
Vol.:(0123456789)

SN Computer Science (2025) 6:370
https://doi.org/10.1007/s42979-025-03896-4

SN Computer Science

ORIGINAL RESEARCH

An MDD Framework Towards the Automated Development
of Ubiquitous Context‑Aware Recommender Systems for Commerce

Christos Mettouris1 · Achilleas Achilleos2 · Georgia Kapitsaki1 · George A. Papadopoulos1

Received: 24 April 2023 / Accepted: 19 March 2025
© The Author(s) 2025

Abstract
While the benefits of product recommender systems (RS) are prominent, due to the complexity of recommendation algo-
rithms and data models, it is difficult for businesses to deploy such systems on their e-stores. Related works that tackle RS
development complexity do not entirely abstract the technical details from developers; thus, margins for improvement exist.
Moreover, these works do not offer solutions that eliminate the need to write code by developers. These are the motivations
for the Ubiquitous Context-Aware Recommender Systems (UbiCARS) Framework proposed in the current work. UbiCARS
utilize user feedback acquisition techniques from both e-stores and physical stores to offer recommendations. The framework
aims to reduce development complexity, abstract technical details and expedite the development of UbiCARS (facilitating
both e-stores and physical stores) by non-RS experts. This is achieved through a Model-Driven Development methodology,
that uses a model-based configuration process where models of recommender systems drive the dynamic configuration of
UbiCARS on e-stores. The framework was evaluated with developers and experts via the survey method. The evaluation
results show the framework’s potential.

Keywords Recommender systems for commerce · Ubiquitous product recommendations · Model-driven development ·
Domain specific modelling language · UbiCARS

Introduction

Recommender systems (RS) discover knowledge about users
and based on this knowledge, offer them personalised rec-
ommendations. According to literature, “un-contextual” RS
refer to systems that utilize little or no contextual informa-
tion for recommendation computation, while Context-Aware
Recommender Systems (CARS) are designed to use more
contextual parameters to increase recommendations’ accu-
racy [1]. The term UbiCARS (Ubiquitous CARS) firstly
introduced in [2] by the authors, refers to CARS that are
able to acquire and utilize user feedback on items not only
from their online behaviour (e.g., an e-store), but from their
behaviour in ubiquitous (physical) environments as well
(e.g., a physical store). In the literature it has been shown

that product recommendations to customers boost sales [1,
3], increase customers’ satisfaction [1] and improve users’
experience [4]. Thus, both customers and e-stores benefit
from RS [3].

Whilst e-commerce sees an exponential growth, reports
during the past years have shown that physical (traditional)
commerce is still more popular than e-commerce [5, 6].
Consumers still prefer in-store shopping for reasons, such
as to fill an immediate need or want, to “touch and feel” the
merchandise, to interact with service professionals, and to
have a social experience in the store [7]. Information sys-
tems, and in particular RS, are important in understanding
what customers prefer, so where such systems are not uti-
lized, customer needs and demands cannot be met imme-
diately, risking a reduction on their shopping interest [8].

In e-commerce settings, RS track user behaviour online
by acquiring user feedback data on products on the e-store
(e.g., users’ ratings on products and users’ purchase his-
tory) to compute personalised product recommendations to
users. In the ubiquitous, physical (brick-and-mortar) store
scenario though, different methods are used to determine
users’ preferences on products, e.g., sensing the staying time

 * Christos Mettouris
 mettouris.g.christos@ucy.ac.cy

1 Department of Computer Science, University of Cyprus,
2109 Nicosia, Cyprus

2 Frederick University, 7 Y. Frederickou Str., 1036 Nicosia,
Cyprus

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-025-03896-4&domain=pdf
http://orcid.org/0000-0002-5486-8767

 SN Computer Science (2025) 6:370 370 Page 2 of 31

SN Computer Science

of customers in various product areas in the store or sensing
the shopping path of customers within the store [5, 9]. The
aim is to recommend to users products or brand stores to
visit, as well as to offer them product ratings and reviews.

A key question on which we focus in this paper, is: how
can businesses deploy RS on their e-stores and physical
stores in an easy way? How can e-store experts and develop-
ers that are not RS experts deploy RS? A potential solution is
by using open-source RS frameworks such as Easyrec,1 Len-
skit,2 Librec3 and MyMediaLite.4 Such frameworks could
potentially be used by retail businesses as recommendation
engines towards building RS for their e-stores; however, it is
quite difficult for e-store developers and software engineers
that are not experts in recommender systems to achieve such
a task [10, 11]. Such frameworks do not abstract the techni-
cal details regarding the inclusion of recommendations to
e-stores, which requires developers working on code level
to accomplish tasks such as acquiring user feedback data,
building data models, and developing software to retrieve
the recommendations after their computation by the recom-
mendation engine and display them on the e-store.

On another dimension, recent research on RS suggests
that highly complex Machine Learning (ML) algorithms
produce the most accurate recommendation results; however,
due to their complexity, it is difficult for non-RS experts to
use them in their applications [12]. In fact, even researchers
face difficulties in tracking how ML algorithms are used in
RS [12].

