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Abstract
While the benefits of product recommender systems (RS) are prominent, due to the complexity of recommendation algo-
rithms and data models, it is difficult for businesses to deploy such systems on their e-stores. Related works that tackle RS 
development complexity do not entirely abstract the technical details from developers; thus, margins for improvement exist. 
Moreover, these works do not offer solutions that eliminate the need to write code by developers. These are the motivations 
for the Ubiquitous Context-Aware Recommender Systems (UbiCARS) Framework proposed in the current work. UbiCARS 
utilize user feedback acquisition techniques from both e-stores and physical stores to offer recommendations. The framework 
aims to reduce development complexity, abstract technical details and expedite the development of UbiCARS (facilitating 
both e-stores and physical stores) by non-RS experts. This is achieved through a Model-Driven Development methodology, 
that uses a model-based configuration process where models of recommender systems drive the dynamic configuration of 
UbiCARS on e-stores. The framework was evaluated with developers and experts via the survey method. The evaluation 
results show the framework’s potential.

Keywords Recommender systems for commerce · Ubiquitous product recommendations · Model-driven development · 
Domain specific modelling language · UbiCARS

Introduction

Recommender systems (RS) discover knowledge about users 
and based on this knowledge, offer them personalised rec-
ommendations. According to literature, “un-contextual” RS 
refer to systems that utilize little or no contextual informa-
tion for recommendation computation, while Context-Aware 
Recommender Systems (CARS) are designed to use more 
contextual parameters to increase recommendations’ accu-
racy [1]. The term UbiCARS (Ubiquitous CARS) firstly 
introduced in [2] by the authors, refers to CARS that are 
able to acquire and utilize user feedback on items not only 
from their online behaviour (e.g., an e-store), but from their 
behaviour in ubiquitous (physical) environments as well 
(e.g., a physical store). In the literature it has been shown 

that product recommendations to customers boost sales [1, 
3], increase customers’ satisfaction [1] and improve users’ 
experience [4]. Thus, both customers and e-stores benefit 
from RS [3].

Whilst e-commerce sees an exponential growth, reports 
during the past years have shown that physical (traditional) 
commerce is still more popular than e-commerce [5, 6]. 
Consumers still prefer in-store shopping for reasons, such 
as to fill an immediate need or want, to “touch and feel” the 
merchandise, to interact with service professionals, and to 
have a social experience in the store [7]. Information sys-
tems, and in particular RS, are important in understanding 
what customers prefer, so where such systems are not uti-
lized, customer needs and demands cannot be met imme-
diately, risking a reduction on their shopping interest [8].

In e-commerce settings, RS track user behaviour online 
by acquiring user feedback data on products on the e-store 
(e.g., users’ ratings on products and users’ purchase his-
tory) to compute personalised product recommendations to 
users. In the ubiquitous, physical (brick-and-mortar) store 
scenario though, different methods are used to determine 
users’ preferences on products, e.g., sensing the staying time 
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of customers in various product areas in the store or sensing 
the shopping path of customers within the store [5, 9]. The 
aim is to recommend to users products or brand stores to 
visit, as well as to offer them product ratings and reviews.

A key question on which we focus in this paper, is: how 
can businesses deploy RS on their e-stores and physical 
stores in an easy way? How can e-store experts and develop-
ers that are not RS experts deploy RS? A potential solution is 
by using open-source RS frameworks such as Easyrec,1 Len-
skit,2 Librec3 and MyMediaLite.4 Such frameworks could 
potentially be used by retail businesses as recommendation 
engines towards building RS for their e-stores; however, it is 
quite difficult for e-store developers and software engineers 
that are not experts in recommender systems to achieve such 
a task [10, 11]. Such frameworks do not abstract the techni-
cal details regarding the inclusion of recommendations to 
e-stores, which requires developers working on code level 
to accomplish tasks such as acquiring user feedback data, 
building data models, and developing software to retrieve 
the recommendations after their computation by the recom-
mendation engine and display them on the e-store.

On another dimension, recent research on RS suggests 
that highly complex Machine Learning (ML) algorithms 
produce the most accurate recommendation results; however, 
due to their complexity, it is difficult for non-RS experts to 
use them in their applications [12]. In fact, even researchers 
face difficulties in tracking how ML algorithms are used in 
RS [12].

Another solution is outsourcing the process. Several RS 
expert companies exist that offer proprietary RS as com-
mercial solutions (Google Cloud Machine Learning,5 SLI 
Systems Recommender,6 Azure Machine Learning Studio,7 
Amazon Machine Learning,8 Yusp9). These RS experts 
deploy their own RS on their clients’ e-stores with the aim 
to increase sales [13]. The advantage of such a solution for 
client businesses is that the experts manage by themselves 
the recommendation algorithms and the data needed for the 
recommendation process (content and context data, users’ 
profile information, users’ behaviour history, etc.), while the 
clients are only responsible for displaying the recommenda-
tions under experts’ guidance and supervision. At the same 
time, disadvantages include the added cost, and that clients 

are not really motivated in investing in the recommendation 
algorithms per se. Another disadvantage is that the deployed 
RS cannot be used for further exploration or extension by 
clients themselves, as it is difficult to determine the algo-
rithms that the experts use, how they use them, whether they 
combine more than one, etc. Hiring RS expert companies 
may not be feasible for all businesses, especially smaller 
ones that would like to offer recommendations to their users 
in an economical way, and, at the same time, keep control of 
the recommendation algorithms used, as well as not being 
dependant of vendors. For these businesses, the best solu-
tion would be finding a way to deal with RS development 
complexity in order to develop their own RS.

A few works in the literature offer methods to tackle RS 
development complexity [10, 11, 14, 15]; but none of these 
works manages to adequately abstract the technical details 
of data acquisition, data model construction, and software 
development for computing and displaying the recom-
mendations on e-stores. Furthermore, the State-of-the-Art 
works do not succeed in eliminating or reducing the need 
to write code by developers, so that RS for commerce can 
be designed, developed and deployed expeditiously even by 
non-RS experts.

Having as motivation the above, we propose the UbiC-
ARS Model-Driven Development (MDD) Framework that 
aims to reduce complexity, abstract the technical details, 
and expedite the design, development, and deployment of 
UbiCARS in ubiquitous commerce environments (physical 
stores) and electronic commerce environments (e-stores) by 
developers with no expertise and knowledge on RS.

Our research defines the following research questions:
RQ1 Does the UbiCARS MDD Framework reduce the 

development time (expedite the development) of Ubiquitous 
Context-Aware Recommender Systems for commerce for 
developers that are non-experts in RS?

RQ2 Does the UbiCARS MDD Framework reduce devel-
opment complexity in developing Ubiquitous Context-Aware 
Recommender Systems for commerce for developers that are 
non-experts in RS by reducing the lines of code and database 
queries developers need to write?

In an attempt to minimize the need to write code by the 
developers, our approach does not use code generation 
techniques and model-to-code transformations that would 
require from developers to work on code level in order to 
use and extend the generated artefacts. Instead, our approach 
proposes using models designed by developers to drive 
model-based automatic configurations [16, 17] directly on 
e-store platforms. The configurations concern the integra-
tion of UbiCARS (that realize user feedback techniques on 
e-stores and physical stores) with e-stores. In the proposed 
methodology, scenarios can be identified where the need for 
developers to write code is eliminated. In other scenarios 

1 sourc eforge. net/ proje cts/ easyr ec/.
2 lensk it. org/.
3 github. com/ guogu ibing/ librec.
4 mymed ialite. net/.
5 cloud. google. com/ ml- engine.
6 www. sli- syste ms. com/.
7 azure. micro soft. com/ en- us/ servi ces/ machi ne- learn ing- studio/.
8 aws. amazon. com/ machi ne- learn ing/.
9 www. lease web. com/ en/ custo mers/ yusp.

http://www.sourceforge.net/projects/easyrec/
http://www.lenskit.org/
http://www.github.com/guoguibing/librec
http://www.mymedialite.net/
http://www.cloud.google.com/ml-engine
http://www.sli-systems.com/
http://www.azure.microsoft.com/en-us/services/machine-learning-studio/
http://www.aws.amazon.com/machine-learning/
http://www.leaseweb.com/en/customers/yusp
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however, a set of software modules that execute a particular 
task must be developed.

The novelty of the work is the UbiCARS framework that 
includes a graphical DSML (Domain Specific Modelling 
Language) for UbiCARS and a configuration component, 
which facilitate respectively a model-based design and 
dynamic configuration of UbiCARS for physical and online 
commerce. The UbiCARS DSML is fundamentally a graphi-
cal language with a corresponding modelling editor where 
developers can design UbiCARS and deploy them for use in 
physical and online commerce. Our methodology does not 
conduct modelling of recommendation algorithms’ logic, as 
this would make the DSML algorithm specific and would 
significantly increase its complexity, while too complex 
recommendation algorithms would be impossible to model. 
Rather, the framework makes use of existing recommenda-
tion algorithms and engines by exposing them to the mod-
elling layer and, in this way, making them available to the 
framework. To the best of our knowledge, an MDD frame-
work for UbiCARS that provides a DSML for the commerce 
domain does not yet exist. While in our previous work [18] 
an initial version of the framework has been presented and 
tested through experimentation in the premises of a research 
laboratory, in this paper we fully elaborate on an updated, 
extended version of the framework that considers the initial 
feedback received. Furthermore, we describe two evalua-
tions of the framework, one with developers and one with 
experts. The paper also conducts a comparison of the model-
ling against the coding methodologies in terms of develop-
ment effort needed to implement a RS on an e-store. Finally, 
we examine and discuss our research questions.

In the remaining of this section, we provide an example of 
use of the UbiCARS framework, aiming to show the benefits 
for both the customer and the store.

UbiCARS Example of Use

Assume the "SmarTech electronics store that has an 
e-commerce website and a number of physical show-
rooms with electronic products. The UbiCARS frame-
work requires a mobile application (UbiCARS app, see 
“UbiCARS Methodology” section) for usage in the physi-
cal showrooms, as well as a server side system (a CARS, 
see “UbiCARS Methodology” section) functioning on the 
e-commerce website. Thomas, as a frequent visitor of the 
SmarTech e-store, has already bought and rated several 
products online. Thomas fancies the recommendations of 
products he receives on the e-store since these are person-
alised and most of the times suit his preferences. Thomas 
is currently visiting the SmarTech physical store show-
room, which only displays a small subset of the available 
products offered on the e-store due to limited physical 
space. A laptop on a shelf has caught his attention, so he 

approaches it to read the specifications on the small tag. 
Thomas switches on the SmarTech UbiCARS application 
on his mobile device. The application sends to the server 
information based on which the latter identifies the prod-
uct in front of Thomas and calculates his staying time in 
front of the product. Having available this new behavioural 
data about Thomas, the CARS computes new product rec-
ommendations for Thomas that he can access through the 
UbiCARS app, similar to those he receives while brows-
ing the SmarTech e-store. The recommended products 
can be found in the showroom (Thomas can immediately 
check them out), or online through the SmarTech e-store. 
Thomas finds it informative and entertaining to be able to 
receive recommendations while in the store.

After Thomas repeatedly visits both the SmarTech physi-
cal store and e-store, he is tracked by the system in terms of 
the following: product ratings (explicit feedback), browsing 
history and online purchase history (implicit feedback) from 
the e-store, and Staying time in seconds (implicit feedback) 
from the physical store. From each of the abovementioned, 
the system is able to compile datasets and use them as input 
in the recommendation algorithm. Listings 1 and 2 depict 
examples of such datasets. Thus, in addition to the e-store 
related datasets, the CARS system is now enabled to also 
use the staying time dataset to produce recommendations 
(related with DP5, see  “Framework Design Principles” sec-
tion). The availability of the additional dataset contributes to 
a potential reduction of the cold start problem. The cold start 
problem is an inherent problem of RS which dictates that, 
for RS to be able to produce meaningful recommendations, 
user interaction with items first needs to take place. The 
additional dataset makes more user-product interaction data 
available for the recommendation algorithm to use. Moreo-
ver, the additional dataset suggests a reduction of uncer-
tainties; thus, the recommendation algorithms will probably 
perform better. In this sense, as additional data regarding 
Thomas’ interaction with items is used by the RS, product 
recommendations for Thomas during his following visits to 
the SmarTech e-store or the physical stores will potentially 
be more accurate.

