
1

Generic Hybridization of MOEA/D with Learning
for Permutation Flow Shop Scheduling Problem

S. Pericleous∗, A. Konstantinidis∗, A. Achilleos∗ and G. A. Papadopoulos†
∗Department of Computer Science and Engineering, Frederick University, Nicosia, Cyprus

†Department of Computer Science, University of Cyprus, Nicosia, Cyprus

Abstract—In this paper, we study the effect of Meta-
Lamarckian learning on the performance of a generic hybrid
Multi-objective Evolutionary Algorithm based on Decomposition
(MOEA/D) to solve a well-known combinatorial Multi-Objective
Optimization (MOO) problem. We study the hybridization of
MOEA/D with a pool of six general-purpose heuristics so as to
locally optimize the solutions during the evolution. We initially
consider the six individualistic hybrid MOEA/D’s, in which at
every step of the evolution the same local search heuristic from
the generic pool is applied. MOEA/D is then enriched with a
learning strategy that, based on the problem’s properties and
objective functions, adaptively selects at each step of the evolution
and for each problem neighbourhood the best performing local
search heuristic from the generic pool of heuristics. The proposed
method is evaluated on various test instances of a multi-objective
Permutation Flow Shop Scheduling Problem (MO-PPFSP): given
a set of jobs and a series of machines, the corresponding
processing time of each job on every machine and the due
dates of each job, determine a processing order of the jobs on
each machine, so as to simultaneously minimize the makespan
(total completion time), and the maximum job tardiness. The
results of our experimental studies suggest that the proposed
method successfully learns the behaviour of individual local
search heuristics during the evolution outperforming in terms
of both convergence and diversity the conventional MOEA/D
and the individualistic hybrid MOEA/D’s. The proposed method
does not utilize any problem-specific heuristics, and as a result,
is readily applicable to other combinatorial MOO problems.

Index Terms—multi-objective optimization, evolutionary algo-
rithms, local search, decomposition, meta-lamarckian learning,
permutation flow shop scheduling problem

I. INTRODUCTION AND RELATED WORK

Flowshop Scheduling Problem is one of the most well-
studied class of scheduling problems in the literature with
significant applications in real-life manufacturing systems [1],
[2]. The Permutation Flow Shop Scheduling Problem (PFSSP)
is a simplified version in which given m machines, a series of
n jobs has to be processed sequentially, in the same order,
from the first machine to the last so as to optimize some
desired objectives. Sequence changes are not allowed, so once
the sequence of jobs is scheduled on the first machine, this
sequence remains unchanged on the other machines. Note that
the possible number of such sequences is n!. After completion
on one machine a job joins the queue at the next machine,
all queues are assumed to operate under the FIFO discipline.
Each machine can process at most one job at any given time,
and it can not be interrupted. Machines never breakdown and
are available throughout the scheduling period. Each job is
available at time zero, and can be processed by at most one

machine at any given time. The set-up times of the jobs
on machines are sequence independent and are included in
processing times. An example of a solution of PFSSP with 8
jobs and 3 machines is shown in Figure 1.

4M1 6 1 3 7 5 8 2

M2 4 6 23 7 5 8

4
M3

6 1 3 7 5 8 2

1

Fig. 1. Example of a solution of a PFSSP with n = 8 jobs and m = 3
machines with encoding representation (4, 6, 1, 3, 7, 5, 8, 2).

Because of the conflicting nature of the objectives consid-
ered in this paper the problem will be treated within the context
of Multi-Objective Optimization (MOO).

A Multi-objective Optimization Problem (MOP) can be
mathematically formulated as

min F (X) = (f1(X), . . . , fk(X)), subject to X ∈ Ω, (1)

where Ω is the decision space and X ∈ Ω is a decision
vector. F (X) consists of k objective functions, and <k is
the objective space. The objectives often conflict with each
other and improving on one objective may lead to deterioration
of another. Thus, no single solution exists that can optimize
all objectives simultaneously and the best trade-off solutions,
called the set of Pareto optimal (or non-dominated) solutions,
is often required by a decision maker.
Definition 1. A vector u = (u1, . . . , uk) is said to dominate
another vector v = (v1, . . . , vk), denoted as u ≺ v, iff
∀i ∈ {1, . . . , k}, ui ≤ vi and u 6= v.
Definition 2. A feasible solution X∗ ∈ Ω of problem (1)
is called Pareto optimal solution, iff @Y ∈ Ω such that
F (Y) ≺ F (X∗). The set of all Pareto optimal solutions is
called the Pareto Set (PS), denoted as,

PS = {X ∈ Ω| 6 ∃Y ∈ Ω, F (Y) ≺ F (X)}.