Another solution is outsourcing the process. Several RS
expert companies exist that offer proprietary RS as com-
mercial solutions (Google Cloud Machine Learning,5 SLI
Systems Recommender,6 Azure Machine Learning Studio,7
Amazon Machine Learning,8 Yusp9). These RS experts
deploy their own RS on their clients’ e-stores with the aim
to increase sales [13]. The advantage of such a solution for
client businesses is that the experts manage by themselves
the recommendation algorithms and the data needed for the
recommendation process (content and context data, users’
profile information, users’ behaviour history, etc.), while the
clients are only responsible for displaying the recommenda-
tions under experts’ guidance and supervision. At the same
time, disadvantages include the added cost, and that clients

are not really motivated in investing in the recommendation
algorithms per se. Another disadvantage is that the deployed
RS cannot be used for further exploration or extension by
clients themselves, as it is difficult to determine the algo-
rithms that the experts use, how they use them, whether they
combine more than one, etc. Hiring RS expert companies
may not be feasible for all businesses, especially smaller
ones that would like to offer recommendations to their users
in an economical way, and, at the same time, keep control of
the recommendation algorithms used, as well as not being
dependant of vendors. For these businesses, the best solu-
tion would be finding a way to deal with RS development
complexity in order to develop their own RS.

A few works in the literature offer methods to tackle RS
development complexity [10, 11, 14, 15]; but none of these
works manages to adequately abstract the technical details
of data acquisition, data model construction, and software
development for computing and displaying the recom-
mendations on e-stores. Furthermore, the State-of-the-Art
works do not succeed in eliminating or reducing the need
to write code by developers, so that RS for commerce can
be designed, developed and deployed expeditiously even by
non-RS experts.

Having as motivation the above, we propose the UbiC-
ARS Model-Driven Development (MDD) Framework that
aims to reduce complexity, abstract the technical details,
and expedite the design, development, and deployment of
UbiCARS in ubiquitous commerce environments (physical
stores) and electronic commerce environments (e-stores) by
developers with no expertise and knowledge on RS.

Our research defines the following research questions:
RQ1 Does the UbiCARS MDD Framework reduce the

development time (expedite the development) of Ubiquitous
Context-Aware Recommender Systems for commerce for
developers that are non-experts in RS?

RQ2 Does the UbiCARS MDD Framework reduce devel-
opment complexity in developing Ubiquitous Context-Aware
Recommender Systems for commerce for developers that are
non-experts in RS by reducing the lines of code and database
queries developers need to write?

In an attempt to minimize the need to write code by the
developers, our approach does not use code generation
techniques and model-to-code transformations that would
require from developers to work on code level in order to
use and extend the generated artefacts. Instead, our approach
proposes using models designed by developers to drive
model-based automatic configurations [16, 17] directly on
e-store platforms. The configurations concern the integra-
tion of UbiCARS (that realize user feedback techniques on
e-stores and physical stores) with e-stores. In the proposed
methodology, scenarios can be identified where the need for
developers to write code is eliminated. In other scenarios

1 sourc eforge. net/ proje cts/ easyr ec/.
2 lensk it. org/.
3 github. com/ guogu ibing/ librec.
4 mymed ialite. net/.
5 cloud. google. com/ ml- engine.
6 www. sli- syste ms. com/.
7 azure. micro soft. com/ en- us/ servi ces/ machi ne- learn ing- studio/.
8 aws. amazon. com/ machi ne- learn ing/.
9 www. lease web. com/ en/ custo mers/ yusp.

http://www.sourceforge.net/projects/easyrec/
http://www.lenskit.org/
http://www.github.com/guoguibing/librec
http://www.mymedialite.net/
http://www.cloud.google.com/ml-engine
http://www.sli-systems.com/
http://www.azure.microsoft.com/en-us/services/machine-learning-studio/
http://www.aws.amazon.com/machine-learning/
http://www.leaseweb.com/en/customers/yusp

SN Computer Science (2025) 6:370 Page 3 of 31 370

SN Computer Science

however, a set of software modules that execute a particular
task must be developed.

The novelty of the work is the UbiCARS framework that
includes a graphical DSML (Domain Specific Modelling
Language) for UbiCARS and a configuration component,
which facilitate respectively a model-based design and
dynamic configuration of UbiCARS for physical and online
commerce. The UbiCARS DSML is fundamentally a graphi-
cal language with a corresponding modelling editor where
developers can design UbiCARS and deploy them for use in
physical and online commerce. Our methodology does not
conduct modelling of recommendation algorithms’ logic, as
this would make the DSML algorithm specific and would
significantly increase its complexity, while too complex
recommendation algorithms would be impossible to model.
Rather, the framework makes use of existing recommenda-
tion algorithms and engines by exposing them to the mod-
elling layer and, in this way, making them available to the
framework. To the best of our knowledge, an MDD frame-
work for UbiCARS that provides a DSML for the commerce
domain does not yet exist. While in our previous work [18]
an initial version of the framework has been presented and
tested through experimentation in the premises of a research
laboratory, in this paper we fully elaborate on an updated,
extended version of the framework that considers the initial
feedback received. Furthermore, we describe two evalua-
tions of the framework, one with developers and one with
experts. The paper also conducts a comparison of the model-
ling against the coding methodologies in terms of develop-
ment effort needed to implement a RS on an e-store. Finally,
we examine and discuss our research questions.

In the remaining of this section, we provide an example of
use of the UbiCARS framework, aiming to show the benefits
for both the customer and the store.