In terms of recommendation availability, since each 
implicit and explicit user feedback technique provides a 
new dataset for recommendation computation, and thus, an 
alternative way for computing recommendations, it is stated 
that the UbiCARS methodology potentially increases recom-
mendation availability. In the example of use, recommenda-
tions for Thomas can be computed by using any of the fol-
lowing datasets: ratings, purchase history, browsing history 
and staying time.

The potential improvement of recommendations’ accu-
racy and availability mentioned above has not been currently 
proven, and therefore is not included in the contributions of 
this paper. This is left as future work. 
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Listing 1  Ratings Dataset

UserID Itemid Rating Day Time

1 15 4 Weekday Evening
5 24 5 Weekend Noon

Listing 2  Staying Time Dataset

UserID Itemid StayedIn-
FrontOf

Day Time

1 25 231 Weekday Afternoon
3 29 38 Weekend Morning

Section “Background and Related Work” provides the 
background on important concepts of this research, i.e., on 
RS, CARS and UbiCARS, user feedback acquisition tech-
niques met in e-commerce and physical commerce, as well 
as background on MDD. Section “Background and Related 
Work” continues by describing related work on systems 
in the literature that attempt to address development com-
plexity of RS. Section “The UbiCARS MDD Framework” 
describes the UbiCARS MDD Framework, and in “Design 
Demonstration” section, the UbiCARS Demonstrator is pre-
sented. Section “Evaluation” discusses the evaluation of the 
framework and results. The paper completes with discussion 
of results in “Discussion” section and conclusions and future 
work in “Conclusions and Future Work” section.

Background and Related Work

After introducing the concepts based on which we have for-
mulated the contributions of the paper, this section discusses 
related work.

RS, CARS and UbiCARS

RS have attracted the research community’s interest for the 
past twenty years. Many techniques have been proposed, as 
well as many extensions and improvements. The most well-
known recommendation approaches are the Collaborative 
Filtering (CF), the Content-based filtering and Hybrid rec-
ommendation techniques. The most widely used approach, 
CF, recommends items that similar users to the active user 
have highly rated (hence like). There are two types of meth-
ods followed in CF, the neighbourhood methods that use 
similarity functions (Pearson Correlation or Cosine Dis-
tance) to compute the user’s neighbourhood, and the model-
based methods that use user feedback on items (e.g., ratings) 
to learn a model for the user that is then used for computing 
recommendations [19].

Recently, the research community realised that RS have 
only been using a part of the available information for pro-
ducing recommendations. The problem was that traditional 
RS do not utilise context information. Instead, they focus 
on two dimensions: the user and the items (also called 
two-dimensional RS), excluding other contextual data that 
could be used in the recommendation process. Adomavicius 
et al. were among the first to prove that contextual infor-
mation incorporated in the recommendation process indeed 
improves recommendations; they proposed that the recom-
mendation procedure should not be two-dimensional but 
rather multi-dimensional, introducing the Context-Aware 
Recommender Systems—CARS [19]. From the many 
methods of using context for producing recommendations, 
Adomavicius et al. [19] discuss that contextual modelling is 
the most effective and accurate method.

Contextual modelling refers to the Multidimensional 
Contextual Modelling approach which incorporates the mul-
tidimensional context in the recommendation process (as 
opposed to other techniques described in [19]). According 
to Adomavicius et al., the contextual modelling approach 
promotes truly multidimensional recommendation methods, 
which essentially represent ML predictive models that incor-
porate contextual information in addition to the user and 
item data. The input data of those models include additional 
dimensions besides users and items. These are CF model-
based methods, and specifically latent factor models (ML 
approaches) that attempt to estimate ratings by characteris-
ing both items and users in latent factors inferred from the 
ratings patterns [20, 21]. Some of the most successful reali-
sations of latent factor models are based on Matrix Factori-
sation; it has been shown that Matrix Factorisation models 
are superior in terms of accuracy to neighbourhood meth-
ods for producing product recommendations, also allowing 
the incorporation of additional information besides explicit 
user feedback, such as implicit feedback, temporal effects, 
and confidence levels. More on ML on RSs can be found in 
[22], a recent comprehensive review on RSs in [23] and on 
CARS in [24].

Ubiquitous RS on the other hand facilitate users on-
location by providing them with personalized recommen-
dations of items in the proximity via mobile devices [2]. 
Ubiquitous RS use sophisticated recommendation methods 
to compute the recommendations for their users. Intelligent 
tourist guides, navigation aids, and shopping recommenders 
that recommend based upon user activities and behaviour 
patterns are examples of such systems. Furthermore, Ubiq-
uitous CARS (UbiCARS) are ubiquitous RS that also uti-
lize the context in the recommendation process in a similar 
manner as CARS do. UbiCARS use contextual modelling 
to incorporate contextual information in the recommenda-
tion process, only that their context also consists of ubiq-
uitous information such as the user’s location, items in the 
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proximity, etc. In [2], we provide a formal definition for 
ubiquitous RS and UbiCARS.

Challenges

Challenges related to UbiCARS can be categorized in those 
related to ubiquitous computing and those related to RS [2].

Challenges related to ubiquitous computing:

• Due to operating in ubiquitous environments via mobile 
devices, UbiCARS face important technological chal-
lenges such as energy concerns, storage limitations, 
wireless technologies issues, connectivity issues and 
networking issues.

• The mobile device must be able to track user intentions 
for the system to understand what actions could help the 
user accomplish his/her goals. For example, the mobile 
device of a UbiCARS for products must be able in real 
time to identify the item the user is interested in: he/she 
is having in front of him/her or holding at any given time.

• Users operate small devices that need attention.
• Devices may not be transparent since they operate on-

field and by considering various contextual parameters: 
not transparent devices may provoke feelings of frustra-
tion to users.

• Context sensing: appropriate technologies and sensors 
must be utilized to infer the context in real-time. Context 
sensing should be done automatically, and system actions 
based on context changes must be transparent to the user.

• Appropriate usage of all available context. For example, 
a UbiCARS for products will consider among other, the 
user preferences (what the user likes) in combination 
with environmental context (the current day/time and 
location) to provide personalized recommendations.

• Privacy concerns regarding location-awareness. The 
user must trust the system to agree in providing sensi-
tive information such as location.

Challenges related to recommender systems:

• Building appropriate user models to effectively store and 
use user preferences and the context.

• The “New user” and “New item” problems are two of the 
most important ones since UbiCARS use CF.

RS for E‑commerce

CF relies only on users’ behaviour and this characteristic 
makes it the most suitable method for e-commerce, since 
explicit profiles for users and/or products are not needed 
[4]. However, users still need to act on items for the RS to 
be able to produce recommendations.

In e-commerce, RS use explicit user feedback data on 
products (e.g., users’ ratings on products) to model users’ 
preferences and, based on the user model, provide person-
alised product recommendations to users [4, 9]. Where 
explicit feedback is not available, implicit user feedback 
data on products can be used. Implicit feedback is acquired 
by tracking users’ behaviour, e.g., users’ purchase history 
(transaction data), clickstream data,10 click-through rate11 
(CTR) and browsing history on product webpages [25–27]. 
Implicit techniques have been used by RS for products on 
e-stores, as well as movies, music, scientific papers, and 
other. Explicit techniques require users’ cognitive effort, 
which may act as disincentive, leading thus to data sparsity 
[28]. Moreover, they interrupt users’ task. Problems in using 
implicit techniques are that users’ actions denote what users 
like but not necessarily what they do not like; and that while 
users’ behaviour can be tracked, true users’ preferences and 
motives can only be guessed [4] (e.g., a purchased item 
could be a gift, or the user could eventually be disappointed 
with the product).

Works in the literature that utilize implicit and explicit 
user feedback acquisition techniques in e-commerce are 
discussed next.

Yang et al. [26] propose a music RS for which positive 
user behaviour on songs included explicit and implicit song 
play, playing a full song, search for a song to add in the 
playlist and register a new song. Negative user behaviour 
included explicit song skip by the user, implicit skip (when 
changing the song), and delete a song from the playlist. In 
[27], users’ dwell time on Yahoo home page items was used 
to measure the likelihood a page item is relevant to a user. 
Dwell time on page objects as implicit user feedback data 
was also utilized by Peska [25]. Sulikowski and Zdziebko 
[29, 30] utilize the times the cursor is in recommendation 
areas of their e-commerce website, their physical size, and 
the users’ product interest. In [31], the authors have used 
gaze tracking solutions, as well as counting the number of 
times the user moved over or browsed a given element of 
the website to learn users’ preferences. In [32], a CF RS is 
proposed that uses the social-economic indicators of users 
who have bought or evaluated an item as implicit user feed-
back to mitigate the cold start problem. In [33], the usage of 
AI in e-commerce RS is reviewed, reporting content-based 
scoring, collaborative filtering, deep learning, and virtual 
assistants. According to the authors, the benefits of using AI 
in RS include improved decision-making, reduced shopping 
duration and effort, increased sales, and overcoming data 
sparsity and cold-start issues. In [34], an extension of online 

10 Data about which webpages users visit, e.g., product webpages.
11 The ratio of users who click on a link to the number of total users 
who view the webpage.
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learning methods for re-ranking modelling in e-commerce 
RS is proposed. In RS, a re-ranking model re-ranks the item 
candidates by considering additional criteria or constraints. 
According to the authors, the proposed model can effectively 
model online learning without waiting for real user feed-
back, which may be delayed (e.g., item purchases).

A work similar to ours was conducted by Hwangbo et al. 
[35], who proposed a recommendation method that com-
bines users’ click history on products on the e-store of a 
fashion company,12 with users’ product purchase history 
from the same company’s physical store. The aim was to 
reflect the online and physical preferences of customers 
respectively. In their setting, there was no linkage between 
the customers of the e-store and those of the physical store. 
This scenario differs from the settings of our work, where a 
customer has an online presence on the e-store, as well as a 
physical presence at the physical store, where these two are 
linked together via one user account in the system. Moreo-
ver, in [35], users’ purchases on products were being tracked 
in the physical store, whereas our method proposes using the 
“Staying Time in front of a product” within the store (see 
“UbiCARS Methodology” section). The authors conducted 
an experimental evaluation with real users utilizing online 
and physical store data from users. The results indicate that 
utilizing implicit and explicit user feedback acquisition tech-
niques can improve recommendations’ accuracy.

In addition to implicit and explicit techniques, an alter-
native recommendation approach analyses users’ textual 
reviews on e-commerce (and other) online platforms. As 
reviews provide insights into users’ fine-grained preferences 
and item features, analysing these reviews contributes to 
enhancing the performance and interpretability of person-
alized recommendations [36]. Review-based recommender 
systems are considered to be a significant sub-field in the 
recommendation domain. More on the topic can be found 
in [36]

RS for Physical Stores

Many works in the literature have utilized e-commerce RS 
techniques to provide recommendations to their customers 
at physical store locations, such as a shopping mall, a theme 
park, a restaurant, or a grocery store. While most of these 
works based their recommendations mostly on customers’ 
purchase history, So and Yada [9] proposed providing rec-
ommendations of shops to visit based on users’ in-store 
shopping path. CF was used based on customers’ “staying 

time” in each area. Other works [37] have shown that staying 
time in an area is related to the level of interest of the user 
in the item positioned in that selling area. It is also possible 
that users staying in a selling area for an extensive amount of 
time make spontaneous purchases of products in that area [9, 
38–40]. In the following we describe how works have used 
ubiquitous technologies to understand user preferences for 
RS in physical stores.