The image of the PS in the objective space is called the Pareto
Front PF = {F (X)|X ∈ PS}.

Multi-Objective Evolutionary Algorithms (MOEAs) can ob-
tain an approximate PF of a MOP in a single run by using
various operators to iteratively generate a population of such
solutions. The aim is to produce a diverse set of non-dominated
solutions that is as close as possible to the real PF. Several

2

techniques were proposed for improving their performance,
such as nithcing techniques for improving diversity and/or
local search methods for improving convergence [3], [4].
MOEAs, such as, NSGA-II [5], SPEA-II [6] are based on
Pareto Dominance, while MOEA/D [7] and MOGLS [8] are
examples of decompositional MOEAs, relying on conventional
aggregation approaches to decompose a MOP into a number
of scalar Single-Objective Optimization (SOO) sub-problems.

The hybridization of MOEAs with Local Search (LS)
heuristics, also known as Memetic Algorithms (MAs) [9], can
provide improved performance, leading to new challenges such
as how to select the appropriate LS method within a pool of
LS methods in order to identify, in an effective manner, the
best local solution within a neighbourhood.

In SOO, an Evolutionary Algorithm is often hybridized with
a LS method either randomly or deterministically and can
achieve both good exploration and exploitation [10], [11]. The
choice of LS is important towards search effectiveness [12],
and the wrong choice of local search can have a negative
impact [13]. Ong and Keane in [14] propose an adaptive
search approach, coined Meta-Lamarckian learning MA, that
intelligently selects the most suitable LS approach from a pool
of LSs for a particular problem during the evolution and define
a common reward measure η of the improvements contributed
by a LS to a solution that has been searched.

In MOO however, due to the multiple often conflicting
objectives involved, things are even more complicated since
different LSs can exhibit different biases on the same instance
of the same problem domain but for different objectives.
The approach of Ong and Keane in [14], cannot be directly
applied in MOO and cannot be combined with a MOEA
based on Pareto dominance, which tackle a MOP as a whole.
In the MOEA/D approach, on the other hand, the MOP
is decomposed into a set of SOO subproblems, each one
associated to a weight vector, that are solved using SOO
techniques and neighbourhood information making the use of
Meta-Lamarckian learning for each subproblem possible.

Multi-objective variants of PFSSP have been extensively
studied in the literature and various constructive heuristics [15]
and improvement heuristics based on various metaheuristics
such as Genetic Algorithms (GA), Simulated Annealing (SA),
Variable Neighborhood Search (VNS) and Tabu Search (TS)
have been proposed. Reviews and comparison of such algo-
rithms can be found in [16], [17]. The first hybrid MOEA was
implemented in [8], and improved in [18], as a Multi-Objective
Genetic Local Search (MOGLS) approach to solve a multi-
objective version of PFSSP, in which the multiple objectives
were aggregated into a scalar fitness function using random
weights for parent selection and LS. In [19], a hybrid Multi-
Objective Particle Swarm Optimization (MOPSO) with Sim-
ulated Annealing is proposed. A problem-specific LS based
on the NEH-heuristic is first applied to good solutions and an
adaptive Meta-Lamarckian learning strategy is employed in
order to decide which neighborhood (Swap / Insert / Inverse)
will be used each time.

In this paper, we combine Meta-Lamarckian learning with
MOEA to study a multi-objective Permutation Flow Shop
Scheduling Problem (MO-PPFSP), formulated in Section II.

In Section III, we propose a new algorithm, named MOEA/D-
SR, which follows the general framework of MOEA/D [7],
combined with a pool of generalized LS methods and a
Stochastic Roulette-wheel strategy to adaptively learn the
effectiveness of each LS, and select the best performing LS for
each objective function of each problem instance of each class
of problems, online during the evolution. No problem-specific
heuristics are used in the design of the proposed approach,
allowing its generalizability to other multi-objective combina-
torial optimization problems, e.g. the Capacitated VRP [20].

