
A Runtime Middleware Environment

for Enabling Multi-platform Accessibility

Marios Komodromos, Christos

Mettouris, Achilleas P. Achilleos

and George A. Papadopoulos
Department of Computer Science,

University of Cyprus

Nicosia, Cyprus

 Email: {mkomod05, mettour,

achilleas}@cs.ucy.ac.cy

Martin Deinhofer

and Christoph Veigl
Institute of Embedded Systems

University of Applied Sciences (UAS)

Technikum Wien Vienna, Austria

Email: {veigl,

martin.deinhofer}@technikum-

wien.at

Alfred Doppler and Stefan Schürz
LIFEtool gemeinnützige GmbH

Linz, Austria

Email: {alfred.doppler,

stefan.schuerz}@lifetool.at

Abstract—Assistive Technologies devices and systems aim to

improve the quality of life of people with disabilities by providing

a wide range of assistive services. The AsTeRICS framework

provides a Runtime Environment and a toolset that can be highly

adapted to the changing needs of each individual and targets to

reduce time, effort and costs of developing assistive applications.

A key limitation of the platform, as well as similar platforms, is

that the integration of accessibility features into existing software

applications is difficult due to heterogeneous implementation

technologies. Moreover, the capabilities offered by sensors,

actuators and other mobile devices deployed on different

machines cannot be exploited for the development of AT

applications. This paper presents substantial improvements and

changes to the Runtime Environment that address these issues

and offer the capability to integrate applications built with

different technologies and thus to improve the accessibility of an

application. In fact, the middleware environment enables to

rapidly re-engineer existing software applications. Two examples

are re-developed in this work, the “FlashWords” and “EURO”

applications, which are extended in a way so that they can also be

used by children with motor disabilities.

Keywords— runtime environments, middleware systems,

assistive applications, REST services, embedded systems

I. INTRODUCTION

A significant number of people with disabilities worldwide
are supported by Assistive Technologies (AT) [1, 2]. Available
AT devices and systems provide a wide range of assistive
functionality, improving thus the quality of life of people with
disabilities. However, AT devices often require adaptation,
since they have been designed for explicit applications, and
thus cannot be used in slightly different environments without
serious customizations. In this respect, routine activities of
people with disabilities may be restricted, either because AT
devices cannot be adapted based on their needs, or because the
device itself or its adaptations introduce unaffordable costs.

The AsTeRICS (Assistive Technology Rapid Integration &
Construction Set) project [3] has built a hardware and software
framework, which targets to reduce the time, effort and costs of
developing Assistive Technology applications. It offers a

flexible and affordable components set that enables building
assistive functionalities, which can be highly adapted to the
dynamically changing needs of each individual. The system is
scalable and extensible and allows easy integration of new
functionalities without major changes. It enables people with
disabilities to gain access to the standard desktop computer, as
well as to embedded and mobile services that did not offer
highly specialised user interfaces until present. By using its
scalable and extensible architecture, it provides easy means for
designing and running specialized AT applications, which can
simplify and assist the daily routine of people with disabilities.

A key limitation of the platform, as well as comparable
platforms, is that they do not permit reuse and quick integration
of the functions offered by its assistive components to an
existing application developed using another technology. In
specific, the work presented in this paper simplifies and
expedites integration of assistive functionalities in existing
software applications built using different technologies, as well
as improving the accessibility of the application. Another new
feature offered by the refined runtime middleware environment
is the capability to exploit the capabilities offered by sensors,
actuators and other mobile devices deployed on different
machines for the development of assistive applications. The
runtime environment is re-designed and developed as a Java-
OSGi middleware, which offers assistive functionalities via the
pool of existing OSGi components (sensors, actuators, etc.),
which are exposed now as REST services.

This paper presents the runtime environment and validates
it through two use cases for the rapid re-development of two
software applications, namely FlashWords and EURO. This is
performed via the rapid integration of additional assistive
functionalities, transparently via the developed REST-enabled
runtime environment, into these software applications.
FlashWords is an application that targets persons who can
hardly speak or have insufficient speech abilities. According to
their condition, children with Down Syndrome have special
problems with their speech development (hearing, speech
motor function, short auditory memory, comprehension).
FlashWords is based on a concept described in the series Small
Steps, called Early Reading that allows helping children with

Figure 1. AsTeRICS AT model designed via the ACS graphical tool

auditory problems. The environment enables to rapidly re-
implement the FlashWords application into an application that
can be used also by children that have motor disabilities.
EURO on the other hand is an application that assists children
and adults with learning disabilities to get to know money.
Also in this scenario, the runtime environment enables to
rapidly re-implement the EURO application, so that it can be
used also by people who are not able to control their hands or
feet with precision in order to use ordinary physical buttons.