Fang et al. [5] proposed a mobile store RS that relies on a 
novel indoor mobile positioning approach that uses mobile 
phone signals, achieving store level accuracy. Jie et  al. 
[41] described a shop RS to be used in a shopping mall. 
Customers’ location detection is achieved via the usage of 
appropriate RFID devices. Walter et al. [3] utilize a personal 
shopping assistant (PSA) that recommends products to cus-
tomers based on the products within the customers’ cart, the 
customers’ location, and the customers’ purchase history. In 
[42], a smartphone-based augmented reality shopping assis-
tant application is proposed, which uses augmented reality to 
display tailor-made offers, product comparison and recom-
mendations, utilizing explainable artificial intelligence. The 
RS has access to users’ personal information such as social 
media and historical purchase data. Anchored around the 
product of interest, the application displayed recommenda-
tions, offers, and comparison of items [42], e.g., it could 
identify the product with which the customer was interacting 
and provide tailored content. Kawashima et al. [43] proposed 
a shopping RS that assigns user preference scores based on 
how near a user is to the product, whether a user picks up a 
product or whether a user scans a product via a RFID reader. 
Pfeiffer et al. [44] presented a system that uses eye-tracking 
to understand when users are standing in front of shelves and 
use it as an implicit user feedback in a non-intrusive way. 
Reischach et al. [45, 46] facilitated users while shopping at 
the physical store, not only through personalized product 
recommendations, but also through the provision of users’ 
comments, suggestions, and ratings on products they are 
about to buy. The authors in [8] identify customers’ prefer-
ences by scanning RFID tags of products using smartphones 
with RFID readers and providing in real time information 
related to the products and product recommendations. Mora 
et al. [47] have used a mixed reality (MR) head-mounted 
display (HMD) to recommend products to customers while 
shopping via a mobile app. The system uses customers’ 
behaviour in-store such as 3D position, head orientation, 
eye gaze, gesture recognition and voice commands. Other 
works for the interested reader are: [48, 49].

From the above discussion it is shown that, in terms of 
facilitating shopping in physical stores, ubiquitous (mobile 
and wireless) technology can be used to acquire user feed-
back in order to elicit user preferences, while RS technology 
and methods can offer personalised content to users. Table 1 

12 Company statistics: 5 million members; 40 000 products sold 
yearly online; 1.5 million clicks and 10 000 online transactions are 
available per month; 1300 physical stores in Korea; 20,000 products 
sold yearly.
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summarises the ubiquitous technologies used in the above 
works and how they were used.

Model‑Driven Development

Model-Driven Development aims at the abstract represen-
tation of application domains and the use of mapping tools 
to transform the abstract model into a working application 
(model-to-code transformation). Models through automated 
transformations or interpretations are converted into appli-
cations, eliminating or minimising the need to write code. 
In MDD, an important challenge is to include all required 
structures to describe the model, while keeping the element 
of abstraction, that is more challenging in specific areas, 
such as cross-platform applications [50]. Many works in the 
literature have used MDD in various domains, such as Inter-
net of Things applications [51].

Using MDD for Automated Configuration of Applications

MDD has been used for automated configuration of sys-
tems and applications in other domains than commerce. In 
[16], White et al. proposed an MDD approach for automated 
enterprise application configuration. The authors argue that 
enterprise applications are hard to configure, and thus tech-
niques for their automated configuration are needed. The 
proposed approach builds a model that specifies the applica-
tion’s configuration rules. Configuration artefacts, such as 
XML configuration files, are then generated from the model. 

The approach uses the model to execute a series of probes to 
verify configuration properties, formalises feature selection 
as a constraint satisfaction problem, and applies constraint 
logic programming techniques to derive a correct applica-
tion configuration.

MDD has been applied on cloud computing as well. In 
[17], Achilleos et al. discussed that the diversity of cloud 
infrastructures, platforms, and tools that is offered to busi-
nesses creates challenges, such as hinders interoperability, 
promotes vendor lock-in, and prevents businesses from mak-
ing informed and optimal decisions when transitioning to the 
cloud [17]. There might be a need for businesses to utilise 
many different cloud providers, e.g., in the case where a 
hybrid cloud deployment is desirable, where the application 
servers can be deployed in a public cloud, while the database 
servers are deployed in the private cloud of the firms. In the 
context of the PaaSage FP7 EU funded project, an open-
source integrated platform has been developed that allows 
model-based development, configuration, optimisation and 
deployment, supporting existing and new applications inde-
pendently of the existing underlying cloud infrastructures. It 
offers a model-driven approach, which incorporates work-
flow-driven, script-based deployment of applications.

Related Work

Few works in the literature propose using modelling and 
other software engineering techniques for aiding the devel-
opment of RS by tackling RS development complexity. 

Table 1  Usage of ubiquitous technologies in works that facilitate physical shopping

a: RFID/ NFC Product Scanning; b: Wi-Fi Location Tracking; c: 3G Location Tracking; d: Mobile Received Signal Strength; e: Ultrasonic 3D 
tagging system; f: Wearables

References Technology Methodology

[9] a, b Tracking customers’ in-store shopping path. Shopping carts with attached RFID tags enable for tracking the shopping 
cart’s position in the store and record its shopping path

[3] a Uses a Personal Shopping Assistant for tracking the products in the user’s shopping cart and user’s location. All prod-
ucts must be tagged with RFID chips. Able to identify products the user is currently looking at or has added in their 
shopping card

[5] d Indoor mobile positioning approach using received signal strength (RSS) from mobile phone received signals to rec-
ommend brand stores to users in a big shopping Mall (store level accuracy)

[43] a, e Ultrasonic 3D tag system for product indoor positioning is used to track user’s physical distance from the items. “Near 
an object”: the distance between the user and a physical object is within 50 cm. “Picking up an object”: user picks up 
an object over 20 cm. “Scanning an object”: user obtains the data of physical object using a RFID reader device

[41] a RS that recommends shops in a mall: to detect customers’ location, RFID devices and related infrastructure have been 
deployed

[44] a, b, c, f Eye-tracking technology is used via special glasses to identify user interest on products on shelves. The system uses 
different technologies for localisation (GPS, Wi-Fi, 3G, NFC, Accelerometer, Gyroscope, and Compass). UI enables 
using speech, gaze and gestures for communication

[46] a Users scan RFID tagged products by using a mobile device to receive/produce recommendations
[8] a A smartphone application is able to identify customers’ preferences, by scanning RFID tags on products using smart-

phones with RFID readers, and provide product information and recommendations in real time
[47] f Used a MR HMD to recommend products to customers while shopping via a mobile app
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This section describes the State-of-the-Art in the literature 
regarding works that focus on how RS development could 
be simplified and expedited.

Hussein et al. [10] support that research into RS has been 
concentrated on the development, optimization and evalua-
tion of recommendation algorithms, giving less attention on 
the support and facilitation of the development of RS from 
a software engineering and architectural perspective. They 
propose a recommendation framework named Hybreed for 
assisting developers build CARS and hybrid RS. Hybreed 
supports the development of RS by applying a decentralized, 
service-oriented approach. It utilizes a dynamic contextu-
alization process to provide an abstraction for developers, 
reduce programming effort, and increase comprehensibil-
ity and usability when developing complex RS. Hybreed 
requires developers to write code. To develop an application 
using Hybreed, developers need to utilize Hybreed’s View 
Java interface to create customized views and instantiate a 
Kernel object by utilizing these views [10].

Rojas et al. [14] research on how to assist web developers 
in dealing with recommendation algorithm complexity when 
attempting to use such algorithms in their web applications. 
The authors emphasize the absence of model-driven method-
ologies for determining the specifications of RS algorithms 
and interface characteristics. They define a UML-based 
modelling approach and model an un-contextual Item-to-
Item CF recommendation approach for including recommen-
dations in e-commerce applications. Developers may interact 
with their system via object creation procedures using the 
framework’s classes and execution of appropriate functions, 
e.g., create, delete, update, and retrieve. The authors state 
that the development of their case study of an online travel 
agency took considerably less time in contrast to the devel-
opment time for an alternative content-based RS. About 
modelling the recommendation algorithm itself, we could 
argue that flexibility is reduced as the model becomes algo-
rithm-specific making it difficult to use other algorithms, 
the complexity of the modelling process increases since 
hard to comprehend recommendation specific parameters 
become available for usage by designers, and the complexity 
an algorithm can have to be able to be used in the proposed 
model-driven process is somewhat limited, in the sense that 
too complex recommendation algorithms will be difficult to 
be modelled.

Inzunza et al. [11] propose a user modelling framework 
for CARS named UM4RS that serves as a tool for building 
data models for CARS. The framework aims to increase the 
productivity of developers while building the data model 
(user, item, and context) for CARS. A model schema for 
CARS and a UML class description are offered. Developers 
can use the modelling framework to create objects from its 
classes and perform actions such as create, retrieve, update 
and delete. The framework was evaluated based on how 

effectively it could create CARS data models out of data-
sets from the literature with positive results. However, the 
framework was not evaluated with developers. A develop-
ment framework for CARS for mobile users is proposed in 
[15]. The framework proposes a pull-based architecture for 
pull-based mobile recommendations, i.e., recommendations 
are provided as a response to a user generated query.

Our work differs from related work in the following six 
important aspects:

• It defines a novel Domain Specific Modelling Language 
for UbiCARS (UbiCARS DSML), abstracting technical 
details to a higher level, minimizing thus the need for 
technical expertise.

• A DSML model is easily extendable, as new model ele-
ments can be added to support additional functionality 
(e.g., additional explicit/implicit user feedback tech-
niques and alternative recommendation engines).

• It focuses on the ubiquitous scenario of UbiCARS, aim-
ing to improve product recommendations’ accuracy and 
availability: [26] proved that users' implicit feedback 
improves recommendations’ accuracy, whereas [35] has 
used user explicit feedback data in terms of purchases, 
together with implicit feedback data in terms of user 
clicks on products to improve recommendations’ accu-
racy (see “RS for E-commerce” section). The claimed 
potential improvement of recommendations’ accuracy 
and availability is left as future work (“Conclusions and 
Future Work” section).

• It can be directly deployed on existing e-stores, making 
its adoption easier.

• Developers do not need to extend classes or interfaces 
to use it, while writing code is minimised to the extent 
possible.

• It supports the usage of sophisticated algorithms and data 
models from the State-of-the-Art of RS literature. How-
ever, it does not model the recommendation algorithms 
to avoid increased model complexity and maintain flex-
ibility.

Table 2 lists the available tools for aiding the develop-
ment of RS and their key characteristics.

The UbiCARS MDD Framework

Framework Design Principles

While the works described in “Related work” section related 
work have utilized innovative methods to tackle RS develop-
ment complexity, we argue that the level of technical abstrac-
tion offered by the proposed methods is somewhat limited 
and can be further increased, while the need to write code 
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by developers can be further reduced or even eliminated. To 
this end, we have specified a list of Design Principles (DPs) 
for the UbiCARS MDD Framework that also constitute the 
main points of differentiation from related work:

• DP1. Technical details be abstracted to the highest level 
possible.

• DP2. Offer automation: UbiCARS models should be 
defined as abstractions and be able to automatically con-
verted into UbiCARS systems, eliminating the need to 
write code.

• DP3. Recommendation algorithmic details be abstracted 
from developers: developers, non-experts in RS, should 
be able to develop RS for commerce in less time than by 
using any other recommendation framework or develop-
ing a RS manually.

• DP4. Use intelligent algorithms to not compromise rec-
ommendations’ accuracy.

• DP5. Allow combining user feedback data from both the 
ubiquitous and online scenarios to potentially improve 
product recommendations’ accuracy and availability (to 
be proven).

• DP6. Be easily extendable: allow for new modules/ele-
ments to be added to support additional functionality.

• DP7. Increase productivity by offering reuse of UbiC-
ARS models.

• DP8. Enable the deployment of UbiCARS on existing 
and new e-stores.

UbiCARS Methodology

The framework facilitates the design, development and 
deployment of UbiCARS on e-stores and physical stores in 
an automated manner, during which developers do not need 
to write code. It defines the DSML that models the entire 
recommendation process for UbiCARS, and a graphical 
modelling editor for the DSML. The editor enables develop-
ers to use the DSML towards designing UbiCARS through 
a model-based approach, and dynamically configuring them 
on e-stores, both new and existing ones. Figure 1 depicts Ta
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the framework’s multi-layered software architecture. The 
DSML, through the modelling editor, acts on the Modelling 
layer, enabling developers to design UbiCARS models.