II. PROBLEM DEFINITION AND FORMULATION
(MO-PFSSP)

In this section, we formulate the Multi-Objective Permuta-
tion Flow Shop Scheduling Problem (MO-PFSSP).

Given n jobs and a series of m machines, and for i =
1, ..., n and k = 1, ...,m, the processing times P (i, k) of job
i on machine k and the due dates di of job i, let C(πi, k)
denote the completion time of job πi on machine k.

The completion times of a permutation π = (π1, π2, ..., πn)
i.e., a processing order of the jobs on each machine, can be
recursively calculated as follows:

C(π1, 1) = P (π1, 1)
C(πi, 1) = C(πi−1, 1) + P (πi, 1), (2 ≤ i ≤ n);
C(π1, k) = C(π1, k − 1) + P (π1, k), (2 ≤ k ≤ m);
C(πi, k) = max{C(πi−1, k), C(πi, k − 1)}+ P (πi, k),

(2 ≤ i ≤ n, 2 ≤ k ≤ m).
The lateness of job πi is defined as Lπi

= C(πi,m)− dπi

and the tardiness of job πi is defined as Tπi
= max{Lπi

, 0}.
MO-PFSSP can be formulated as follows: determine a

permutation of jobs π = (π1, π2, ..., πn), which minimizes
the following two objectives:

• Objective 1: makespan (or total completion time), that
is, the time required to complete the last job πn on the
last machine m, given by Cmax(π) = C(πn,m);

• Objective 2: maximum tardiness, defined as
Tmax(π) = max1≤i≤n{Tπi}.

III. PROPOSED HYBRID MOEA/D APPROACH WITH
LEARNING

In this section we present our proposed hybrid Multi-
Objective Evolutionary Algorithm based on Decomposition
(MOEA/D), endowed with the Stochastic Roulette-wheel
learning strategy, coined MOEA/D-SR.

A. MOEA/D extended framework

Given a pool of six general-purpose heuristics we extend
the general framework of the conventional MOEA/D [7] in
Algorithm 1 in two directions at Step 2.2: i) permit its hy-
bridization with a single local search heuristic from the generic
pool, giving rise to six individualistic hybrid MOEA/D’s, and
ii) design a Meta-Lamarckian learning strategy (Stochastic
Roulette-wheel) that adaptively selects at each step of the
evolution and for each problem neighbourhood the best per-
forming local search heuristic from the generic pool of local
search heuristics, giving rise to MOEA/D-SR.

3

Algorithm 1 - hybrid MOEA/D with learning
Input:
• an instance of MO-PFSSP (see Section II);
• the number N of decomposed subproblems = population size;
• uniformly spread weight vectors {λ1, . . . , λN};
• reward vectors Ri = (r1, . . . , rL) assigned to ith subproblem
• the size of the neighbourhood T of each subproblem.
• the tournament size, τ ;
• the crossover and mutation rates, cr,mr;
• a termination criterion: max number of generations = genm;
• the pool PLS of local search heuristics of size L = 6.
Output: the external population, EP .
Step 0 - Pre-processing:

Decomposition: into a set of N single-objective sub-
problems having weights {λ1, . . . , λN} respectively;
Neighborhoods: Define Bi for the ith subproblem to
include the T closest weight vectors of λi.
Setup: Set EP := ∅; gen := 0; IPgen := ∅;

Step 1 - Initialization: Set Pareto Front PF = ∅ and
reward vectors Ri = 0. For each subproblem, umniformly
randomly generate and evaluate an initial internal population
IP0 = {X1, · · · , XN}. Set gen = 1.
Step 2: For i = 1, . . . N do

Step 2.1 - Genetic Operators: For ith subproblem,
generate new solution Y i using the genetic operators.
Step 2.2 - Learning + Local Search: Select a local
search heuristic from the pool PLS of LS heuristics,
based on a learning strategy and then apply the chosen
LS heuristic on Y i to produce Zi.
Step 2.3 - Update: Update reference point z∗ and use
Zi to update IPgen, EP and the neighborhood Bi of
the T closest neighbor solutions of Zi.

Step 3 - Stopping criterion: If stopping criterion is satisfied,
i.e., gen = genm, then stop and output EP , otherwise gen =
gen+ 1, go to Step 2.