The rest of the paper is structured as follows. Section 2
presents related work, while Section 3 provides a technical
description of the architecture and implementation of the
runtime middleware environment. In Sections 4 and 5 the
FlashWords and EURO application scenarios are presented and
the demonstrators of the re-developed applications are
presented. Finally, the paper presents conclusions and future
work in Section 6.

II. RELATED WORK

A number of AT systems have been developed, mainly in
European Projects. The TOBI project [4] focuses on the design
of non-invasive BNCI prototypes that combine existing
Assistive Technologies and rehabilitation protocols. The aim is
to improve people's communication by supporting access to
devices such as virtual keyboards, internet, email, telephony,
fax, SMS and environmental control. The BRAIN [5] project
enhances intercommunication and interaction skills of disabled
people via the development and integration of Brain-Computer
Interfaces into practical assistive tools. The aim of the BRAIN
system is at improving interaction of the user with people,
home appliances, assistive devices, personal computers,
internet technologies, and more. BrainAble’s [6] main
objective is to assist people with disabilities on overcoming
exclusion from home and social activities by providing an ICT-
based Human Computer Interface (HCI), as well as producing

a set of technologies suitable for assisting people with physical
disabilities regardless of cause.

A project with many similarities with AsTeRICS both in
terms of the concept, the implementation and the system
architecture is OpenHAB. It provides a scalable and modular
architecture that integrates components and technologies in a
single solution. OpenHAB is open-source with an active
community, which enables new features and functionalities to
be added, as with AsTeRICS. It is also based on JAVA OSGi
[7] and provides APIs for integration with other systems. In
addition, it provides remote communication with a REST API
and intra communication. The “new thing” that OpenHAB
introduces is that it gives the ability to the user to define the
interaction of things and devices. The restriction of OpenHAB,
in comparison to the AsTeRICS framework, is that an expert
developer is needed to define in the form of text-based scripts
the interactions amongst the components even for a simple AT
scenario in the Smart Home. In contrast, the AsTeRICS system
enables a non-expert AT designer to use a simple modelling
interface to easily model or reuse existing models to provide
the necessary functionality to the user.

The contribution of this work is related to the substantial
improvements and changes identified and performed to the
Runtime Environment of the AsTeRICS framework. These
improvements were performed so as to offer the capability to
integrate applications built with different technologies and thus
to improve the accessibility of applications. In specific, via the
REST-enabled runtime environment, existing applications can
be transformed into assistive applications enable people with
motor disabilities to use them.

III. IMPLEMENTATION

A. The AsTeRICS Architecture

 In AsTeRICS, a model is considered as the container that
holds the information to describe the orchestration of the

components that will produce a specific solution. The
components of each model are classified into three categories:
sensors, processors and actuators. Sensors monitor the
environment and transmit input information to the rest of the
model components. Processors are then responsible for
receiving, processing and forwarding this information. Finally,
actuators receive data and carry out accordingly the desired
actions.

 AsTeRICS is constituted by two main components. The
AsTeRICS Configuration Suite (ACS), a graphical tool for
creating AT models (see Figure 1), and the AsTeRICS Runtime
Environment (ARE), which is responsible for the deployment
and runtime execution of the models. In the early stages, the
two of them co-existed necessarily on the same machine and
the communication was accomplished by exploiting the
AsTeRICS Application Programming Interface [8] (ASAPI)
protocol. In principle, ASAPI is a service that is provided by
the ARE and can be consumed by different clients, such as the
ACS, allowing them to control the runtime environment
according to their needs.

 The ARE is a Java OSGi-based [7] middleware. The OSGi
technology provides component-based modularity and parallel
execution for an application. Bounded by the OSGi principles,
everything that lives in the application has to be defined as an
OSGi bundle (i.e., self-contained component). Hence, each
model component (i.e., sensor, processor, and actuator) must
have an OSGi bundle instance inside the ARE. The AsTeRICS
framework offers a models@runtime approach, since the ACS
communicates with the ARE to deploy the models and handle
the models via the ARE at runtime. ARE enables the
communication between OSGi bundles at runtime, which refers
to the interactions and exchange of data between the sensor,
processor and actuator components. Figure 2 presents the
abstract view of AsTeRICS’ architecture.

Figure 2. The original AsTeRICS architecture.

B. Enabling Multi-Platform Accessibility

 A serious architectural limitation was that the AsTeRICS
Runtime Environment integration method (ASAPI) was
primary and mainly designed for communication with ACS. It
is a not widely known technology and furthermore it is a
proprietary protocol, almost prohibitive for a third party client
to implement. It naturally prevents any exploitation of the
AsTeRICS Runtime Environment’s technical qualities. Taking
into account the above, it was essential to substitute the ASAPI
protocol with an API that allows integration with minimal
effort, as well as communication over the network.

Figure 3. The REST-enabled AsTeRICS architecture.