UbiCARS Example of Use

Assume the "SmarTech electronics store that has an
e-commerce website and a number of physical show-
rooms with electronic products. The UbiCARS frame-
work requires a mobile application (UbiCARS app, see
“UbiCARS Methodology” section) for usage in the physi-
cal showrooms, as well as a server side system (a CARS,
see “UbiCARS Methodology” section) functioning on the
e-commerce website. Thomas, as a frequent visitor of the
SmarTech e-store, has already bought and rated several
products online. Thomas fancies the recommendations of
products he receives on the e-store since these are person-
alised and most of the times suit his preferences. Thomas
is currently visiting the SmarTech physical store show-
room, which only displays a small subset of the available
products offered on the e-store due to limited physical
space. A laptop on a shelf has caught his attention, so he

approaches it to read the specifications on the small tag.
Thomas switches on the SmarTech UbiCARS application
on his mobile device. The application sends to the server
information based on which the latter identifies the prod-
uct in front of Thomas and calculates his staying time in
front of the product. Having available this new behavioural
data about Thomas, the CARS computes new product rec-
ommendations for Thomas that he can access through the
UbiCARS app, similar to those he receives while brows-
ing the SmarTech e-store. The recommended products
can be found in the showroom (Thomas can immediately
check them out), or online through the SmarTech e-store.
Thomas finds it informative and entertaining to be able to
receive recommendations while in the store.

After Thomas repeatedly visits both the SmarTech physi-
cal store and e-store, he is tracked by the system in terms of
the following: product ratings (explicit feedback), browsing
history and online purchase history (implicit feedback) from
the e-store, and Staying time in seconds (implicit feedback)
from the physical store. From each of the abovementioned,
the system is able to compile datasets and use them as input
in the recommendation algorithm. Listings 1 and 2 depict
examples of such datasets. Thus, in addition to the e-store
related datasets, the CARS system is now enabled to also
use the staying time dataset to produce recommendations
(related with DP5, see “Framework Design Principles” sec-
tion). The availability of the additional dataset contributes to
a potential reduction of the cold start problem. The cold start
problem is an inherent problem of RS which dictates that,
for RS to be able to produce meaningful recommendations,
user interaction with items first needs to take place. The
additional dataset makes more user-product interaction data
available for the recommendation algorithm to use. Moreo-
ver, the additional dataset suggests a reduction of uncer-
tainties; thus, the recommendation algorithms will probably
perform better. In this sense, as additional data regarding
Thomas’ interaction with items is used by the RS, product
recommendations for Thomas during his following visits to
the SmarTech e-store or the physical stores will potentially
be more accurate.

In terms of recommendation availability, since each
implicit and explicit user feedback technique provides a
new dataset for recommendation computation, and thus, an
alternative way for computing recommendations, it is stated
that the UbiCARS methodology potentially increases recom-
mendation availability. In the example of use, recommenda-
tions for Thomas can be computed by using any of the fol-
lowing datasets: ratings, purchase history, browsing history
and staying time.

The potential improvement of recommendations’ accu-
racy and availability mentioned above has not been currently
proven, and therefore is not included in the contributions of
this paper. This is left as future work.

 SN Computer Science (2025) 6:370 370 Page 4 of 31

SN Computer Science

Listing 1 Ratings Dataset

UserID Itemid Rating Day Time

1 15 4 Weekday Evening
5 24 5 Weekend Noon

Listing 2 Staying Time Dataset

UserID Itemid StayedIn-
FrontOf

Day Time

1 25 231 Weekday Afternoon
3 29 38 Weekend Morning

Section “Background and Related Work” provides the
background on important concepts of this research, i.e., on
RS, CARS and UbiCARS, user feedback acquisition tech-
niques met in e-commerce and physical commerce, as well
as background on MDD. Section “Background and Related
Work” continues by describing related work on systems
in the literature that attempt to address development com-
plexity of RS. Section “The UbiCARS MDD Framework”
describes the UbiCARS MDD Framework, and in “Design
Demonstration” section, the UbiCARS Demonstrator is pre-
sented. Section “Evaluation” discusses the evaluation of the
framework and results. The paper completes with discussion
of results in “Discussion” section and conclusions and future
work in “Conclusions and Future Work” section.

Background and Related Work

After introducing the concepts based on which we have for-
mulated the contributions of the paper, this section discusses
related work.

RS, CARS and UbiCARS

RS have attracted the research community’s interest for the
past twenty years. Many techniques have been proposed, as
well as many extensions and improvements. The most well-
known recommendation approaches are the Collaborative
Filtering (CF), the Content-based filtering and Hybrid rec-
ommendation techniques. The most widely used approach,
CF, recommends items that similar users to the active user
have highly rated (hence like). There are two types of meth-
ods followed in CF, the neighbourhood methods that use
similarity functions (Pearson Correlation or Cosine Dis-
tance) to compute the user’s neighbourhood, and the model-
based methods that use user feedback on items (e.g., ratings)
to learn a model for the user that is then used for computing
recommendations [19].