MOEA/D requires some pre-processing steps before initi-
ating the main part of the algorithm. These steps are briefly
summarized and discussed next.
Encoding Representation: A solution of MO-PFSSP is rep-
resented by a vector of size equal to the number of jobs
n, whose components are jobs according to their processing
order, that is, job in position i, denoted by πi, is the ith job
to be processed, see Figure 1 for an example.
Decomposition: Initially, the MO-PFSSP is decomposed into
a number of N scalar subproblems using the Tchebycheff ap-
proach as originally proposed in [7]. Given the objective vector
F (X) = (f1(X), f2(X)), weight vector λi, (1 ≤ i ≤ N), that
remains fixed for each subproblem for the whole evolution and
a reference point z∗ = (z1, z2), which is a vector with all the
best values zk found so far for each objective fk, the objective
function of a subproblem i is stated as:

g(X|λi, z∗) =

2∑
k=1

|λikfk(X)− zk|. (2)

Neighbourhood: A neighbourhood (or subpopulation) Bi is
maintained for each of the N subproblems associated with
weight vector λi, composed of the indeces of the subproblems
whose associated weight vectors are the T closest (in terms of
Euclidean distance) to λi. According to Zhang and Li in [7]
one expects optimal solutions in neighbouring sub-problems

to be close to each other in the search space, so the exchange
of genetic information should be helpful.
Step 1 - Initialization: The algorithm commences by creating
an initial population IP0 = {X1, ..., XN} of solutions one for
each subproblem, named Internal Population (IP) of genera-
tion gen = 0. The initial solutions are randomly generated and
each individual is evaluated as described earlier. Set gen = 1;
Step 2.1 - Genetic Operation: At each generation gen, for
each subproblem i with objective function g(Xi|λi, z∗), the
population IPgen is evolved by generating a new solution Y i,
known as offspring using conventional genetic operators (i.e.,
Selection, Crossover and Mutation as in [7]). In particular,
two parent solutions are randomly selected from the neigh-
bourhood Bi of subproblem i. The two parent solutions are
recombined using a two-point crossover to produce a new
solution - the offspring - with a probability rc. The offspring
is then modified with a random mutation operator with a
probability rm. Evaluate the new solution Y i using Eq. (2).
Step 2.2 - Learning + Local Search: At each generation gen,
for each subproblem i, a local search heuristic from the pool
PLS is adaptively selected based on the assigned reward vector
Ri = (r1, . . . , rL) and it is used greedily, for a pre-defined
number I of iterations, to generate an improved solution Zi

by locally optimizing solution Y i obtained by the genetic
operators. The reward vector Ri is constructed and updated
at each generation according to the adopted Meta-Lamarckian
learning strategy. The solution Zi is selected as the new
representative of the sub-problem i and therefore replaces the
current best solution Xi, iff g(Zi|λi, z∗) < g(Xi|λi, z∗).
Step 2.3 - Update: Use solution Zi to update the reference
point z∗, the internal population IP , the set of non-dominated
solutions PF found so far and neighbourhood Bi of the sub-
problem i Bi. If i < N then i = i+ 1 and goto Step 2.1. The
same process is followed for all N sub-problems.
Step 3 - Stopping Criteria: If the termination criterion gen =
genm is satisfied then terminate the algorithm and output the
PF , otherwise goto Step 2.1;

B. Pool of general-purpose Local Search heuristics

In order to maintain the robustness and generalizability of
our proposition on the impact of the adopted learning strategy,
no problem-specific heuristics are used. Instead, in the pool
PLS used in Step 2.2 of Algorithm 1, we only include six
general local search heuristics, frequently used on permutation
or sequencing problems [1], [2]:

• Swap Heuristic (Sw): randomly selects and swaps the
assigned order of two jobs

• Double Swap (DSw): performs the swap heuristic twice.
• Swap Adjacent (SwA): randomly select a job and swap

its assigned processing order with that of its adjacent job.
• Shift Heuristic (Sh): randomly chooses to perform back-

ward or forward shift. A backward shift randomly selects
a job from its current position i and inserts it at position
j where i > j, shifting to the right all values in between.
A forward shift is similar to backward shift, but it selects
a job from its current position i and inserts it at a position
j, where i < j, shifting to the left all values in between.

4

• Double Shift (DSh): applies a combination of Backward
and Forward Shift.

