At the top of the model an instance of the Display metaclass represents
the main frame/display of the GUI. The display is associated with a number of
container components that form instances of the Container metaclass. The first
container, i.e., searchForBooks, corresponds to the first step of book searching,
whereas the rest serve the book purchasing procedure.

Fig. 6. Top level elements of the BookStore Presentation Model

Each container has its own properties and contains also secondary compo-
nents, i.e., label, textfield, textpane and button elements, as shown for a spe-
cific container in Fig. 7. The secondary components are defined as instances of
the respective metaclasses and include their own graphical properties. The cus-
tomerDetails container corresponds to the phase, where the customer needs to
provide as input her details with information, such as name and shipping ad-
dress. These fields correspond to different GUI element types and are marked
appropriately in the model.

Listing 3. The GUI code generated for the Android target platform.

1. /** Called when the activity is first created. */
2. public View searchForBooksView() {
3. this.setTitle("BookStore - Multi-platform Web Service");
4. searchForBooks = new TableLayout(this);
5. bookTitle = new TextView(this);
6. bookTitle.setText("Enter Book Title:");
7. titleOfBook = new EditText(this);
8. ... }

A segment of the generated code for the Android platform corresponding
to lines 31-74 of Listing 1 is shown in Listing 3. These lines of code are the

192 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

outcome of the transformation of the modelling elements corresponding to the
Display and the individual graphical properties of two of the components of
the searchForBooks Container. Although hidden in the models presented above,
the name provided for the book store (i.e., BookStoreWSClient) forms part
of the information that can be edited through the model properties editor view.
In a similar fashion the generated code fragment corresponding to Windows
Mobile is visible in Listing 4 following the specifics of the platform.

Fig. 7. Example container of the BookStore Presentation Model

Fig. 8 demonstrates some of the screenshots captured during the use of the
BookStore WS on mobile clients deployed on the Android and the Windows
Mobile platform. The screens for searching for a book, displaying the results
and filling out the information for purchasing the book are shown. Alternated
screenshots capture different steps in the functionality of the WS, while run-
ning on these platforms. Moreover, Table 1 presents a quantitative evaluation
by comparing the generated code against the complete implementation (i.e.,
including manual code) for the examined platforms. Manual implementation
for each platform is limited to: (i) calling the method that displays the next
form, (ii) getting user input from form fields, (iii) calling the appropriate WS
method (passing user input as arguments) via the proxy class and (iv) obtain-
ing and displaying the WS response. The Lines of Code (LoC) belongs to the
size metrics that can be used for analyzing the quality of model transformations
in MDE. In future work, we aim to extend the evaluation by examining other
software metrics, such as software cyclomatic complexity, and include a perfor-
mance analysis evaluation that can provide more accurate results than the LoC
metric.

A Model-Driven Framework for Developing WS Oriented Applications 193

Fig. 8. The BookStore Web Service Deployed on Different Devices

Table 1. LoC percentage for the different platforms

LoC Metric Generated Overall Generated/

per Platform Code Code Overall (%)

Java 189 334 56.59

J2ME 267 369 72.36

Android 244 361 67.59

Windows Mobile 360 481 74.84

Windows Desktop 360 475 70.30

All Platforms 1420 2020 70.30

Listing 4. The GUI code generated for the Windows mobile target platform.

1. public BookStoreWSClientWindowsMobile(){
2. this.Name = "BookStore - Multi-platform Web Service";
3. this.Text = "BookStore - Multi-platform Web Service";
4. bookTitle = new Label();
5. bookTitle.Name = "bookTitle";
6. bookTitle.Location = new System.Drawing.Point(20, 20);
7. bookTitle.Size = new System.Drawing.Size(200, 20);
8. bookTitle.TabIndex = 0;
9. bookTitle.Text = "Enter Book Title:";
10. titleOfBook = new TextBox();
11. titleOfBook.Name = "titleOfBook";
12. titleOfBook.Location = new System.Drawing.Point(20, 45);
13. titleOfBook.Size = new System.Drawing.Size(200, 20);
14. titleOfBook.TabIndex = 1;
15. titleOfBook.Text = "";
16. ... }

The results show that each generator can be exploited in an efficient way, in
order to automate a significant part of the implementation process (the average
percentage is kept at 70.3%). Note that in the case of Java the percentage is
lower, since it is not possible to generate the code that handles components

194 A. Achilleos, G.M. Kapitsaki, and G.A. Papadopoulos

placement for each screen. This is due to the layout choices offered by Java,
which are missing in other technologies. For this reason the respective lines of
code in Java need to be added manually.

5 Conclusions

In this work, a Model-Driven framework that automates the development of Web
Service oriented applications has been presented. The process described allows
modelling service-client GUI elements using the notation of the Presentation
Modelling Language, whereas the key contribution refers to the transformation
of PML models to functional code, targeting the different platforms encountered
on mobile and stationary terminals (Java, Android, etc.). The code generators
proposed have been implemented using a set of tools offered by the openArchi-
tectureWare modelling component. Regarding the communication of the client
with the Web Service, existing tools that support the transformation of WSDL
models to corresponding proxy classes have been used.

The developed prototype and its applicability have been demonstrated
through the book store WS, which was showcased running on mobile environ-
ments but deployed also on desktop devices (i.e., Java, Windows Desktop). The
efficiency of the approach has been discussed on the basis of the use case and the
results derived using the LoC metric. The proposed model-driven WS-oriented
framework, consisting of the PML and WSDL along with the code generators set,
has the capability to address heterogeneity when developing platform-specific ap-
plications. In particular, the approach allows users to automatically generate the
required source code for Web Service client applications, which can consequently
invoke Web Services from different devices and platforms. An interesting exten-
sion of this work is to consider the preferences of the user when adapting the
Web Service, making this way the service user-aware. For instance, a user might
want to receive the full book details even if she is using a resource-constrained
device, while another user is satisfied with receiving the book’s title and price.