Recently, the research community realised that RS have
only been using a part of the available information for pro-
ducing recommendations. The problem was that traditional
RS do not utilise context information. Instead, they focus
on two dimensions: the user and the items (also called
two-dimensional RS), excluding other contextual data that
could be used in the recommendation process. Adomavicius
et al. were among the first to prove that contextual infor-
mation incorporated in the recommendation process indeed
improves recommendations; they proposed that the recom-
mendation procedure should not be two-dimensional but
rather multi-dimensional, introducing the Context-Aware
Recommender Systems—CARS [19]. From the many
methods of using context for producing recommendations,
Adomavicius et al. [19] discuss that contextual modelling is
the most effective and accurate method.

Contextual modelling refers to the Multidimensional
Contextual Modelling approach which incorporates the mul-
tidimensional context in the recommendation process (as
opposed to other techniques described in [19]). According
to Adomavicius et al., the contextual modelling approach
promotes truly multidimensional recommendation methods,
which essentially represent ML predictive models that incor-
porate contextual information in addition to the user and
item data. The input data of those models include additional
dimensions besides users and items. These are CF model-
based methods, and specifically latent factor models (ML
approaches) that attempt to estimate ratings by characteris-
ing both items and users in latent factors inferred from the
ratings patterns [20, 21]. Some of the most successful reali-
sations of latent factor models are based on Matrix Factori-
sation; it has been shown that Matrix Factorisation models
are superior in terms of accuracy to neighbourhood meth-
ods for producing product recommendations, also allowing
the incorporation of additional information besides explicit
user feedback, such as implicit feedback, temporal effects,
and confidence levels. More on ML on RSs can be found in
[22], a recent comprehensive review on RSs in [23] and on
CARS in [24].

Ubiquitous RS on the other hand facilitate users on-
location by providing them with personalized recommen-
dations of items in the proximity via mobile devices [2].
Ubiquitous RS use sophisticated recommendation methods
to compute the recommendations for their users. Intelligent
tourist guides, navigation aids, and shopping recommenders
that recommend based upon user activities and behaviour
patterns are examples of such systems. Furthermore, Ubiq-
uitous CARS (UbiCARS) are ubiquitous RS that also uti-
lize the context in the recommendation process in a similar
manner as CARS do. UbiCARS use contextual modelling
to incorporate contextual information in the recommenda-
tion process, only that their context also consists of ubiq-
uitous information such as the user’s location, items in the

SN Computer Science (2025) 6:370 Page 5 of 31 370

SN Computer Science

proximity, etc. In [2], we provide a formal definition for
ubiquitous RS and UbiCARS.

Challenges

Challenges related to UbiCARS can be categorized in those
related to ubiquitous computing and those related to RS [2].

Challenges related to ubiquitous computing:

• Due to operating in ubiquitous environments via mobile
devices, UbiCARS face important technological chal-
lenges such as energy concerns, storage limitations,
wireless technologies issues, connectivity issues and
networking issues.

• The mobile device must be able to track user intentions
for the system to understand what actions could help the
user accomplish his/her goals. For example, the mobile
device of a UbiCARS for products must be able in real
time to identify the item the user is interested in: he/she
is having in front of him/her or holding at any given time.

• Users operate small devices that need attention.
• Devices may not be transparent since they operate on-

field and by considering various contextual parameters:
not transparent devices may provoke feelings of frustra-
tion to users.

• Context sensing: appropriate technologies and sensors
must be utilized to infer the context in real-time. Context
sensing should be done automatically, and system actions
based on context changes must be transparent to the user.

• Appropriate usage of all available context. For example,
a UbiCARS for products will consider among other, the
user preferences (what the user likes) in combination
with environmental context (the current day/time and
location) to provide personalized recommendations.

• Privacy concerns regarding location-awareness. The
user must trust the system to agree in providing sensi-
tive information such as location.

Challenges related to recommender systems:

• Building appropriate user models to effectively store and
use user preferences and the context.

• The “New user” and “New item” problems are two of the
most important ones since UbiCARS use CF.

RS for E‑commerce

CF relies only on users’ behaviour and this characteristic
makes it the most suitable method for e-commerce, since
explicit profiles for users and/or products are not needed
[4]. However, users still need to act on items for the RS to
be able to produce recommendations.

In e-commerce, RS use explicit user feedback data on
products (e.g., users’ ratings on products) to model users’
preferences and, based on the user model, provide person-
alised product recommendations to users [4, 9]. Where
explicit feedback is not available, implicit user feedback
data on products can be used. Implicit feedback is acquired
by tracking users’ behaviour, e.g., users’ purchase history
(transaction data), clickstream data,10 click-through rate11
(CTR) and browsing history on product webpages [25–27].
Implicit techniques have been used by RS for products on
e-stores, as well as movies, music, scientific papers, and
other. Explicit techniques require users’ cognitive effort,
which may act as disincentive, leading thus to data sparsity
[28]. Moreover, they interrupt users’ task. Problems in using
implicit techniques are that users’ actions denote what users
like but not necessarily what they do not like; and that while
users’ behaviour can be tracked, true users’ preferences and
motives can only be guessed [4] (e.g., a purchased item
could be a gift, or the user could eventually be disappointed
with the product).

Works in the literature that utilize implicit and explicit
user feedback acquisition techniques in e-commerce are
discussed next.