• Inverse (IH): randomly selects a subsequence of jobs in
the solution and reversing their order.

C. Definition of Reward Function

Recall that for each sub-problem i, solution X was the best
solution found so far during the evolution Y is the offspring of
X , obtained by genetic operators, and Z is the new solution
obtained by applying a local search heuristic from the pool
PLS to Y . During the Meta-Lamarckian learning in Step 2.2
of Algorithm 1 a reward (ranging from 0 to 1) is calculated
to measure the relative improvement contributed by a local
search heuristic using the following rules:

r =

1 (a) if g(Z) < g(X) < g(Y)

g(Y)−g(Z)
g(X)−g(Z) (b) if g(Z) < g(Y) ≤ g(X)

g(Y)−g(Z)
g(Y)−g(X) (c) if g(X) ≤ g(Z) < g(Y)

0 (d) otherwise

(3)

where g(X), g(Y) and g(Z) correspond to g(X|λi, z∗),
g(Y |λi, z∗) and g(Z|λi, z∗), respectively. The proposed re-
ward function measures the contribution of the local search
approach in the scalar objective function space by taking
into consideration the actual replacement of g(Z) towards the
optimal solution with respect to g(X) and g(Y).

D. Stochastic Roulette-wheel (SR) Learning Strategy

In Step 2.2 of Algorithm 1, at the beginning of the evolution
and for a predefined number of generations gt, each single
local search heuristic from the pool PLS is given the oppor-
tunity to hybridize with the MOEA for locally optimizing the
solution Y i of each subproblem i. The reward of each local
search is calculated using Equation 3. Those initial reward
values will be used later to guide future LS choices and will
change dynamically as the overall search progresses. This
is commonly known as the training stage, after which the
learning phase takes over, using the Stochastic Roulette-
wheel (SR) strategy, which proceeds as follows:

Step 1: Sum the reward values rj ∈ Ri of all local search
approaches for subproblem i.
Step 2: Determine normalized relative reward value of
the components of Ri.
Step 3: Assign space on the roulette wheel for each local
search based on the normalized value.
Step 4: Generate a random number between 0 and 1,
select the local search corresponding to the portion of
the wheel in which the chosen random number falls.

The SR strategy ensures that the probability of a LS approach
being selected is biased from its own previous performance,
which changes dynamically as the overall search progresses.
At the same time, it allows for diversity in the choice of LS
since it restricts a LS from completely dominating the search.

E. Algorithms: MOEA/D-variants defined

The following variants of MOEA/D based on Algorithm 1
considered in this paper differ only in Step 2.2 (Learning +
Local Search).

The conventional MOEA/D as proposed by Zhang and
Li in [7] applies no local search heuristics (although this
hybridization was an optional step). In this case, reward values
for all local searches are set to 0 and never get updated.

The hybridization of the conventional MOEA/D with a
single selected LS heuristic that is used throughout the search
is coined Individualistic MOEA/D. In this case, Equation 3 is
not used to calculate the reward of each local search, instead,
the reward of the selected LS is set to 1, and the rewards of
the remaining LSs are set to 0 throughout the evolution. In
this paper, six different Individualistic MOEA/D approaches
are designed, i.e., MOEA/D-Sw, MOEA/D-SwA, MOEA/D-
DSw, MOEA/D-Sh, MOEA/D-DSh and MOEA/D-IH, by
hybridizing MOEA/D with swap, swap-adjacent, double swap,
shift, double shift and inverse heuristics, respectively.

Finally our proposed method, coined MOEA/D-SR, is a
decompositional MOEA that uses the Stochastic Roulette-
wheel approach as its learning strategy.

IV. EXPERIMENTAL STUDIES

In this section, we introduce the performance metrics uti-
lized to evaluate the algorithms’ performance, discuss the test
instances of the MO-PFSSP and present the parameter settings
of the examined MOEA/D variants. In order to evaluate
the efficacy of incorporating the Meta-Lamarckian learning
approach in MOEA/D two experimental series are developed:

• Experimental series 1 compares the conventional
MOEA/D approach [7] with the proposed MOEA/D-SR
that uses the Stochastic Roulette-wheel learning strategy.

• Experimental series 2 compares the proposed MOEA/D-
SR with the six individualistic MOEA/D variants.