Upon UbiCARS design completion, UbiCARS models 
are exported in XML format, where they serve as configu-
ration files that are then being processed by the Configura-
tion layer via a Parser. The Logic layer is responsible for 
the engineering of UbiCARS: data models and database 
tables are being built, while system configurations are also 
being realized, as these were dictated by the Configuration 
layer. The Logic layer integrates the new RS with e-stores, 
provided that the necessary information has been included 
during design time, such as database URL, database name 
and platform type (configFile element), as well as user 
feedback-specific information (DatabaseResourse 
elements), see respective paragraphs in “UbiCARS DSML” 
section. System configurations for the utilization of data 
from the UbiCARS app (see the following paragraph) are 
also provided by the Logic layer. The Data layer generates 
the multidimensional datasets needed to be fed to the CARS 
system. These datasets include context-aware user-product 
interaction patterns.

The UbiCARS MDD framework configures a CARS sys-
tem and a UbiCARS app as follows:

CARS is a server-side system (including the recommenda-
tion engine) that:

• Enables the tracking of user-product interaction on the 
e-store: user ratings, browsing history and purchase his-
tory.

• Computes personalized recommendations.
• Presents recommendation of products to users within the 

e-store.

UbiCARS app is a mobile application that:

• Enables the tracking of user-product interaction within 
the physical store. Similar to [25, 27] that have used the 
dwell time online as users’ implicit feedback (see “RS for 
E-commerce” section), we propose using the “Staying 
Time in front of a product”.

• Provides access to product recommendations to users 
within the physical store.

Figure 2 presents a block diagram of the framework that 
focuses on its components and their interactions. Starting 
from the DSML that enables the creation of UbiCARS mod-
els, these models feed the CARS system that uses them to 
configure the plugins and the database (DB) on the e-store, 
the recommendation engine and the UbiCARS app.

From the users’ perspective, the framework tracks their 
activities on the e-store and physical store, as well as related 
context, provided that the developer has included in the 
model the corresponding ContextParameter model 
elements, and that the corresponding context sensing plugins 
exist in the system (see “UbiCARS DSML” section).

From the developer’s perspective, interaction with the 
framework is firstly made through the UbiCARS DSML, 
via which the developer creates elements in models. Based 
on these elements, e-store configurations will be conducted. 
Once the UbiCARS model is created (an XML-based file), 
it is uploaded to the framework by the developer through 
the system UI. The system UI is an easy to use, three-button 
user interface pre-installed on the e-store, through which the 
developer: (i) uploads the model, (ii) conducts configura-
tions—including the creation of the datasets, and (iii) selects 
a dataset from the set of available datasets and computes rec-
ommendations on demand. Recommendations are computed 
by utilizing the selected dataset.

Fig. 2  UbiCARS framework 
block diagram
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Prerequisites

For the integration of the framework with the e-store, the fol-
lowing software modules need to be installed on the e-store 
in the form of plugins. These modules are provided by the 
framework.

• System UI: the main UI for the developer to manage the 
framework.

• Plugins for acquiring user feedback data from the e-store: 
such plugins are required only for types of user feedbacks 
for which the e-store does not already store data (e-stores 
usually store user ratings on products and product pur-
chases).

• Context sensing plugins: used for sensing and storing the 
context in the database in corresponding tables created 
by the framework.

• A plugin for presenting the recommendations to users, 
as well as plugins that offer other functionalities such as 
registering user mobile device’s Bluetooth friendly name 
(see paragraph “User Identification Across Devices” in 
“Mobile App Specific Elements” section).

• A recommendation engine: a stand-alone recommen-
dation engine that can be configured and executed by 
the framework (e.g., via a script). It is required that the 
engine receives as input datasets of the same format as 
those of the framework. Framework’s dataset format per 
line (see also Listings 1 & 2 in “Introduction” section), 
where context is not mandatory:

user,item,userFeedback[,context]

Configurations

The following configurations are conducted by the 
framework.

Infrastructure configurations

• Creation of the necessary database infrastructure: the 
required database tables are created.

• Configuration of the recommendation engine: based on 
information from the model, specific settings are pro-
vided by altering configuration files of the engine.

• Configuration of the pre-installed plugins mentioned in 
the subsection above “Prerequisites”.

• Configuration of the UbiCARS app involves selection 
of the ubiquitous technology to be used to acquire user 
feedback data from the physical store.

Context Related Configurations

• Creation of context-aware datasets, one for each of the 
acquired user feedbacks: ratings, browsing history, pur-

chase history, staying time in front of products, scanning 
of products.

• Context is automatically included in a user feedback data-
set if:

o The developer has included a ContextParam-
eter element in the model and linked it to the cor-
responding user feedback element, and

o There is a context sensing mechanism available on 
the e-store or the physical store for sensing and stor-
ing the context in the database in the corresponding 
table created by the framework. Then, the inclusion 
of the context data in the dataset is undertaken by 
the framework (see related paragraph in “UbiCARS 
DSML” section).

Once recommendations are produced, the framework 
makes them available to users (customers) through the 
e-store and the UbiCARS app. The frequency with which 
recommendations are computed is left upon the developer. 
The framework does not provide the means for schedul-
ing the computation of recommendations automatically to 
handle new user preference data that may be added to user 
profiles at runtime; this can be done using utilities from the 
hosting server, such as cron jobs.13

UbiCARS Architecture

Figure 3 presents the architecture of the framework, focus-
ing on users’ (customers’) interaction and tracking users’ 
behaviour (user feedback acquisition). The DSML usage and 
model creation process is not depicted here; rather, we show 
the framework components after system configurations were 
conducted. The client-side frontend of the e-store enables for 
tracking users’ behaviour on products via the browser and 
other third-party software.

To track users’ behaviour server-side, users’ access to the 
products’ webpages is recorded, as well as their purchases. 
Ubiquitous user-product interaction is tracked through the 
UbiCARS app via Bluetooth beacons (estimating users’ stay-
ing time in front of an item). It is possible for the framework 
to be extended with more ubiquitous technologies. NFC tag-
ging would be a possibility, where a user would use his/her 
smartphone to scan a product’s tag to indicate a preference to 
it; however, this requires the user to take explicit action, and 
thus interrupt his/her current task. All user-product interac-
tion data are stored in the database (DB). These data are later 
retrieved by the CARS system to compile the corresponding 

13 A utility on Unix-based systems that allows scheduling a script on 
a server to run automatically at a specified time and date, or repeti-
tively.
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datasets and make them available to the recommendation 
engine, CARSKIT. Resulted recommendations are stored 
in the database and may be presented through the e-store 
front-end and the UbiCARS app. CARSKIT [52] is a Java-
based, open-source engine for CARS that offers algorithms 
from the State-of-the-Art of Recommender Systems research 
area (related with DP4). We have selected CARSKIT among 
other engines because of the variation of algorithms offered, 
while it is also flexible, easy to use and efficient.

UbiCARS DSML

The UbiCARS DSML aims to abstract the technical details 
concerning the ubiquitous product recommendation domain 
to the highest level possible, as well as to expedite RS devel-
opment, to simplify the usage and instantiation of models 
by developers. For the creation of the DSML metamodel, 
we have considered RS research, as well as existing RS and 
parameters available in popular algorithms. The novelty of 
the UbiCARS DSML is summarised as follows:

• It is domain specific for the physical and electronic com-
merce recommendation domain: as such, any domain 
specifics are abstracted from developers to reduce devel-
opment complexity and expedite the design of UbiCARS 
for commerce (related with DP1 and DP3).

• Details of complex recommendation algorithms (such as 
model-based CF approaches) are abstracted from devel-
opers (related with DP3). Their usage is offered in an 
easy and straightforward manner.

• The DSLM is cross-platform: it can be used to design 
UbiCARS models for different types of e-store plat-
forms. This approach abstracts platform specific techni-
cal details from developers at design time (related with 
DP1), such as how to create the database resources, 
how to acquire user feedback data on products, how to 
integrate a recommendation engine, etc. This reduces 
complexity and expedites the design. By using the pro-
duced models, the framework conducts platform-specific 
configurations for the platforms it supports, as shown in 
Fig. 1.

• It offers automation (related with DP2).
• It increases productivity by enabling for dynamic integra-

tion with existing e-stores, as well as by offering reuse of 
UbiCARS models: models can be reused for configura-
tion of e-stores (related with DP7, DP8).

• It is easily extendable, as model elements can be added 
(removed) for additional (less) functionality, and the 
updates are reflected in the CARS system in an auto-
mated fashion (related with DP6).

• It enhances comprehensibility of the physical and elec-
tronic commerce recommendation domain, as well as 
promotes communication between RS professionals via 
standardisation of the terminology in the domain.

For designing the DSML, the open-source Eclipse project 
Sirius14 has been used. Sirius enables the creation of custom 

Fig. 3  Framework architecture

14 www. eclip se. org/ sirius/.

http://www.eclipse.org/sirius/


SN Computer Science           (2025) 6:370  Page 13 of 31   370 

SN Computer Science

Fi
g.

 4
  

Th
e 

pr
op

os
ed

 U
bi

CA
R

S 
D

SM
L



 SN Computer Science           (2025) 6:370   370  Page 14 of 31

SN Computer Science

graphical modelling workbenches by utilizing EMF and 
GMF (Eclipse Modelling technologies). The Eclipse Model-
ling Framework15 (EMF) itself is a framework and code gen-
eration facility for building tools and applications based on a 
structured data model. As the authors in [53] note, designing 
an editor using the Eclipse platform with EMF and GML 
results in a high-quality product, especially regarding usabil-
ity aspects. A comparison of development tools for DSML 
conducted in the same paper (tools compared are: GME, Tau 
G2, RSA, XMF-Mosaic, Eclipse EMF + GEF) concluded 
that the Eclipse platform is the tool offering the highest level 
of graphical completeness, as well as the best usability in 
terms of user experience, tool feedback, and overall number 
of features. For DSML development, we have used the Sirius 
with Obeo Designer Community edition16 that simplifies the 
creation of graphical modelling workbenches.

In Fig. 4, the DSML is presented as a metamodel.17 The 
Application element represents a commerce RS that 
consists of a CARS system and a UbiCARS app. CARS 
defines the explicit user feedback elementRating that 
represents users’ ratings on products, and the implicit user 
feedback elementsPurchaseHistory, ClickStream 
and BrowsingHistory. A CARS can instantiate at most 
one of each of these elements.

The NewUserFeedback elements may be defined 
by the developer if needed as new, custom user feedback 
techniques that can be either explicit or implicit (default is 
explicit). NewUserFeedback elements essentially con-
stitute a means for the developer to define new types of user 
feedback on products within the model. An example of new 
type of user feedback on products is the number of times a 
user has watched a product video description through the 
e-store: the more times watched, the more interested the user 
is in that product. 

If additional user feedbacks are included, then the devel-
oper needs to develop the necessary functionality to acquire 
the new user feedback data from the users via the e-store 
or app.

The UbiCARS app acts in the physical store and utilizes 
the StayingTime implicit user feedback element that rep-
resents the staying time in front of products. The DSML also 
includes the Scanning implicit user feedback element as 
an alternative to the StayingTime, that represents the 
scanning of NFC tags of products. UbiCARS element has 
at most one of each of these elements, while explicit/implicit 
NewUserFeedback elements are also available to be 
defined by designers.

It is mandatory for each of the user feedback elements, 
i.e., Rating, PurchaseHistory, ClickStream, 
BrowsingHistory, StayingTime, Scanning and 
NewUserFeedback to be linked to one DatabaseRe-
source element, while it may also be linked to a number 
of ContextParameter elements. The DatabaseRe-
sourceelement, through parameter resourceValue, 
defines where in the database the user feedback element that 
is linked to it will be stored and how its information can 
be retrieved. The timestampValue parameter is used 
to denote whether timestamp is to be used as a time related 
contextual information (by retrieving the time that the user-
product interaction occurred) and use it as context in the 
recommendation computation. If enabled, the timestamp 
is automatically embedded in the datasets. If a developer 
assigns a timestampValue, then, in case this value pre-
exists as a database table column, then the system automati-
cally uses it (the developer needs to set the timestamp value 
to be the same as the corresponding column name); other-
wise, the system creates it as a new column to record time.