Yang et al. [26] propose a music RS for which positive
user behaviour on songs included explicit and implicit song
play, playing a full song, search for a song to add in the
playlist and register a new song. Negative user behaviour
included explicit song skip by the user, implicit skip (when
changing the song), and delete a song from the playlist. In
[27], users’ dwell time on Yahoo home page items was used
to measure the likelihood a page item is relevant to a user.
Dwell time on page objects as implicit user feedback data
was also utilized by Peska [25]. Sulikowski and Zdziebko
[29, 30] utilize the times the cursor is in recommendation
areas of their e-commerce website, their physical size, and
the users’ product interest. In [31], the authors have used
gaze tracking solutions, as well as counting the number of
times the user moved over or browsed a given element of
the website to learn users’ preferences. In [32], a CF RS is
proposed that uses the social-economic indicators of users
who have bought or evaluated an item as implicit user feed-
back to mitigate the cold start problem. In [33], the usage of
AI in e-commerce RS is reviewed, reporting content-based
scoring, collaborative filtering, deep learning, and virtual
assistants. According to the authors, the benefits of using AI
in RS include improved decision-making, reduced shopping
duration and effort, increased sales, and overcoming data
sparsity and cold-start issues. In [34], an extension of online

10 Data about which webpages users visit, e.g., product webpages.
11 The ratio of users who click on a link to the number of total users
who view the webpage.

 SN Computer Science (2025) 6:370 370 Page 6 of 31

SN Computer Science

learning methods for re-ranking modelling in e-commerce
RS is proposed. In RS, a re-ranking model re-ranks the item
candidates by considering additional criteria or constraints.
According to the authors, the proposed model can effectively
model online learning without waiting for real user feed-
back, which may be delayed (e.g., item purchases).

A work similar to ours was conducted by Hwangbo et al.
[35], who proposed a recommendation method that com-
bines users’ click history on products on the e-store of a
fashion company,12 with users’ product purchase history
from the same company’s physical store. The aim was to
reflect the online and physical preferences of customers
respectively. In their setting, there was no linkage between
the customers of the e-store and those of the physical store.
This scenario differs from the settings of our work, where a
customer has an online presence on the e-store, as well as a
physical presence at the physical store, where these two are
linked together via one user account in the system. Moreo-
ver, in [35], users’ purchases on products were being tracked
in the physical store, whereas our method proposes using the
“Staying Time in front of a product” within the store (see
“UbiCARS Methodology” section). The authors conducted
an experimental evaluation with real users utilizing online
and physical store data from users. The results indicate that
utilizing implicit and explicit user feedback acquisition tech-
niques can improve recommendations’ accuracy.

In addition to implicit and explicit techniques, an alter-
native recommendation approach analyses users’ textual
reviews on e-commerce (and other) online platforms. As
reviews provide insights into users’ fine-grained preferences
and item features, analysing these reviews contributes to
enhancing the performance and interpretability of person-
alized recommendations [36]. Review-based recommender
systems are considered to be a significant sub-field in the
recommendation domain. More on the topic can be found
in [36]

RS for Physical Stores

Many works in the literature have utilized e-commerce RS
techniques to provide recommendations to their customers
at physical store locations, such as a shopping mall, a theme
park, a restaurant, or a grocery store. While most of these
works based their recommendations mostly on customers’
purchase history, So and Yada [9] proposed providing rec-
ommendations of shops to visit based on users’ in-store
shopping path. CF was used based on customers’ “staying

time” in each area. Other works [37] have shown that staying
time in an area is related to the level of interest of the user
in the item positioned in that selling area. It is also possible
that users staying in a selling area for an extensive amount of
time make spontaneous purchases of products in that area [9,
38–40]. In the following we describe how works have used
ubiquitous technologies to understand user preferences for
RS in physical stores.

Fang et al. [5] proposed a mobile store RS that relies on a
novel indoor mobile positioning approach that uses mobile
phone signals, achieving store level accuracy. Jie et al.
[41] described a shop RS to be used in a shopping mall.
Customers’ location detection is achieved via the usage of
appropriate RFID devices. Walter et al. [3] utilize a personal
shopping assistant (PSA) that recommends products to cus-
tomers based on the products within the customers’ cart, the
customers’ location, and the customers’ purchase history. In
[42], a smartphone-based augmented reality shopping assis-
tant application is proposed, which uses augmented reality to
display tailor-made offers, product comparison and recom-
mendations, utilizing explainable artificial intelligence. The
RS has access to users’ personal information such as social
media and historical purchase data. Anchored around the
product of interest, the application displayed recommenda-
tions, offers, and comparison of items [42], e.g., it could
identify the product with which the customer was interacting
and provide tailored content. Kawashima et al. [43] proposed
a shopping RS that assigns user preference scores based on
how near a user is to the product, whether a user picks up a
product or whether a user scans a product via a RFID reader.
Pfeiffer et al. [44] presented a system that uses eye-tracking
to understand when users are standing in front of shelves and
use it as an implicit user feedback in a non-intrusive way.
Reischach et al. [45, 46] facilitated users while shopping at
the physical store, not only through personalized product
recommendations, but also through the provision of users’
comments, suggestions, and ratings on products they are
about to buy. The authors in [8] identify customers’ prefer-
ences by scanning RFID tags of products using smartphones
with RFID readers and providing in real time information
related to the products and product recommendations. Mora
et al. [47] have used a mixed reality (MR) head-mounted
display (HMD) to recommend products to customers while
shopping via a mobile app. The system uses customers’
behaviour in-store such as 3D position, head orientation,
eye gaze, gesture recognition and voice commands. Other
works for the interested reader are: [48, 49].