A. Performance Metrics

It is desirable that the obtained non-dominated set of a
MOEA is of high quality, that is as close to the true Pareto
Front as possible, and distributed as diversely and uniformly
as possible. In the literature, there is no single metric that can
reflect both of these aspects and thus a number of metrics
are often used [3], [4], [21]. In this study, we have used the
following three metrics to evaluate our proposed approach:

• Coverage (C): commonly used for comparing two sets
of non-dominated solutions A and B, the C(A,B) metric
calculates the ratio of the non-dominated solutions in B
dominated by the non-dominated solutions in A, divided
by the total number of non-dominated solutions in B;
a higher value for C(A,B) is an indication of higher
quality of solutions in A than in B.

• Distance from reference set (ID): shows the average
distance from a solution in the reference set R to the
closest solution in A. The smaller the value of ID the
closer the set A is to R indicating better convergence.
In the absence of the real reference set R, the average
distance of each single point to the nadir point is used.

5

TABLE I
EXPERIMENTAL SERIES 1 - THE PROPOSED MOEA/D-SR IS COMPARED WITH THE CONVENTIONAL MOEA/D IN TERMS OF THE PERFORMANCE

METRICS ID , IH AND C IN TEST INSTANCES T1-T3. BEST RESULTS OF EACH TEST INSTANCE DENOTED IN BOLD.

Alg: MOEA/D-SR MOEA/D C(MOEA/D-SR,MOEA/D) C(MOEA/D-SR,MOEA/D)
TI ID IH ID IH
1: 70.74 0.06 79.66 0.06 0.88 0.00
2: 120.25 0.10 258.73 0.04 1.00 0.00
3: 181.63 0.12 419.60 0.04 0.97 0.00

2200 2300 2400 2500 2600

Makespan

0

500

1000

T
ar

di
ne

ss

T1

MOEA/D-SR
MOEA/D

3300 3400 3500 3600 3700 3800

Makespan

0

1000

2000

3000

T
ar

di
ne

ss

T2

MOEA/D-SR
MOEA/D

4400 4600 4800 5000 5200 5400

Makespan

0

1000

2000

3000

T
ar

di
ne

ss

T3

MOEA/D-SR
MOEA/D

Fig. 2. Experimental Series 1 - Comparison between proposed MOEA/D-SR (with Stochastic Roulette-wheel learning strategy) and conventional MOEA/D.

• Hypervolume (IH): indicates the area dominated by at
least one solution in the obtained non-dominated set A.
Therefore high IH indicates better diversity.

B. Experimental Layout and Algorithmic Settings

We evaluate the performance of MOEA/D-SR on three
n-job,m-machine benchmark PFSSP test instances T1-T3,
defined in [18] as follows: the processing time of each job
on each machine was specified as a random integer in the
interval [1, 99] and the due date of each job was specified
by adding a random integer in the interval [−100, 100] to its
actual completion time in a randomly generated schedule. In
all instances m = 20 and n = 20, 40, 60 in test instance T1,
T2 and T3, respectively.

The algorithmic parameters are set as follows: termination
criterion genm=1000, population size and number of subprob-
lems N=500, tournament size τ=10, crossover rate rc=0.8,
mutation rate rm=0.2, neighbourhood size T=14, the size of
the pool PLS of local search heuristics L=6, the number of
iterations for each local search is set to I=10 and the train-
ing phase for the MOEA/D with Meta-Lamarckian Learning
strategy is set to gt=100. Note that in our experimental studies
we have used the same number of function evaluations for all
methods, for fairness. The makespan and maximum tardiness
objectives are evaluated as in Section II. All algorithms were
coded in Java programming language and run on an Intel(R)
Core(M) i5 CPU 2.4GHz Windows 7 server with 4 GB RAM.

C. Experimental Results on MO-PFSSP

The results of the experimental series are presented below.

Exp. Series 1: MOEA/D-SR vs conventional MOEA/D

Figure 2 clearly shows that the proposed hybrid MOEA/D-SR
with Stochastic Roulette-wheel learning strategy improves
the performance of the conventional MOEA/D in terms of
both convergence and diversity in all test instances, even
more so when the problem becomes more difficult as the
number of jobs n increases. This is also evident in Table I
that summarizes the statistical performance of the two

algorithms in terms of the considered metrics. The proposed
MOEA/D-SR technique provides a more diverse (i.e., high
IH) Pareto Front, that is closer to the reference set (i.e.,
low ID) and of higher quality (i.e., high C) compared to
individualistic MOEA/D variants, in all test instances.