 Due to the aforementioned reasons, Representational State
Transfer (REST) API for the AsTeRICS Runtime Environment
was defined and implemented [9]. REST is an architectural
style that builds on the benefits of the Internet and the World
Wide Web, such as scalability, remote communication, and
easy access from everywhere and from any application. It is
important to note here that the ASAPI protocol can also
support remote communication, but since it’s a proprietary
protocol and difficult to implement, the widely-used REST
architecture that is based on the well-known HTTP protocol is
selected to perform the necessary architectural improvements
to the runtime environment. The REST services were defined
while respecting and utilising the OSGi implementation of the
existing components. Therefore, the HTTP server where the
REST services are deployed, was defined and implemented
itself as an OSGi bundle/component. Exploiting the Grizzly
NIO framework [10], an OSGi bundle was implemented that
allows hosting an embedded HTTP server, through which the
REST API can be accessed. Figure 3 presents the refined
architecture of the runtime environment.

 The main requirement for refining the runtime environment
architecture was to provide the capability to integrate the very
large set of assistive functionalities offered by the implemented
components1 into existing applications. In fact, the target was

1
 AsTeRICS – http://www.asterics.eu/

to still facilitate the design and development of assistive
applications through the use of the ACS, but at the same time
enable integration of assistive functionalities into existing
software applications implemented in different technologies. In
specific, the ASAPI substitution offers platform and language
independence. This means that a developer is able to reuse and
integrate assistive functions into existing software applications,
without any concerns about the language and/or the platform
used to implement and deploy the applications. Finally, the
development effort is reduced and the development process is
simplified since these assistive functionalities are implemented,
reducing also the costs of integration.

IV. THE FLASHWORDS USE CASE

For the first scenario we have used an application called
FlashWords developed by LIFEtool, which mainly targets at
children with or without Down Syndrome who have
insufficient speech abilities or special problems with their
speech development (hearing, speech motor function, short
auditory memory, comprehension). The application is based on
an internationally acknowledged method called Early Reading
and was developed by the special education centre at the
Macquarie University in Sydney. The main idea is that the
visualisation of words (see Figure 4) can help to compensate
auditory problems, as the visual memory is available as
working memory at an early stage and can support the auditory
memory. This application is available in the Apple Store. [11]

Figure 4. Screenshot of the FlashWords App

Through the AsTeRICS runtime environment REST API it
was possible and easy to integrate the FlashWords application
with the assistive functionalities offered by the components of
the AsTeRICS platform, in order to achieve improvement of
the accessibility of the FlashWords application. Although
AsTeRICS features a MS Windows-only camera mouse library
in Java, it was not possible for FlashWords to directly use it as
FlashWords is developed on different technologies, namely
Adobe ActionScript. In this aspect, the REST API was ideal to

loosely couple these two totally different technologies running
on either the same machine or even distributed.

Figure 5. The communication between AsTeRICS and the

Advanced Rest Client.

A. AsTeRICS Camera-Mouse Model

The AsTeRICS Configuration Suite was used to design a
model that captures the movement of the head to control the
mouse. First it was confirmed that controlling the mouse by
using the head is possible and that it functions adequately
within the AsTeRICS framework. Next, the communication
between the Runtime Environment and FlashWords was
accomplished by developing a REST client. In specific, the
needed functionality provided to FlashWords by the REST
client was to load different models into the Runtime
Environment via REST calls and to manage (start, stop and
pause) models remotely so as to offer the assistive functions to
the FlashWords software application.

 For the above purposes a Google Chrome extension called
“Advanced Rest Client” was used (see Figure 5). Other REST
clients would also be an option; however, the “Advanced Rest
Client” is easy to use with a clean interface and a good history
function. The tool was used to precisely define the commands
to be used to control the AsTeRICS Runtime Environment.

Figure 6. People with limited movement abilities can control the

mouse cursor via head movement and in this way use

FlashWords

B. The Integrated Application

The ability to communicate and utilise the assistive
functionalities provided by the Runtime Environment opens up
a new world of controlling FlashWords and providing
enhanced user accessibility. With the help of the camera-mouse
tracking and movement AT function, people with limited
movement capabilities, for example people who can only move
their head, can now easily control the mouse cursor and start to
learn new words with FlashWords (see Figure 6). LIFEtool
already supports a number of different ways to control the
mouse (1-button scanning, 2 button scanning, dwelling, etc.).
However this alternative user accessibility and interaction
method is a valuable addition, which also satisfies assistive
technology scenarios.

V. THE EURO USE CASE

The Runtime Environment was also tested and validated
through the EURO application. EURO is an application that
assists users to get to know money, not only the knowledge of
the individual coins and banknotes, but also the knowledge of
the value of money itself (see Figure 7). Target groups include
children and adults with learning disabilities that use the
EURO application to get a feeling for how much daily life
costs, such as food and drug products, as well as electronic
equipment and other everyday-life objects.