References

1. Bartolomeo, G., Blefari Melazzi, N., Cortese, G., Friday, A., Prezerakos, G., Walker,
R., Salsano, S.: SMS: Simplifying Mobile Services - for Users and Service Providers.
In: Advanced International Conference on Telecommunications and International
Conference on Internet andWeb Applications and Services, p. 209. IEEE Computer
Society, Washington (2006)

2. Dern, D.: Cross-Platform Smartphone Apps Still Difficult. In: IEEE Spectrum.
IEEE Press (2010)

3. Singh, Y., Sood, M.: Model Driven Architecture: A Perspective. In: IEEE Interna-
tional Advance Computing Conference, pp. 6–7. IEEE Computer Society (2009)

4. Ortiz, G., Garcia de Prado, A.: Adapting Web Services for Multiple Devices: A
Model-Driven, Aspect-Oriented Approach. In: IEEE Congress on Services, pp. 754–
761. IEEE Computer Society, Los Alamitos (2009)

A Model-Driven Framework for Developing WS Oriented Applications 195

5. Sauer, S., Duerksen, M., Gebel, A., Hannwacker, D.: GuiBuilder: A Tool for Model-
Driven Development of Multimedia User Interfaces. In: Workshop on Model Driven
Design of Advanced User Interfaces in MODELS 2006 (2006)

6. Link, S., Schuster, T., Hoyer, P., Abeck, S.: Focusing Graphical User Interfaces
in Model-Driven Software Development. In: First International Conference on Ad-
vances in Computer-Human Interaction, pp. 3–8. IEEE Computer Society, Wash-
ington (2008)

7. da Cruz, A.M.R., Faria, J.P.: A Metamodel-Based Approach for Automatic User
Interface Generation. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS
2010. LNCS, vol. 6394, pp. 256–270. Springer, Heidelberg (2010)

8. Dunkel, J., Bruns, R.: Model-Driven Architecture for Mobile Applications. In:
Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 464–477. Springer, Hei-
delberg (2007)

9. Paternó, F., Santoro, C., Spano, L.D.: User task-based development of multi-device
service-oriented applications. In: International Conference on Advanced Visual In-
terfaces. LNCS, vol. 5726. ACM (2010)

10. Paternò, F., Santoro, C., Spano, L.D.: Model-Based Design of Multi-Device Inter-
active Applications Based on Web Services. In: Gross, T., Gulliksen, J., Kotzé, P.,
Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009.
LNCS, vol. 5726, pp. 892–905. Springer, Heidelberg (2009)

11. Kapitsaki, G.M., Kateros, D.A., Prezerakos, G.N., Venieris, I.S.: Model-driven de-
velopment of composite context-aware web applications. Information and Software
Technology 51(8), 1244–1260 (2009)

12. Pérez-Medina, J.-L., Dupuy-Chessa, S., Front, A.: A Survey of Model Driven En-
gineering Tools for User Interface Design. In: Winckler, M., Johnson, H. (eds.)
TAMODIA 2007. LNCS, vol. 4849, pp. 84–97. Springer, Heidelberg (2007)

13. Ortiz, G., Garcia de Prado, A.: Mobile-Aware Web Services. In: International Con-
ference on Mobile Ubiquitous Computing, Systems, Services and Technologies, pp.
65–70. IEEE Computer Society, Los Alamitos (2009)

14. Moura, S.S., Schwabe, D.: Interface Development for Hypermedia Applications in
the Semantic Web. In: LA Web, pp. 106–113. IEEE CS Press (2004)

15. Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: A CASE tool for modelling and
automatically generating web service-enabled applications. International Journal
of Web Engineering and Technology 2(4), 354–372 (2006)

16. van der Sluijs, K., Houben, G.J., Leonardi, E., Hidders, J.: Hera: Engineering Web
Applications Using Semantic Web-based Models. In: de Virgilio, R., Giunchiglia,
F., Tanca, L. (eds.) Semantic Web Information Management - A Model-Based
Perspective, pp. 521–544. Springer, Heidelberg (2010)

17. Achilleos, A., Yang, K., Georgalas, N.: A Model Driven Approach to Generate
Service Creation Environments. In: IEEE Global Telecommunications Conference,
pp. 1–6. IEEE (2008)

18. Achilleos, A.: Model-driven Petri Net based Framework for Pervasive Service Cre-
ation. School of Computer Science and Electronic Engineering. University of Essex
(2010)

19. Gronmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-driven Web services de-
velopment. In: IEEE International Conference on e-Technology, e-Commerce and
e-Service, p. 42045. IEEE Press (2004)

20. van Amstel, M.F., Lange, C.F.J., van den Brand, M.G.J.: Metrics for Analyzing
the Quality of Model Transformations. In: 12th ECOOP Workshop on Quantitative
Approaches on Object Oriented Software Engineering (2008)

	A Model-Driven Framework for Developing Web Service Oriented Applications
	Introduction
	Related Work
	The proposed Framework
	Scope of Use and Overall Development Process
	Brief Overview of PML
	The Transformation Mechanism

	The Book Store Use Case
	Overview
	Models Design and Code Generation

	Conclusions
	References