From the above discussion it is shown that, in terms of
facilitating shopping in physical stores, ubiquitous (mobile
and wireless) technology can be used to acquire user feed-
back in order to elicit user preferences, while RS technology
and methods can offer personalised content to users. Table 1

12 Company statistics: 5 million members; 40 000 products sold
yearly online; 1.5 million clicks and 10 000 online transactions are
available per month; 1300 physical stores in Korea; 20,000 products
sold yearly.

SN Computer Science (2025) 6:370 Page 7 of 31 370

SN Computer Science

summarises the ubiquitous technologies used in the above
works and how they were used.

Model‑Driven Development

Model-Driven Development aims at the abstract represen-
tation of application domains and the use of mapping tools
to transform the abstract model into a working application
(model-to-code transformation). Models through automated
transformations or interpretations are converted into appli-
cations, eliminating or minimising the need to write code.
In MDD, an important challenge is to include all required
structures to describe the model, while keeping the element
of abstraction, that is more challenging in specific areas,
such as cross-platform applications [50]. Many works in the
literature have used MDD in various domains, such as Inter-
net of Things applications [51].

Using MDD for Automated Configuration of Applications

MDD has been used for automated configuration of sys-
tems and applications in other domains than commerce. In
[16], White et al. proposed an MDD approach for automated
enterprise application configuration. The authors argue that
enterprise applications are hard to configure, and thus tech-
niques for their automated configuration are needed. The
proposed approach builds a model that specifies the applica-
tion’s configuration rules. Configuration artefacts, such as
XML configuration files, are then generated from the model.

The approach uses the model to execute a series of probes to
verify configuration properties, formalises feature selection
as a constraint satisfaction problem, and applies constraint
logic programming techniques to derive a correct applica-
tion configuration.

MDD has been applied on cloud computing as well. In
[17], Achilleos et al. discussed that the diversity of cloud
infrastructures, platforms, and tools that is offered to busi-
nesses creates challenges, such as hinders interoperability,
promotes vendor lock-in, and prevents businesses from mak-
ing informed and optimal decisions when transitioning to the
cloud [17]. There might be a need for businesses to utilise
many different cloud providers, e.g., in the case where a
hybrid cloud deployment is desirable, where the application
servers can be deployed in a public cloud, while the database
servers are deployed in the private cloud of the firms. In the
context of the PaaSage FP7 EU funded project, an open-
source integrated platform has been developed that allows
model-based development, configuration, optimisation and
deployment, supporting existing and new applications inde-
pendently of the existing underlying cloud infrastructures. It
offers a model-driven approach, which incorporates work-
flow-driven, script-based deployment of applications.

Related Work

Few works in the literature propose using modelling and
other software engineering techniques for aiding the devel-
opment of RS by tackling RS development complexity.

Table 1 Usage of ubiquitous technologies in works that facilitate physical shopping

a: RFID/ NFC Product Scanning; b: Wi-Fi Location Tracking; c: 3G Location Tracking; d: Mobile Received Signal Strength; e: Ultrasonic 3D
tagging system; f: Wearables

References Technology Methodology

[9] a, b Tracking customers’ in-store shopping path. Shopping carts with attached RFID tags enable for tracking the shopping
cart’s position in the store and record its shopping path

[3] a Uses a Personal Shopping Assistant for tracking the products in the user’s shopping cart and user’s location. All prod-
ucts must be tagged with RFID chips. Able to identify products the user is currently looking at or has added in their
shopping card

[5] d Indoor mobile positioning approach using received signal strength (RSS) from mobile phone received signals to rec-
ommend brand stores to users in a big shopping Mall (store level accuracy)

[43] a, e Ultrasonic 3D tag system for product indoor positioning is used to track user’s physical distance from the items. “Near
an object”: the distance between the user and a physical object is within 50 cm. “Picking up an object”: user picks up
an object over 20 cm. “Scanning an object”: user obtains the data of physical object using a RFID reader device

[41] a RS that recommends shops in a mall: to detect customers’ location, RFID devices and related infrastructure have been
deployed

[44] a, b, c, f Eye-tracking technology is used via special glasses to identify user interest on products on shelves. The system uses
different technologies for localisation (GPS, Wi-Fi, 3G, NFC, Accelerometer, Gyroscope, and Compass). UI enables
using speech, gaze and gestures for communication

[46] a Users scan RFID tagged products by using a mobile device to receive/produce recommendations
[8] a A smartphone application is able to identify customers’ preferences, by scanning RFID tags on products using smart-

phones with RFID readers, and provide product information and recommendations in real time
[47] f Used a MR HMD to recommend products to customers while shopping via a mobile app

 SN Computer Science (2025) 6:370 370 Page 8 of 31

SN Computer Science

This section describes the State-of-the-Art in the literature
regarding works that focus on how RS development could
be simplified and expedited.