To record the context in which user-product interaction 
occurs (e.g., users’ staying time), the ContextParam-
eter element is used and linked to the respective user feed-
back element (e.g., StayingTime element). As an exam-
ple of context, we note the location of the user, which can 
be expressed either by means of numbers (i.e., GPS coordi-
nates), or by using arbitrary keywords, such as “smartphone 
section within store” or “1st floor”. isAvailable speci-
fies whether the respective context sensing mechanism for 
the ContextParameter element has been implemented 
and can be used, or whether it needs to be implemented by 
the developer. The ContextParameter element is linked 
to a DatabaseResource element as well, that specifies 
the database location where the respective context informa-
tion will be stored (or has already been stored). With the 
above design, the framework becomes aware that a dataset 
is context aware. Implementation of context sensing mecha-
nisms and context plugins (e.g., to acquire users’ location) is 
undertaken by the developer; however, the entire infrastruc-
ture in terms of context data storage, the inclusion of con-
text in datasets, the compilation of context-aware datasets 
and the computation of context-aware recommendations is 
undertaken by the framework. The implementation required 
by the developer includes sensing of context data and storing 
them in a specific database table.

The RecommendationEngine element is responsi-
ble for the recommendations’ computation. The CARSKIT 
recommendation engine is specified in the metamodel as the 
default engine; nevertheless, the framework allows for other 
engines to be integrated and utilized by selecting “Other” as 
the value of the selectedEngine parameter that corre-
sponds to the RecommendationEngineEn enumeration 
in the metamodel. The RecommendationAlgorithm 

15 proje cts. eclip se. org/ proje cts/ model ing. emf. emf.
16 www. obeod esign er. com/ en/ downl oad.
17 The metamodel in high resolution: www. cs. ucy. ac. cy/ ~metto ur/ 
Journ al/ CARSM etamo del. png.

http://www.projects.eclipse.org/projects/modeling.emf.emf
http://www.obeodesigner.com/en/download
http://www.cs.ucy.ac.cy/~mettour/Journal/CARSMetamodel.png
http://www.cs.ucy.ac.cy/~mettour/Journal/CARSMetamodel.png
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element is linked to the recommendation engine and speci-
fies the algorithm in use. The RecommendatioAlgo-
rithmEn enumeration specifies the available recommen-
dation algorithms for the corresponding recommendation 
engine, which can be selected through the algorithm 
parameter of the RecommendationAlgorithm ele-
ment. In case CARSKIT is the developer’s recommenda-
tion engine of choice, the metamodel assigns context-aware 
matrix factorization CAMF_CUas the default algorithm in 
use. Two additional algorithms (CAMF_ICS and CPTF Ten-
sor Factorization [52]) are available in the metamodel. The 
metamodel is extendable with additional algorithms from 
CARSKIT; this is simply done by adding more enumera-
tions in RecommendatioAlgorithmEn (see Fig. 4). 
For example, the developer may select a hybrid algorithm, 
or any other recommendation algorithm that could produce 
better results when lack of data exists for a new user or a 
new item (cold start problem), in which case the matrix in 
a matrix factorization method would be sparse, and hence, 
the algorithm ineffective. Algorithmic configurations to the 
selected algorithm can be conducted via the algorithm-
Configurations parameter of the Recommendation-
Algorithm element. Currently, this parameter affects the 
operation of CARSKIT; in case of use of another recom-
mendation engine, the parameter can be used for the setup 
of the respective engine.

While RecommendationStorage defines the place 
in the database, i.e., the database resource, where recom-
mendations are stored, the RecommendationPre-
sentation element defines, among other, the platform 
on which the recommendations will be presented to users 
(platformOfPresentation element) – whether this 
would be the e-store via a web interface or through a mobile-
friendly interface on the UbiCARS app (these are defined 
through the PlatformOfPresentationEn enumera-
tion). Currently, the framework provides a web interface 
through a plugin for presenting the recommendations to 
users (see “UbiCARS Methodology” section), which also 
serves users via the UbiCARS app, provided that they are 
logged-in to the e-store via the smartphone’s browser. In 
addition, the RecommendationPresentation ele-
ment defines the visualizationFormat of the rec-
ommendations through the VisualizationFormatEn 
enumeration: should the recommendations be presented as 
a main screen element (e.g., as a webpage dedicated to rec-
ommendations), as a minor one, or perhaps in the form of a 
widget (e.g., in WordPress)?

Another important parameter of Recommendation-
Presentation element is the enablement of explanations 
for the presented recommendations, via the Boolean param-
eter enableExplanations. Recommendation explana-
tions help users understand the recommendation logic, and 
can contribute, among other, to system transparency, trust, 

and satisfaction [54]. For example, Amazon.com uses “Cus-
tomers Who Bought This Item Also Bought…”. Although the 
task of offering correct and precise explanations is difficult, 
especially when algorithms with high complexity are being 
used, developers are enabled to offer a simpler and broader 
version of recommendation explanations, e.g.: “Based on 
your product ratings to date, as well as on your previous 
transactions and product interaction in our showroom, the 
following products are recommended for you!”. The topN 
parameter specifies the total number of recommendations to 
be displayed to users (e.g., top-5).

Supported Platforms

Two widely used, open-source e-commerce platforms are 
used by the framework: WordPress WooCommerce18 and 
Drupal Commerce.19 The WooCommerce plugin is updated 
for acquiring and storing users’ browsing history on items. 
The users’ ratings and product purchases are stored in the 
database by the e-stores and the framework is configured to 
use these data.

Custom platforms are also supported. A custom platform 
refers to any other type of e-store platform. In case a custom 
platform is used, for user feedbacks for which the platform 
does not store the data (e.g., most platforms already store 
users’ ratings on products and product purchases), the frame-
work creates the database tables required to store the user 
feedback data. The acquisition of these user feedback data 
that stem from user interaction with the e-store is left on the 
developer.

For user feedbacks for which the custom platform stores 
the data, as the structure of the corresponding database 
tables is unknown to the framework, the developer needs to 
write code to retrieve the data and compile the correspond-
ing datasets.

The model allows developers to select their platform 
via the platformOfUse parameter of the config-
File element (see Fig. 4), which uses the enumeration 
eCommercePlatform.

Model Reuse

A UbiCARS model may be reused for the configuration of 
other e-stores, increasing thus productivity. For this to be 
feasible, the platform of the target e-store needs to match 
with the platform specified in the model (platformO-
fUse parameter). Then, for the model to be reused as is, 
the following apply. 

18 wordp ress. org/ plugi ns/ wooco mmerc e/# insta llati on.
19 drupa lcomm erce. org/.

http://www.wordpress.org/plugins/woocommerce/#installation
http://www.drupalcommerce.org/
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In case a custom platform is used, for each database 
resource in the model, the system checks whether the 
corresponding table exists in the database to use its data, 
otherwise it creates it. This enables the usage of pre-exist-
ing data, provided that the pre-existing table follows the 
framework’s data format.

In case WordPress WooCommerce or Drupal Com-
merce are used, based on user’s input regarding the 
resource parameter of the database resource element in 
the model (see Fig. 8 as an example), the system uses the 
e-stores’ pre-defined tables and any pre-existing data in 
terms of user feedback techniques (for technical details 
see paragraph “Pre-defined tables in supported e-stores” 
in “Appendix”). Therefore, for model reuse to be feasi-
ble, the target e-store should be set-up having the same 
characteristics with the source platform, as specified in 
the model. If not, the model needs to be updated in terms 
of the resource parameter of the corresponding database 
resource to adhere to the target e-store’s characteristics.

Model Correctness

To avoid errors during configuration, UbiCARS models 
need to be verified. The first verification step takes place 
during design, as the DSML metamodel and the editor 
restrict the user from performing a number of invalid 
moves. For example, a PurchaseHistory element may 
be connected at most to one DatabaseResourse (see 
Fig. 4), and this can only be done by using a specific type 
of edge, the PurchaseHistoryHasDBResource. 
Requiring a specific edge type to connect a particular 
element to another element makes the design more com-
prehensible, transparent and error free, but also extends 
the number of available tools in the editor’s toolbox (see 
Fig. 8), possibly making the tool selection process longer. 
The second step takes place during configurations, where 
the system informs the user in case of errors, e.g., more 
than one element is requesting access to the same database 
recourse.

Fig. 5  System workflow
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System Workflow

Figure 5 depicts the system workflow with a clear repre-
sentation of the two user roles: the developer and the user 
(customer). After the model has been designed and uploaded 
to the system through the System UI, the actions depicted in 
the figure are then performed by the framework.

After the model has been parsed by the system UI, the 
CARS system checks whether user feedback data pre-
exist in the database. For every user feedback element in 
the model, a DatabaseResource element defines the 
database table where the corresponding data will be stored. 
There are two cases where such tables pre-exist: (i) when the 
default e-store database includes such tables (e.g., for prod-
uct purchases and user ratings on products), and (ii) when 
the model is re-executed by the system: a developer may 
update parts of the model and repeat the execution process, 
in which case the tables (and any data in them) will pre-
exist. If the database table does not exist, the system creates 
it and configures the system so that, from that point onward, 
the corresponding user feedback data from the e-store or the 
app are stored in that table.

Tracking and storing user feedback data is the next step 
after creating user feedback tables (Fig. 5). This step occurs 
only in cases where the user feedback data are not already 
being tracked and stored by the e-store. The framework 
requires from the developer to create the necessary mecha-
nisms to acquire the user feedback data and store them in 
the corresponding database table created by the framework 
in the previous step. In the case of the WordPress WooCom-
merce platform for example, as the user browsing history 
data do not exist, a plugin was developed and is provided by 
the framework that tracks the users’ browsing history and 
stores the data in the database.

In cases where the default e-store database includes the 
user feedback data (alternative flow in Fig. 5), the system 
uses them. For example, for the WordPress WooCommerce 
platform, the system checks whether the user ratings and 
user product purchases exist and uses them.

In case the UbiCARS framework is to be applied on a new 
type of e-store platform other than those already supported, 
then in cases where the default e-store database includes 
user feedback data, the developer is required to write code 
to retrieve the data and compile the new datasets.

Figure 6 depicts the parsing and configuration steps fol-
lowed by the UbiCARS Framework. Input to this process 
is the UbiCARS model. Configuration steps from the start, 
down to the dotted line, regard configurations conducted 
on the e-store platform by the CARS system in terms of 
database resources from user feedback elements and their 
context elements (if any). If the model specifies one of the 
two supported platforms, then the required configurations 
are conducted by the framework. If the model specifies a 

custom platform, then, during the first execution, all the 
database tables that correspond to the DatabaseRe-
source elements will be created. The dotted line signifies 
the point during execution where the framework inspects 
whether the respective data from user-product interaction 
exist in the platform. If such data do not exist, execution 
steps below the dotted line cannot be realised (this refers to 
the cold start problem). In case data exist, the framework 
proceeds with those to compile the corresponding datasets, 
compute recommendations, and present them to users. For 
example, if user ratings on products exist, but users did not 
visit the physical store, and therefore, user staying time data 
do not exist, the framework will proceed to compile the rat-
ings dataset only and make it available for the computation 
of recommendations. The developer may at any time initi-
ate compilation of any dataset, provided that the aforemen-
tioned requirements are met, and then, initiate computation 
of recommendations.

In case context database resources are defined in the 
model but context data and resources do not yet exist in the 
database, the context database resources need to be created. 
In this case, context data are not yet available, and thus, 
non-context-aware execution is initiated (see Fig. 6). For 
example, while context parameters for user location tracking 
may have been defined in the model during design, context 
plugins for implementing tracking of user location may have 
not yet been developed. During following system iterations 
where context resources and the respective context data will 
have been included in the database, context-aware datasets 
will be compiled, and context-aware recommendation com-
putation will be initiated.

Mobile App Specific Elements

The UbiquitousTechnology element specifies the 
ubiquitous technology in use by the UbiCARS app, as 
depicted in Fig. 4. Currently, BluetoothBeacons and 
NFCScanning are supported, as shown by the Ubiqui-
tousTechnologyType enumeration. Alternative poten-
tial technologies for use are Wi-Fi, or more modern indoor 
positioning technologies such as smart floors [55].