Exp. Series 2: MOEA/D-SR vs individualistic MOEA/Ds

In this experimental series, the proposed hybrid MOEA/D-
SR with the Stochastic Roulette-wheel approach is compared
with the six individualistic MOEA/D variants defined above.
Figure 3 shows that in test instances T2-T3, MOEA/D-SR
outperforms its competitors in terms of both convergence and
diversity. In particular, MOEA/D-SR has obtained a PF that
dominates most of the non-dominated solutions obtained by
the individualistic MOEA/Ds providing a better approximation
towards the nadir point. The results in Table II show that
MOEA/D-SR provides better ID than all of its competitors,
except in T1 and T2 where MOEA/D-DSh obtains slightly
better results. In terms of diversity IH , it performs no worse
than all other individualistic MOEA/Ds, except in T3 where
MOEA/D-Sh is slightly better. In terms of the Coverage
metric C, we observe that non-dominated solutions obtained
by MOEA/D-SR dominate most (on average 80%) of the
non-dominated solutions obtained by individualistic MOEA/D
variants in all test instances. The non-dominated solutions
obtained by MOEA/D-SR are dominated, on average, by 13%
and 7% only by the non-dominated solutions obtained by
individualistic MOEA/D-Sh and MOEA/D-DSh, respectively.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we study an important multi-objective schedul-
ing problem (MO-PFSSP) which aims to find a permutation
of n jobs to be processed sequentially on m machines, so
as to minimize simultaneously the makespan and maximum
tardiness objectives. Our proposed MOEA/D-SR algorithm,
follows the general framework of a Multi-Objective Evolu-
tionary Algorithm based on Decomposition, combined with
a learning strategy (Stochastic Roulette-wheel approach), for

6

TABLE II
RESULTS OF EXPERIMENTAL SERIES 2 - COMPARISON BETWEEN THE MOEA/D-SR AND ALL INDIVIDUALISTIC MOEA/D VARIANTS IN TERMS OF THE

PERFORMANCE METRICS ID , IH AND C . THE BEST RESULTS OF EACH TEST INSTANCE ARE DENOTED IN BOLD.

Alg: M-SR M-Sw M-SwA M-DSw M-Sh M-DSh M-IH
TI ID IH ID IH ID IH ID IH ID IH ID IH ID IH
1: 62.14 0.10 71.34 0.09 95.51 0.07 83.46 0.08 65.01 0.09 61.93 0.10 88.80 0.09
2: 115.03 0.11 171.28 0.06 210.14 0.06 170.15 0.07 140.06 0.09 103.11 0.08 219.28 0.06
3: 213.18 0.08 348.21 0.06 445.13 0.04 271.50 0.05 260.37 0.09 253.63 0.08 387.87 0.07

TI C(SR,Sw) C(Sw,SR) C(SR,SwA) C(SwA,SR) C(SR,DSw) C(DSw,SR) C(SR,Sh) C(Sh,SR) C(SR,DSh) C(DSh,SR) C(SR,IH) C(IH,SR)
1: 0.72 0.00 0.92 0.00 0.68 0.00 0.44 0.09 0.40 0.20 0.56 0.00
2: 0.92 0.00 0.96 0.00 1.00 0.00 0.81 0.17 0.96 0.00 0.96 0.00
3: 0.81 0.00 0.97 0.00 0.95 0.00 0.62 0.14 0.92 0.00 0.89 0.00

3300 3400 3500 3600 3700 3800 3900

Makespan

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
ar

di
ne

ss

T2

MOEA/D-SR
MOEA/D-Sw
MOEA/D-SwA
MOEA/D-DSw
MOEA/D-SH
MOEA/D-DSh
MOEA/D-IH

4500 4600 4700 4800 4900 5000 5100

Makespan

0

500

1000

1500

2000

2500

3000

3500

T
ar

di
ne

ss

T3

MOEA/D-SR
MOEA/D-Sw
MOEA/D-SwA
MOEA/D-DSw
MOEA/D-SH
MOEA/D-DSh
MOEA/D-IH

Fig. 3. Experimental Series 2 - Comparison between MOEA/D-SR (with Stochastic Roulette-wheel learning strategy) and Individualistic MOEA/D variants.

adaptively selecting the best performing local search heuristic,
based on the problem’s properties and objective functions,
from the generic pool of local search heuristics, so as to locally
optimize the solutions during the evolution. We evaluate our
algorithm on various benchmark problems and the experimen-
tal results show that MOEA/D-SR successfully learns during
the evolution and provides a more diverse and high quality set
of Pareto-optimal solutions compared to its competitors.