Hussein et al. [10] support that research into RS has been
concentrated on the development, optimization and evalua-
tion of recommendation algorithms, giving less attention on
the support and facilitation of the development of RS from
a software engineering and architectural perspective. They
propose a recommendation framework named Hybreed for
assisting developers build CARS and hybrid RS. Hybreed
supports the development of RS by applying a decentralized,
service-oriented approach. It utilizes a dynamic contextu-
alization process to provide an abstraction for developers,
reduce programming effort, and increase comprehensibil-
ity and usability when developing complex RS. Hybreed
requires developers to write code. To develop an application
using Hybreed, developers need to utilize Hybreed’s View
Java interface to create customized views and instantiate a
Kernel object by utilizing these views [10].

Rojas et al. [14] research on how to assist web developers
in dealing with recommendation algorithm complexity when
attempting to use such algorithms in their web applications.
The authors emphasize the absence of model-driven method-
ologies for determining the specifications of RS algorithms
and interface characteristics. They define a UML-based
modelling approach and model an un-contextual Item-to-
Item CF recommendation approach for including recommen-
dations in e-commerce applications. Developers may interact
with their system via object creation procedures using the
framework’s classes and execution of appropriate functions,
e.g., create, delete, update, and retrieve. The authors state
that the development of their case study of an online travel
agency took considerably less time in contrast to the devel-
opment time for an alternative content-based RS. About
modelling the recommendation algorithm itself, we could
argue that flexibility is reduced as the model becomes algo-
rithm-specific making it difficult to use other algorithms,
the complexity of the modelling process increases since
hard to comprehend recommendation specific parameters
become available for usage by designers, and the complexity
an algorithm can have to be able to be used in the proposed
model-driven process is somewhat limited, in the sense that
too complex recommendation algorithms will be difficult to
be modelled.

Inzunza et al. [11] propose a user modelling framework
for CARS named UM4RS that serves as a tool for building
data models for CARS. The framework aims to increase the
productivity of developers while building the data model
(user, item, and context) for CARS. A model schema for
CARS and a UML class description are offered. Developers
can use the modelling framework to create objects from its
classes and perform actions such as create, retrieve, update
and delete. The framework was evaluated based on how

effectively it could create CARS data models out of data-
sets from the literature with positive results. However, the
framework was not evaluated with developers. A develop-
ment framework for CARS for mobile users is proposed in
[15]. The framework proposes a pull-based architecture for
pull-based mobile recommendations, i.e., recommendations
are provided as a response to a user generated query.

Our work differs from related work in the following six
important aspects:

• It defines a novel Domain Specific Modelling Language
for UbiCARS (UbiCARS DSML), abstracting technical
details to a higher level, minimizing thus the need for
technical expertise.

• A DSML model is easily extendable, as new model ele-
ments can be added to support additional functionality
(e.g., additional explicit/implicit user feedback tech-
niques and alternative recommendation engines).

• It focuses on the ubiquitous scenario of UbiCARS, aim-
ing to improve product recommendations’ accuracy and
availability: [26] proved that users' implicit feedback
improves recommendations’ accuracy, whereas [35] has
used user explicit feedback data in terms of purchases,
together with implicit feedback data in terms of user
clicks on products to improve recommendations’ accu-
racy (see “RS for E-commerce” section). The claimed
potential improvement of recommendations’ accuracy
and availability is left as future work (“Conclusions and
Future Work” section).

• It can be directly deployed on existing e-stores, making
its adoption easier.

• Developers do not need to extend classes or interfaces
to use it, while writing code is minimised to the extent
possible.

• It supports the usage of sophisticated algorithms and data
models from the State-of-the-Art of RS literature. How-
ever, it does not model the recommendation algorithms
to avoid increased model complexity and maintain flex-
ibility.

Table 2 lists the available tools for aiding the develop-
ment of RS and their key characteristics.

The UbiCARS MDD Framework

Framework Design Principles

While the works described in “Related work” section related
work have utilized innovative methods to tackle RS develop-
ment complexity, we argue that the level of technical abstrac-
tion offered by the proposed methods is somewhat limited
and can be further increased, while the need to write code

SN Computer Science (2025) 6:370 Page 9 of 31 370

SN Computer Science

by developers can be further reduced or even eliminated. To
this end, we have specified a list of Design Principles (DPs)
for the UbiCARS MDD Framework that also constitute the
main points of differentiation from related work:

• DP1. Technical details be abstracted to the highest level
possible.

• DP2. Offer automation: UbiCARS models should be
defined as abstractions and be able to automatically con-
verted into UbiCARS systems, eliminating the need to
write code.

• DP3. Recommendation algorithmic details be abstracted
from developers: developers, non-experts in RS, should
be able to develop RS for commerce in less time than by
using any other recommendation framework or develop-
ing a RS manually.

• DP4. Use intelligent algorithms to not compromise rec-
ommendations’ accuracy.

• DP5. Allow combining user feedback data from both the
ubiquitous and online scenarios to potentially improve
product recommendations’ accuracy and availability (to
be proven).

• DP6. Be easily extendable: allow for new modules/ele-
ments to be added to support additional functionality.

• DP7. Increase productivity by offering reuse of UbiC-
ARS models.

• DP8. Enable the deployment of UbiCARS on existing
and new e-stores.