Figure 7. By using this application users get to know individual

coins and banknotes, as well as the value of money itself.

A. AsTeRICS Accelerometer Gyro Model

The REST API was used to achieve communication between

the Runtime Environment and the EURO application in a

similar manner as it was used for the FlashWords application

described in Section 4. The AsTeRICS “Accelerometer”

model was used to send mouse clicks by using the gyro

sensor. As with the FlashWords application, the model is able

to be loaded, started and stopped from within the EURO

application via REST and offers the assistive functions within

the application. The Gyro sensor control method was added to

EURO options menu.

B. The Integrated Application

As with the FlashWords application, the REST API defines
new ways of interaction and control of the EURO application.
The user wears the Gyro sensor and is able to control the
EURO application with simple wrist movements (see Figure
8). The main target group of the accelerometer input modality

are people who are not able to control their hands or feet with
precision in order to use an ordinary physical button.

Figure 8. Controlling the EURO application with simple wrist

movements - for people who are not able to control their hands or

feet with precision.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes how the novel REST-enabled runtime
environment built over the AsTeRICS framework. This
environment enables, simplifies and expedites integration of
assistive functionalities into software applications that are built
using different technologies. Also, the runtime middleware
environment offers exploitation of the capabilities of sensors,
actuators and other mobile devices deployed even on different
machines for the development of assistive applications.

 Through the two use cases it was demonstrated that new
ways of AT interaction can be easily and rapidly integrated into
existing software applications. This is supported by the REST-
enabled runtime environment. The scenarios can be perceived
as examples of rapid re-development of two AT applications,
by including further important assistive functionalities and
improving accessibility. In the first scenario the FlashWords
application can now be used also by children with motor
disabilities. Furthermore, the EURO application was upgraded
in terms of AT capabilities to be able to be used also by people
who are not able to control their hands or feet with precision in
order to use ordinary physical buttons.

For future work, the target is to enrich the AsTeRICS
Runtime REST API, so as to provide the capability for remote
communication, not only at the level of the AsTeRICS
Runtime Environment, but also at a lower level, the level of the
AsTeRICS model components. By achieving this goal, models
can be defined that use components available on different
AsTeRICS-enabled machines. This will enable a component A
available on one AsTeRICS machine to communicate with a
component B available on another AsTeRICS machine. In this
manner, advanced interaction capabilities between remote
components will be provided for realising even more complex
AT scenarios.

VII. ACKNOWLEDGEMENT

This work is supported by the European Commission as
part of the Prosperity4All (Large Contribution) EU project
funded by the Seventh Framework Programme – under grant
agreement no 610510.

REFERENCES

[1] Eurostat: Population and Social Conditions: Percentual Distribution of
Types of Disability by Sex and Age Group. Online.
http://epp.eurostat.cec.eu.int

[2] Assistive Technologies: Principles and Practice (2nd Edition) (15
December 2001) by Albert M. Cook, Susan Hussey

[3] AsTeRICS Homepage (2015, April 17). Retrieved from
http://www.asterics.eu/index.php

[4] TOBI: Tools for Brain Computer Interaction, http://www.tobi-
project.org

[5] BRAIN: Brain-computer interfaces with Rapid Automated Interfaces for
Nonexperts, https://www.brain-project.org/

[6] BrainAble: Autonomy and social inclusion through mixed reality Brain-
Computer Interfaces: Connecting the disabled to their physical and
social world, http://www.brainable.org/

[7] OSGi Alliance Homepage (2015, April 17). Retrieved from
http://www.osgi.org/Main/HomePage

[8] AsTeRICS Developers Manual, Chapter 8. Retrieved online:
http://www.asterics.eu/download/DeveloperManual.pdf

[9] L. Richardson, M. Amundsen, S. Ruby, “RESTful Web APIs”. O’Reilly
Media, September 2013.

[10] Project Grizzly (2015, April 17). Retrieved from https://grizzly.java.net.

[11] FlashWords App (2016, March 11) http://www.lifetool.at/assistive-
technology/lifetool-developments/apps-for-tablet-computers/flash-
words.html?L=1

http://www.asterics.eu/index.php
http://www.tobi-project.org/
http://www.tobi-project.org/
https://www.brain-project.org/
http://www.brainable.org/
http://www.osgi.org/Main/HomePage
https://grizzly.java.net/
http://www.lifetool.at/assistive-technology/lifetool-developments/apps-for-tablet-computers/flash-words.html?L=1
http://www.lifetool.at/assistive-technology/lifetool-developments/apps-for-tablet-computers/flash-words.html?L=1
http://www.lifetool.at/assistive-technology/lifetool-developments/apps-for-tablet-computers/flash-words.html?L=1