Bluetooth Beacons

Bluetooth beacons can be used for indoor positioning, by 
communicating with Bluetooth-enabled devices in the prox-
imity. Smartphones for example, through appropriate soft-
ware, can estimate their distance from Bluetooth Beacons. 
Typical beacon range is 7 m to a few hundreds of meters. 
There are already examples of physical stores that use bea-
cons to offer a more engaging experience to customers while 
shopping [56].
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Fig. 6  UbiCARS framework configuration steps
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Attaching Bluetooth beacons on products that are placed 
adjacent to each other (in shelves or showroom tables) 
causes signal coverage overlap. To overcome this, the Blue-
tooth Received Signal Strength Indicator (RSSI) is used by 
the UbiCARS app to estimate users’ staying time in front 
of a specific product. Users only need to install and run the 
UbiCARS mobile application. RSSI serves as an indication 
for the distance between the mobile device and the beacon: 
the closer the device is to a beacon, the higher the registered 
RSSI value. Depending on the particular beacons sensed by 
the user’s device and the respective RSSIs registered, the 
system estimates the distance of the device from each Bea-
con and opines on the products the user has stayed in front of 
and for how long. The RSSI_minDetectionThresh-
old parameter of the StayingTime element (see Fig. 4) 
is used to denote the minimum possible RSSI value that 
indicates that the user is near enough to the product to be 
considered that they “have stayed in front of the particular 
product”. During experiments in the laboratory, we have 
acquired RSSI values from − 30 (~ 2 m) to − 120 (~ 8 m), 

based on which, the RSSI_minDetectionThreshold 
default value was set to be − 50. As retrieved RSSI values 
heavily depend on the type of sensors used, the characteris-
tics of the space and the contained objects, a number of tests 
will be required to properly adjust the RSSI_minDetec-
tionThreshold to suit the specific use case.
MaxTimeInterval_BSD refers to the maximum time 

interval between successive detections of a user in front of a 
product, so that these detections are considered in the same 
“staying time session” in front of that product (the default 
value is 20). Figure 7 describes the staying time reasoning 
algorithm for the abovementioned default values.

User Identification Across Devices

Using a simple interface on the e-store, users are able to 
register to their user profile the Bluetooth friendly name of 
their mobile device. This name does not correspond to the 
real name of the user; rather, it is used as an identifier when 
pairing Bluetooth devices with the user’s mobile device. In 

Fig. 7  Staying time reasoning 
algorithm

Fig. 8  UbiCARS model instance
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this manner, the user device’s friendly name is associated 
with the user’s profile. After sensing a beacon, the UbiC-
ARS app sends to the system the beacon’s H/W address that 
uniquely identifies the item, together with the RSSI value 
and the Bluetooth friendly name of the user’s mobile device. 
The system associates the Bluetooth friendly name with the 
user ID from the database and stores the received data to 
the database as tracking data. Thus, the user is being identi-
fied in both the physical store and the e-store. The system 
ensures that Bluetooth friendly names of users stored in the 
system are unique by checking whether the new friendly 
name already exists in the system with each new name inser-
tion. If it does, the user is prompted to change his/her device 
friendly name and try again (changing the name is a simple 
process).

Privacy Concerns

The tracking of users is strictly conducted within a physical 
store. Tracking data could potentially reveal that the user 
was indeed in the store during a certain period of time. In 
this paragraph we discuss that our method does not raise any 
privacy concerns for the following reasons:

• The data are anonymized: the user is being tracked using 
his/her Bluetooth friendly name that is associated to the 
user ID, and in relation to his/her distance from a H/W 
address of a beacon. Such tracking data alone cannot 
trace back to the name of the user, neither the items that 
the user interacted with, unless the entire database is 
compromised.

• The tracking data are stored in a database table. They are 
not available to any type of users such as administrators 
or e-store owners, and furthermore, they are not acces-
sible from any user interface within the system UI, the 
e-store or the app, as such functionality was not imple-
mented.

The above information should be available to users 
though the privacy policy of the system and all users should 
give their consent before using it.

Design Demonstration

This section demonstrates the usage of the DSML in design-
ing a UbiCARS model. In Fig. 8, a model within the editor 
and part of the editor’s toolbox20 are depicted. The toolbox 
is situated at the right-hand side of the editor. To add an 

element in the editor, the user clicks on the respective item 
in the toolbox and then clicks in the white space within the 
editor or drags-and-drops the element from the respective 
item toolbox to the canvas. Through the properties view 
(also shown in Fig. 8), developers add/edit information 
regarding the corresponding element.

Regarding the UbiCARS models, there are 4 types of Ele-
ments: dark blue are the CARS and UbiCARS elements that 
serve as starting points for designing the model; light blue 
are the main elements of a model, including all user feed-
back elements, ubiquitous technology elements, recommen-
dation engine, algorithm, storage, and presentation elements; 
with yellow colour are the Database Resource elements; and 
with orange are the Context elements.

For testing purposes, both WooCommerce and Drupal 
Commerce platforms have been set up and used as example 
e-stores. Each e-store included several electronic products, 
similar to real life e-stores.

Cold Start Problem

At this point, the cold start problem affected system execu-
tion, since after system configuration has completed, the 
CARS system was unable to compute recommendations 
due to the lack of user-product interaction data (new user 
problem). To address this, lab personnel interacted with the 
e-stores to produce user feedback data. This meant to repre-
sent real-life user-product interaction activity on an e-store 
(rating, browsing, and buying products).

To simulate the physical store scenario, the typical layout 
of a smartphones showroom was used in which lab personnel 
interacted with the products (Bluetooth enabled smartphones 
were used that could act as Bluetooth beacons as well). We 
note that the system is able to utilize any pre-existing data 
that has resulted from prior user-product interaction. For 
example, if users’ ratings on products exist in the Drupal 
Commerce e-store prior to system configuration, the system 
will use the data during configuration and for computing 
recommendations.

Using the abovementioned system setup, the framework 
was able to produce four datasets: ratings, purchasing his-
tory, browsing history (resulting from users’ accesses on 
product webpages) and staying time. Each dataset was able 
to produce some recommendations.

Evaluation

Process Description

The framework was evaluated via three different evaluation 
processes.20 A video on the usage of the UbiCARS Modelling Editor: www. 

youtu be. com/ watch?v= FRJ7n w2J3c4.

http://www.youtube.com/watch?v=FRJ7nw2J3c4
http://www.youtube.com/watch?v=FRJ7nw2J3c4
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The modelling against coding comparison was con-
ducted by the authors and aimed to directly compare the 
proposed modelling method with the manual (coding) 
method to estimate the effort a developer needs to put for 
each of them in developing a UbiCARS. The metrics used 
were: number of logical lines of code, number of database 
queries and development time in hours.

The second evaluation process was conducted via a 
survey by using a task-oriented questionnaire. The aim 
was e-store developers and engineers with no expertise 
in RS to use the UbiCARS MDD Framework to deploy a 
UbiCARS on an e-store: use the DSM to create a model, 
upload it via the system UI, perform the configurations on 
the e-store and generate recommendations. Twenty par-
ticipants participated in this evaluation.

The third evaluation was a remote evaluation that took 
place after the task-oriented evaluation was completed. 
The aim of the third and final evaluation method was to 
allow for more experts to use the UbiCARS framework and 
receive feedback on framework usage. Seventeen partici-
pants participated in the remote evaluation.

In the remaining of this subsection, we describe the 
evaluation processes in detail.

Modelling Against Coding Comparison

We consider developing a RS of an e-store that uses users’ 
ratings on products, users’ browsing history on products 
(number of product webpage accesses), users’ purchase 
history and users’ staying time in front of products as user 
feedbacks. In addition, the purchase history user feedback is 
context-aware regarding the type-of-day (whether the pur-
chase was conducted on a weekday or weekend) and the 
time-of-day (whether the purchase was conducted in the 
morning, noon, afternoon, evening, or late at night). For the 
computation of context values, the purchase timestamp is 
used (no database query needed).

We assume that the e-store has records of its users’ rat-
ings on products and its users’ product purchases in its data-
base, as any modern e-store. Thus, for acquiring these data, 
a developer would only need one database query for each of 
these feedbacks.

We examine the development of the UbiCARS in three 
different ways:

• Using the UbiCARS framework with one of its supported 
e-store platforms (modelling using supported e-stores). 

Table 3  Developers’ effort comparison for the three implementation methods

Metrics Methods

Modelling using sup-
ported e-stores

Modelling using custom e-stores Manual method: coding

Number of Lines of Code (logical lines of code 
excluding blank lines, comments, and prints)

18 (c) 12 (uf)
18 (c)
13 (o) ratings
13 (o) purchasing h
Total: 56

358

Number of database queries 0 2 (uf)
2 (o)
Total: 4

30

Development Time (hours) 2 (c) 4 (uf)
2 (c)
2 (o)
Total: 8

44

Software modules to be developed (c) Purchase History (uf) Browsing History
(c) Purchase History
(o) Compilation of datasets

(uf) Browsing History
(uf) Staying Time
(c) Purchase History
(o) Compilation of 

datasets
(o) Recommendation 

engine configuration
(o) Computation of 

recommendations
(o) Storage of recom-

mendations
(o) Presentation of 

recommendation
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The context sensing and storing plugin needs to be devel-
oped.

• Using the UbiCARS framework with any other type of 
e-store platform (modelling using custom e-stores). In 
terms of user feedbacks, the developer is required to 
develop only one module, to acquire the missing user 
feedback (browsing history). The modules for the compi-
lation of datasets for ratings and purchasing history also 
need to be developed, as the framework is not aware of 
the respective database tables’ format. For each one of 
them, a query for retrieving the data and respective code 
for compiling the dataset is required. Regarding browsing 
history, the framework will automatically create the data-
base table based on the model, thus its respective mecha-
nism for dataset compilation will be used. The context 
sensing and storing plugin also needs to be developed.

• By developing the UbiCARS (manual method: coding in 
PHP, JavaScript, and MySQL).

For the three ways to be comparable, we did not develop a 
recommendation algorithm for the manual method; instead, 
we used the CARSKIT recommendation engine as with the 
other methods. In addition, for the analysis of the manual 
method, we excluded the code for the mobile app, as the 
modelling process does not directly act upon that code. 
Instead, any configurations in relation to the UbiCARS App 
specific elements (e.g., applying the Staying Time Reason-
ing Algorithm, see Fig. 7) are conducted on the e-store and 
its database (see “Mobile App Specific Elements” section).

The above methodology aims to estimate the effort a 
developer needs to put for each of the three ways of devel-
oping the UbiCARS. The objective is to compare the three 
methods in terms of the metrics shown in Table 3. One 
expert computer scientist from the authors performed the 
task of developing the UbiCARS using the three different 
ways and the coding task was reviewed by one of the other 
authors to ensure the quality of the approach and the code.

The metric “Software modules to be developed” is meas-
ured independently from the other metrics and indicates the 
different software modules the developer needs to develop 
from the following types: module to acquire user feedback 
(uf), module for context sensing and storing (c), other soft-
ware modules (o).

The metrics for the manual method stem from an analysis 
of the respective source code of the developed UbiCARS 
that is based on the source code of the UbiCARS framework 
(PHP, JavaScript, MySQL). In this analysis, we have used 
parts of the code that are required to develop a UbiCARS, 
according to the requirements set in the beginning of this 
section. The values of the metrics are perceived as an estima-
tion of the effort a developer would need to develop a UbiC-
ARS. Please note that we cannot guarantee that our imple-
mentation is the most efficient in terms of these metrics.

Evaluation with Developers: Task‑Oriented Evaluation

The evaluation of the framework was conducted via a sur-
vey by using a task-oriented questionnaire.21 The aim was 
for users in our target group—e-store developers and engi-
neers with no expertise in RS—to use the UbiCARS MDD 
Framework to deploy a full UbiCARS on an e-store to the 
point where recommendations are presented. For a detailed 
description of the steps followed, interested readers may 
refer to the tasks defined in the questionnaire. The evalua-
tion was conducted by involving one participant at a time, 
with the first author observing the entire process with each 
participant. Participants were also given a short developer’s 
manual.22 Estimated duration for an evaluation session was 
60 min (reading time for manual excluded). Professional 
developers with no RS expertise were invited by the authors 
to participate. Through the questionnaire, participants were 
given a set of tasks to complete using the framework and, 
at the same time, they were asked to report their findings 
and respond to various questions about their experience. For 
the purposes of this evaluation, participants were asked to 
assume that they are developers for an e-store for electronic 
products that also has a physical store.