In the future, we consider designing problem-specific lo-
cal search heuristics that can be incorporated in a hybrid
MOEA/D, investigate more learning strategies and extend our
study to other real-life combinatorial MOO problems.

REFERENCES

[1] M. Pinedo, Scheduling: Theory, Algorithms and Systems, 3rd Edition.
Springer Science+Business Media, LLC, 2008.

[2] P. Brucker, Scheduling Algorithms. Springer, 2007.
[3] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.

Wiley and Sons, 2002.
[4] C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont, Evolutionary

Algorithms for Solving Multi-Objective Problems. Springer, 2007.
[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[6] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization,”
in Evolutionary Methods for Design Optimization and Control with
Applications to Industrial Problems, Athens, Greece, 2002, pp. 95–100.

[7] Q. Zhang and H. Li, “MOEA/D: A multi-objective evolutionary al-
gorithm based on decomposition,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 712–731, 2007.

[8] H. Ishibuchi and T. Murata, “Multi-objective genetic local search algo-
rithm and its application to flowshop scheduling,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 28, no. 3, pp. 392–403, 1998.

[9] P. Moscato and C. Cotta, A Gentle Introduction to Memetic Algorithms.
Springer, 2003, vol. 57, ch. 5, pp. 105–144.

[10] W. E. Hart, “Adaptive global optimization with local search,” PhD
Dissertation, Univ. of California, San Diego, CA, Tech. Rep., 1994.

[11] N. Krasnogor, “Studies on the theory and design space of memetic
algorithms,” Ph.D. dissertation, University of the West of England, 2002.

[12] C. R. Reeves, “Statistical properties of combinatorial landscapes: An
application to scheduling problems,” in MIC2001: Proceedings of the
4th Metaheuristic International Conference, 2001, pp. 691–695.

[13] L. Davis, Handbook of Genetic Algorithms. V. N. Reinhold, 1991.
[14] Y. S. Ong and A. Keane, “Meta-lamarckian learning in memetic algo-

rithms,” Evolutionary Computation, IEEE Transactions on, vol. 8, no. 2,
pp. 99–110, April 2004.

[15] M. S. N. Fernando Luis Rossi and R. F. T. Neto, “Evaluation of high
performance constructive heuristics for the flow shop with makespan
minimization,” The International Journal of Advanced Manufacturing
Technology, vol. 87, no. 1, pp. 125–136, 2016.

[16] M. C. G. Minella, R. Ruiz, “A review and evaluation of multiobjective
algorithms for the flowshop scheduling problem,” INFORMS Journal on
Computing, vol. 20, pp. 451–471, 2008.

[17] T. S. Leonardo C. T. Bezerra, Manuel Lpez-Ibez, “Deconstructing multi-
objective evolutionary algorithms: An iterative analysis on the permuta-
tion flow-shop problem,” in International Conference on Learning and
Intelligent Optimization, Springer, 2014, pp. 157–172.

[18] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genetic
search and local search in memetic algorithms for multiobjective per-
mutation flowshop scheduling,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 204–223, 2003.

[19] B.-B. Li, L. Wang, and B. Liu, “An effective pso-based hybrid algorithm
for multiobjective permutation flow shop scheduling,” IEEE Transac-
tions on Systems, Man and Cybernetics, vol. 38, pp. 818–831, 2008.

[20] A. Konstantinidis, S. Pericleous, and C. Charalambous, “Adaptive evo-
lutionary algorithm for a multi-objective VRP,” International Journal
on Engineering Intelligent Systems, vol. 22, no. 3/4, 2014.

[21] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fon-
seca, “Performance assessment of multiobjective optimizers: An analysis
and review,” IEEE Trans. on Evolutionary Comp., vol. 7, no. 2, pp. 117–
132, 2003.