The survey was split into three parts: the first one consti-
tuted the modelling part, where participants were requested 
to use the modelling editor and its toolbox to add and edit 
elements on the canvas to create a UbiCARS model (see 
Fig. 8). The process consisted of nine tasks: tasks 1–8 and 
task 14, as shown in Table 4 (in “Appendix”). Each of the 
nine tasks was comprised of several subtasks. As partici-
pants were requested to use a modelling language they have 
not used before in one and only session to build a UbiCARS, 
a detailed description of the initial tasks was needed. Espe-
cially for the initial tasks where participants were inexpe-
rienced with the editor, the subtasks were designed to be 
simple activities; as the evaluation progressed though, sub-
tasks’ complexity increased while their description details 
decreased. Furthermore, towards the end of the evaluation, 
Task 14 required from participants to re-execute the whole 
process without having any instructions on how to do so, 
i.e., to return to the modelling editor to enhance the model 
by including additional elements. This task aims to exam-
ine whether participants became familiar with the language. 
Table 4 summarizes the aim of each task, as well as the num-
ber of their subtasks. By successfully completing the first 
8 tasks, a full UbiCARS model was constructed that could 
successfully be deployed on the system UI. Task 14 was 

21 The questionnaire can be found here: www. cs. ucy. ac. cy/ ~metto ur/ 
Journ al/ UbiCA RSQue stion naire. pdf.
22 Developer’s manual can be found here: www. cs. ucy. ac. cy/ ~metto 
ur/ Journ al/ UbiCA RSDev elope rsMan ual. pdf.

http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSQuestionnaire.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSQuestionnaire.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSDevelopersManual.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSDevelopersManual.pdf
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executed only after the next part of the evaluation survey, 
namely the configuration part, was completed. The aim was 
to include customers’ location in the physical store as a con-
text parameter, to enable context-aware recommendations.

The second part of the survey, namely the configuration 
part, consisted of six tasks (tasks 9–14, see also Table 4 
in “Appendix”), during which participants were instructed 
on how to upload their model on the system UI to conduct 
e-store configurations, datasets compilation, recommen-
dations computation and recommendations presentation 
through the e-store. These tasks were short in duration and 
simple to accomplish, mainly requesting from participants to 
use the system UI and observe the computed results. Here, 
task 14 includes the execution of the model designed in task 
14 of the modelling part.

The third and final part of the evaluation was the ques-
tionnaire. It did not include any tasks for participants to work 
on. Instead, it included demographic questions, questions 
related to users’ experience with the modelling editor and 
the system UI, as well as questions on the usefulness of 
the framework and its ease of use. Similarly to the work in 
[57], we have used questions from the Technology Accept-
ance Model (TAM) satisfaction questionnaire [58, 59], and 
from the User Experience Questionnaire—UEQ [60, 61]. 
Additional questions were also defined that explicitly tar-
geted the evaluation of the UbiCARS framework. For the 
questionnaire, we have used 7-point Likert scale agreement 
questions (1 corresponds to “Strongly Disagree” and 7 to 
“Strongly Agree”).

Nineteen developers and an e-store administrator partici-
pated in the evaluation for about one full hour each (brief-
ing excluded), completing tasks and answering questions. 
Although the number of participants is statistically small, 
our results are significant since these 20 participants fall well 
within our target group, i.e., developers with no experience 
in developing RS, and they have each used the framework 
for a considerable amount of time. The e-store administra-
tor, although not a developer himself, he was leading a team 
of e-store developers. The 19 developers had at least four 
years of programming experience each and 10.52 years on 
average. In terms of experience in developing recommender 
systems, 75% of participants had little to none experience, 
while 80% of participants had little to none experience in 
recommendation algorithms. On the contrary, 70% of par-
ticipants had experience in developing and/or technically 
administrating e-stores.

Evaluation with Experts: Remote Evaluation

To allow for more experts to use the UbiCARS framework, 
a remote evaluation23 of the framework took place after the 
task-oriented evaluation with developers was completed. 
Professionals and researchers on MDD and recommender 
systems were invited through social networks, professional 
groups, and mailing lists to participate. They could par-
ticipate either by downloading and using the modelling 
 framework23, or, in case they did not have time available, by 
watching a video24 about the framework and then respond to 
a questionnaire.25 The questionnaire included similar ques-
tions to the one used for the task-oriented evaluation, but 
it needed less time to be completed. By downloading the 
framework, participants were able to interact with a model 
that represented a RS for an e-store. The model was provided 
instead of guiding participants to design it themselves to 
keep the evaluation session short. In case, however, they 
would like to design it from start to end, they were provided 
with a design guide.26 After interacting with the modelling 
editor, participants were  instructed23 to access the e-store 
and use the System UI to upload the model, compute recom-
mendations and view them through the e-store.

Seventeen participants participated in the remote evalu-
ation. Fifteen of them by watching the video, whereas two 
participants downloaded and used the framework after they 
had watched the video. Reasons that most participants pre-
ferred to watch the video are that this was the easiest and 
least time-consuming approach, whereas using the frame-
work required downloading a zip file and following instruc-
tions to run  it23. While we are aware that users may avoid 
downloading and using software if there is an alternative, we 
have made attempts to make the process as easy and quick 
as possible, estimating that it would take about 20 min for 
the participants to complete.

Thirteen participants stated to be developers among other, 
four participants stated to be MDD experts among other and 
five participants stated to be RS experts among other. The 
two participants that used the framework were not among 
the MDD experts, neither among the RS experts.

23 Instructions: www. cs. ucy. ac. cy/ seit/ wp- conte nt/ uploa ds/ 2020/ 11/ 
UbiCA RS- MDD- Frame work- Evalu ation. pdf.
24 www. youtu be. com/ watch?v= YvYm4 EBZ1p w& featu re= youtu. be.
25 The questionnaire can be found here: www. cs. ucy. ac. cy/ ~metto ur/ 
Journ al/ Quest ionna ire. pdf.
26 www. cs. ucy. ac. cy/ ~metto ur/ Journ al/ UbiCA RSMod elDes ignGu ide. 
pdf.

http://www.cs.ucy.ac.cy/seit/wp-content/uploads/2020/11/UbiCARS-MDD-Framework-Evaluation.pdf
http://www.cs.ucy.ac.cy/seit/wp-content/uploads/2020/11/UbiCARS-MDD-Framework-Evaluation.pdf
http://www.youtube.com/watch?v=YvYm4EBZ1pw&feature=youtu.be
http://www.cs.ucy.ac.cy/~mettour/Journal/Questionnaire.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/Questionnaire.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSModelDesignGuide.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSModelDesignGuide.pdf
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Summary of Evaluation Results

Table 5 summarizes the evaluation results by displaying 
the mean and standard deviation (σ) for each question. 
Evaluation results were overall very positive. In terms of 
the task-oriented questionnaire, in about one hour on aver-
age, participants non-experts in the RS domain were able 
to successfully utilize the capabilities of the UbiCARS 
DSML, the modelling editor and the system UI, to design, 
develop and deploy UbiCARS on an example e-store. Par-
ticipants stated that they have understood the results of 
each completed task. The UbiCARS MDD Framework 
was perceived by participants to be, among other, useful, 

quick, to improve developers’ performance, to increase 
developers’ productivity, to reduce developers’ effort and 
to be easy to use. Participants agree that much mental 
effort was not needed to interact with the framework, and, 
furthermore, stated feeling positive toward the UbiCARS 
framework.

Regarding the remote evaluation, results were also 
positive, but the means were smaller by 1.22 on average 
(σ = 0.3), in comparison to the results of the task-oriented 
evaluation. This indicates that, although participants see 
the framework positively in terms of usefulness (average 
mean = 5.2) and ease of use (average mean = 5.11), they 
find it less useful and not as easy-to-use in comparison 

Table 5  Summary of evaluation results (7-point Likert scale was used: 1 corresponds to “strongly disagree” and 7 to “strongly agree”)

Question Task-oriented 
evaluation

Remote evalu-
ation

Mean σ Mean σ

Perceived usefulness of the UbiCARS MDD framework
Using the UbiCARS framework would enable me to develop Recommender Systems more quickly 6.75 0.64 5.47 1.18
Using the UbiCARS framework would improve my performance in developing Recommender Systems 6.6 0.68 5.06 1.39
Using the UbiCARS framework would increase my productivity in developing recommender systems 6.75 0.55 5.12 1.41
Using the UbiCARS framework would make it easier to develop recommender systems 6.7 0.57 5.12 1.5
I would find the UbiCARS framework useful in developing recommender systems 6.8 0.41 5.29 1.53
Using the UbiCARS framework would enhance my effectiveness in developing recommender systems 6.45 0.88 5.12 1.45
Perceived ease-of-use of the UbiCARS MDD framework
I would find the UbiCARS framework easy to use 6.5 0.76 5.18 1.38
Learning to operate the UbiCARS framework would be easy for me 6.3 0.92 5.59 1.46
I would find it easy to get the UbiCARS framework to do what I want it to do 5.95 0.94 4.94 1.39
My interaction with the UbiCARS framework would be clear and understandable 6.3 0.92 4.81 1.05
I would find the UbiCARS framework to be flexible to interact with 6.05 0.94 4.71 1.69
It would be easy for me to become skilful at using the UbiCARS framework 6.2 1.15 5.41 1.28
Other questions
Using the UbiCARS framework for developing Recommender Systems would reduce my effort in terms 

of lines of code and database queries needed
6.7 0.73 5.65 1.54

I would revisit the UbiCARS framework within a week's time if it was available for use 5.95 1.36
I would revisit the UbiCARS framework regularly if it was available for use 5.65 1.30 4.82 1.74
It does not require a lot of mental effort to interact with the UbiCARS framework 6.2 0.95 5.12 1.22
Using a Model Driven Development approach through the UbiCARS framework to develop Recom-

mender Systems is a good idea
6.75 0.44 5.88 1.32

I feel positive toward the UbiCARS framework 6.8 0.41 5.47 1.46

Table 6  UEQ mean scores for remote evaluation on a scale from 3 (highly positive) to − 3 (highly negative)

Enjoyable 0.88 Understandable 1.56 Creative 1.13 Easy to learn 1.31 Valuable 1.31

Exciting 1.13 Interesting 1.69 Predictable 1.13 Fast 1.69 Inventive 1.38
Supportive 0.88 Good 1.73 Easy 1.38 Pleasing 1.31 Leading edge 0.69
Pleasant 1.38 Secure 0.06 Motivating 1.06 Meets expectations 1.25 Efficient 1.05
Clear 1.13 Practical 1.19 Organized 1.06 Attractive 0.31 Friendly 1.13
Innovative 1.13
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to the participants of the task-oriented questionnaire that 
spent more time with the framework.

Participants from both evaluations agree that using a 
MDD approach through the UbiCARS framework to develop 
UbiCARS is a good idea. Furthermore, although results for 
both the perceived usefulness and perceived ease-of-use are 
positive, participants seem to value higher the usefulness 

of the framework. Across all questions and all participants, 
mean value for perceived usefulness is 5.94, while mean 
value for perceived ease-of-use is 5.66.

In terms of the UEQ, on a scale from 3 (highly positive) to 
− 3 (highly negative), participants of the task-oriented evalu-
ation found the framework to be enjoyable (2.25), pleasing 
(2.1), interesting (2.1) and exciting (2). Table 6 shows the 

Fig. 9  Time distributions of tasks (a) and modelling tasks’ duration (b)
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mean values for the remote evaluation, where participants 
replied for all the 26 items of the UEQ. The results are posi-
tive: all items but four have received mean scores of more 
than 1. The items with the highest scores are: good (1.73), 
interesting (1.69), fast (1.69) and understandable (1.56).

Tasks’ Duration (for Task‑Oriented Evaluation)

The time that participants took to complete each of the 
evaluation tasks, as well as the total time spent to deploy a 
UbiCARS is of particular importance as it is directly related 
to RQ1 on whether the framework reduces the development 
time and expedites the development of UbiCARS for com-
merce (see “Introduction” section). During the task-oriented 
evaluation process, the tasks’ durations have been measured. 
Figure 9a depicts three time distributions: the distribution of 
the total duration of all tasks (modelling and configuration 
tasks), the distribution of the total duration of modelling 
tasks, and the distribution of the total duration of configura-
tion tasks.

The numbers in the figure show the quartile ranges in 
minutes (the first quartile is the lower one). It can be seen 

that participants achieving the best results in the overall pro-
cess (lower end of first quartile of left box plot) have compa-
rable timings with participants achieving the worst results in 
the modelling tasks (upper end of the fourth quartile of mid-
dle box plot). Moreover, the boxplot for the modelling tasks 
has a similar distribution with the one for the configuration 
tasks and is located about 13 min higher in the minutes scale, 
which is an acceptable time difference: it suggests that the 
modelling tasks did not introduce considerable delays to par-
ticipants, in comparison to the simpler configuration tasks. 
Figure 9b depicts the time distributions of the duration of 
each task for the tasks of the modelling part. Most of or all 
the participants were able to complete each task but task 14 
in under 5 min. Task 2 lasted for 12 min for two participants; 
the remaining 18 participants where around the 5-min mark 
or lower. Task 14 is regarded as the most time-consuming 
task, as it required from participants to alter their model and 
re-execute the configuration tasks without instructions. Still, 
participants were able to complete the task in under 9 min, 
the median being at 6.5 min.

The following mean values should be noted: mean value 
for the total duration of all tasks was 59.16 min, mean value 

Fig. 10  Mean and Standard 
Deviation of participants’ 
perceived comprehension of 
tasks and their results (a) and 
perceived difficulty for model-
ling tasks (b)
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for the duration of modelling tasks was 36.16 min and mean 
value for the duration of configuration tasks was 23 min. 
Thus, participants required a bit more than half an hour to 
complete the modelling tasks and less than that to complete 
the configuration tasks.

Perceived Task Comprehension and Difficulty 
(Task‑Oriented Evaluation)

Task comprehension and perceived difficulty by partici-
pants during the task-oriented evaluation are examined in 
this paragraph as they are related to RQ2 on whether the 
framework reduces development complexity in developing 
UbiCARS. After completing each modelling task (Tasks 1–8 
& Task 14) and configuration task (Tasks 9–13 and Task 14 
that included executing the model designed in Task 14 of 
the modelling part), participants were requested to indicate 
their agreement with the statement “I was able to under-
stand the task” (for modelling tasks) and “I was able to 
understand the produced results” (for configuration tasks), 
by using a 7-point Likert scale (1 for “Strongly Disagree” to 
7 for “Strongly Agree”). Figure 10a shows the mean (num-
bers in the graph) and standard deviation (error lines) of the 
responses for each task. Participants strongly agree to have 
understood the tasks and their outcomes, indicating that the 
modelling framework was easy to adopt, understand and use.

After completing each modelling task, participants were 
also requested to indicate their agreement with the state-
ment “This task was difficult for me to accomplish”, using 
the same 7-point Likert scale. For the configuration tasks 
this question would not apply due to the tasks’ simplicity. 
Figure 10b shows the results. Participants disagree that the 
tasks were difficult for them to accomplish. The high Stand-
ard Deviations for Tasks 1, 2 and 14 are a result of a single 
negative response for each of these tasks. For Tasks 1 and 2, 
the negative response originated from the same participant, 
who responded positively for all other tasks.

Discussion

Based on the evaluation results, in this section we answer 
to the Research Questions stated in “Introduction” section.

RQ1: In the following paragraphs we discuss how the 
evaluation results indicate that the UbiCARS framework 
reduces the development time of UbiCARS.

Based on the results of the task-oriented evaluation, the 
framework enables the development of UbiCARS for com-
merce by developers that are non-experts in RS on average in 
59.16 min. In cases where additional modules need to be devel-
oped by the developer, the results reported in the “Modelling 

Against Coding Comparison” evaluation (“Process Descrip-
tion” section) indicate an estimated time of 2 development 
hours for developing a context sensing module and 4 develop-
ment hours for developing a browsing history user feedback 
module. It is important to note that the author involved in the 
implementations shown in Table 3 had knowledge on UbiC-
ARS and the concepts of user feedback acquisition and context 
sensing. It is possible that developers lacking this knowledge 
would need more time to complete these implementations.

In the hypothetical scenario where a developer that par-
ticipated in the task-oriented evaluation was asked to partici-
pate to the “Modelling against Coding comparison” scenario 
to implement a CARS using the method “modelling using 
supported e-stores”, the estimated time would be one hour to 
use the modelling framework (according to the task-oriented 
evaluation), and about 2 additional hours to develop the con-
text sensing module for the purchase history. This time is sig-
nificantly less than the time the authors spent on developing 
the UbiCARS using the manual method, which was estimated 
to 44 h.

Based on the evaluation results, the framework is consid-
ered by participants to (i) enable them to develop UbiCARS 
more quickly: this statement refers to development time; and 
(ii) increase their productivity in developing UbiCARS: this 
statement refers to finishing tasks related to UbiCARS devel-
opment more quickly or at a more rapid rate. RQ1 is validated.

RQ2: In the following paragraph we discuss how the 
evaluation results indicate that the UbiCARS framework 
reduces development complexity in developing UbiCARS 
by reducing the lines of code and database queries develop-
ers need to write.

The task-oriented evaluation proved that participants 
while being non-experts in RS, were able to complete all 
tasks successfully in less than one hour on average, having 
also understood all the tasks performed and their outcomes, 
supporting thus that the modelling framework was not com-
plicated for them to use. In that scenario there was no need 
to write code, nor conduct database queries to accomplish 
this. During both evaluations with participants, develop-
ers and RS/MDD experts agreed that using the framework 
to develop UbiCARS would reduce their effort in terms 
of lines of code and database queries, since they observed 
that by using the DSML to create models and through the 
automated system configurations conducted by the frame-
work, the required UbiCARS was created and configured in 
an automated manner. The evaluation “Modelling against 
Coding comparison” serves as an indication of how much 
development effort the framework would reduce for the 
respective scenario under examination. Based on the RQ2 
is validated.
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Conclusions and Future Work

In this paper we have presented our work, a Model Driven 
Development Framework for Ubiquitous Context-Aware 
Recommender Systems that makes their development easier 
and faster. The evaluation results show the potential of the 
UbiCARS MDD Framework. Participants appreciated the 
abstraction of the technical details that the framework offers 
and liked the fact that they did not need to write code to 
develop UbiCARS, neither to learn any specifics about RS. 
The expedited development of UbiCARS that the framework 
offers, in comparison to any manual method that requires 
coding and comprehension by developers of Recommender 
Systems domain specifics, was a clear benefit mentioned by 
participants. In addition, during a direct comparison of the 
effort needed to develop a UbiCARS for an e-store using the 
framework against the manual method (coding), the authors 
report that using the framework together with its supported 
e-stores eliminates the need to write code, while using the 
framework with non-supported e-stores reduces the develop-
ment effort in terms of lines of code and database queries 

by 84.4% and 86.7% respectively against the manual method 
(see Table 3). Time was estimated to have been reduced by 
81.8%.

As stated in “Design Demonstration” section, user-prod-
uct interaction data used during the evaluation stemmed 
from our limited interaction with the example e-stores and 
the physical store scenario, in which lab personnel interacted 
with the products. As such, these data are few and not of 
the required quality. In this sense, validating the claim for a 
potential improvement of recommendations’ accuracy and 
availability was not possible due to the lack of real-world 
data. The recommendations currently provided by the frame-
work should only be considered as a proof-of-concept. As 
future work, we aim to validate the claimed accuracy and 
availability improvement of the recommendations produced 
by the UbiCARS framework by using it in real world sce-
narios for an extended period of time. We plan to offer the 
framework for usage to interested e-commerce businesses 
that currently do not provide recommendations to their cus-
tomers, and study whether the recommended products are 
indeed being selected by customers.

Table 4  Task description for the modelling and configuration parts of the evaluation

Task # Number 
of sub-
tasks

Aim of task

Modelling part
1 3 Familiarize participants with modelling editor and toolbox by creating simple model elements for CARS and 

UbiCARS
2 6 Add elements in the model relevant to computation of recommendations, i.e. a recommendation engine and an 

algorithm
3 5 Add elements related to tracking of customers’ browsing history on products in the e-store, i.e. customer 

accesses in product webpages
4 4 Add elements related to customers’ “staying time in front of a product” as user feedback data on products from 

the physical store
5 2 Add elements for enabling the UbiCARS app to utilize customers’ staying time in front of a product via Blue-

tooth beacons
6 2 Configure RSSI min Detection Threshold and Max Time Interval BSD parameters of Staying Time element
7 7 Complete model by adding more user-product interaction elements and database resources and link them 

together
8 2 Add a Configuration File element
14 4 (Without instructions to participants) Alter the model to include customers’ location while staying in front of 

products as context, to enable context-aware recommendations
Configuration part
9 – Parse the model to configure the e-store and its database
10 – Fill new database with data
11 – Compile datasets and then compute recommendations
12 – Store recommendations
13 – Present recommendations
14 – Execute the altered context-aware model to enable context-aware recommendations
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While recommendation explanations have been included 
in the DSML and can drive enablement or disablement of 
simple explanations on e-stores, explanations can be facili-
tated to a greater extend within the DSML, by abstracting 
the different explanation techniques and making them avail-
able in the model.

We aim to investigate whether recommendation algorithm 
specific details could be included in the DSML through new 
elements and parameters, while two critical requirements 
are met: (i) the abstraction of the DSML is maintained: 
such elements should facilitate a cross-recommendation 
algorithm/engine design, (ii) the complexity of the DSML 
is not increased, as too complex DSMLs result in designers 
not using them, or, in the best-case scenario, not using their 
entire potential.

In terms of users’ privacy, the New EU regulation on the 
General Data Protection Regulation (GDPR) defines several 
articles that can be mapped to software functions of software 
systems, demanding that all systems conform to these arti-
cles. RS, as systems functioning exclusively on users’ data, 
are affected by the regulation. Examples of articles that may 
affect RS are:

• “Data Minimisation”: affects preference elicitation pro-
cesses of RS when they explicitly ask users for personal 
information or implicitly tracking their behaviour.

• The “Right to Erasure”: affects RS performance in terms 
of recommendations’ accuracy, as it reduces the amount 
of data upon which the recommendations are computed. 
Moreover, it enhances the cold start problem, as it may 
reduce the ratings of particular items that have few rat-
ings in overall.

• The “Right to Rectification”: in case of implicit user 
feedback techniques, should the system provide means 
for users to be able to update their data, i.e. be able to 
change data related with their interaction with the sys-
tem? This would interfere with the recommendation pro-
cess, rendering it inaccurate.

Based on the above discussion, future work will focus 
on the extension of the UbiCARS DSML with GDPR com-
pliance enabling elements, aiming to guide the design and 
development of GDPR compliant UbiCARS. Since UbiC-
ARS utilize user behaviour data from the e-store and the 
physical store, such data are inherently sensitive. As an 
example, we note that during indoor positioning, while 
location estimation software is run on the mobile client and 
not on the beacon, the data are nevertheless transferred to 
the CARS system and stored in the server’s database to be 
exploited by the recommendation engine. Thus, privacy-
preserving methods are required to ensure users’ privacy.

Appendix

Pre‑defined Tables in Supported E‑stores

WordPress WooCommerce defines tables for storing user 
ratings and user purchase history. The WordPress database 
uses the “wp_” prefix for all its tables, which the user may 
change to any other prefix during installation. The frame-
work facilitates three possible options: (i) “wp_” prefix is 
maintained (see DatabaseResource of RATING in 
Fig. 8), (ii) “wp_” is replaced with a user defined prefix: 
user provides the new prefix in the DatabaseResource 
element, and (iii) user changes the table names entirely: 
user provides in the DatabaseResource element the 
names of the new tables (single string comma-separated). 
The framework can automatically detect which of the three 
abovementioned options the user has selected and proceed 
accordingly.
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