UbiCARS Methodology

The framework facilitates the design, development and
deployment of UbiCARS on e-stores and physical stores in
an automated manner, during which developers do not need
to write code. It defines the DSML that models the entire
recommendation process for UbiCARS, and a graphical
modelling editor for the DSML. The editor enables develop-
ers to use the DSML towards designing UbiCARS through
a model-based approach, and dynamically configuring them
on e-stores, both new and existing ones. Figure 1 depicts Ta

bl
e

2
 T

oo
ls

 fo
r a

id
in

g
R

S
de

ve
lo

pm
en

t a
nd

 th
ei

r k
ey

 c
ha

ra
ct

er
ist

ic
s

Sy
ste

m
M

et
ho

do
lo

gy
Pu

rp
os

e
Ev

al
ua

tio
n

D
ev

el
op

er
s n

ee
d

to
 d

o
to

 u
se

 it

H
yb

re
ed

 [1
0]

C
om

po
ne

nt
-b

as
ed

 a
pp

ro
ac

h
Re

du
ce

 d
ev

el
op

m
en

t e
ffo

rt
5

de
ve

lo
pe

rs
: f

ou
nd

 to
 re

du
ce

 e
ffo

rt
W

rit
e

co
de

: u
til

is
e

in
te

rfa
ce

s a
nd

in

st
an

tia
te

 o
bj

ec
ts

Ro
ja

s e
t a

l.
[1

4]
O

O
W

S
an

d
co

de
 g

en
er

at
io

n
fro

m

U
M

L
Re

du
ce

 d
ev

el
op

m
en

t t
im

e
N

o
ev

al
ua

tio
n

W
rit

e
co

de

U
M

4R
S

[1
1]

Pr
op

os
e

a
U

M
L

cl
as

s d
es

cr
ip

tio
n

fo
r

CA
R

S
In

cr
ea

se
 p

ro
du

ct
iv

ity
 in

 b
ui

ld
in

g
da

ta

m
od

el
s

N
o

ev
al

ua
tio

n
W

rit
e

co
de

, i
ns

ta
nt

ia
te

 c
la

ss
es

 c
re

at
e

ob
je

ct
s

Ro
dr

íg
ue

z-
H

er
ná

nd
ez

 e
t a

l.
[1

5]
Pu

ll-
ba

se
d

ar
ch

ite
ct

ur
e

A
ss

ist
s t

he
 d

ev
el

op
m

en
t o

f p
ul

l-b
as

ed

m
ob

ile
 C

A
R

S
N

o
ev

al
ua

tio
n

Se
t u

p
an

d
us

e
th

e
sp

ec
ifi

c
in

fr
as

tru
c-

tu
re

 a
nd

 a
lg

or
ith

m
s.

A
ut

ho
r’s

 e
sti

m
a-

tio
n:

 n
ee

d
to

 w
or

k
on

 c
od

e
le

ve
l (

th
e

ac
tu

al
 st

ep
s f

or
 d

ev
el

op
er

s a
re

 n
ot

de

sc
rib

ed
 in

 th
e

pa
pe

r)
U

bi
CA

R
S

M
D

D
 fr

am
ew

or
k

U
se

 M
D

D
, d

efi
ne

s a
 D

SM
L

an
d

a
M

od
el

lin
g

Ed
ito

r
Re

du
ce

 d
ev

el
op

m
en

t c
om

pl
ex

ity

&
 ti

m
e

fo
r n

on
-R

S
ex

pe
rts

 (a
nd

po

te
nt

ia
lly

 in
cr

ea
se

 re
co

m
m

en
da

-
tio

ns
’ a

cc
ur

ac
y

an
d

av
ai

la
bi

lit
y

–
to

be

 p
ro

ve
n)

Ev
al

ua
te

d
w

ith
 2

0
de

ve
lo

pe
rs

 a
nd

 1
7

ex
pe

rts
: f

ou
nd

 to
 re

du
ce

 d
ev

el
op

-
m

en
t c

om
pl

ex
ity

 a
nd

 e
xp

ed
ite

 th
e

de
ve

lo
pm

en
t o

f U
bi

CA
R

S
(s

ee

“E
va

lu
at

io
n”

 se
ct

io
n)

(i)
 U

se
 th

e
U

bi
CA

R
S

D
SM

L
an

d
m

od
el

lin
g

ed
ito

r t
o

de
si

gn
 m

od
el

s;

(ii
) u

se
 th

e
sy

ste
m

 U
I t

o
co

nfi
gu

re

e-
sto

re
s (

se
e

“U
bi

CA
R

S
D

SM
L”

 a
nd

“S

ys
te

m
 W

or
kfl

ow
”

se
ct

io
ns

)

Fig. 1 Software layers of the framework

 SN Computer Science (2025) 6:370 370 Page 10 of 31

SN Computer Science

the framework’s multi-layered software architecture. The
DSML, through the modelling editor, acts on the Modelling
layer, enabling developers to design UbiCARS models.

Upon UbiCARS design completion, UbiCARS models
are exported in XML format, where they serve as configu-
ration files that are then being processed by the Configura-
tion layer via a Parser. The Logic layer is responsible for
the engineering of UbiCARS: data models and database
tables are being built, while system configurations are also
being realized, as these were dictated by the Configuration
layer. The Logic layer integrates the new RS with e-stores,
provided that the necessary information has been included
during design time, such as database URL, database name
and platform type (configFile element), as well as user
feedback-specific information (DatabaseResourse
elements), see respective paragraphs in “UbiCARS DSML”
section. System configurations for the utilization of data
from the UbiCARS app (see the following paragraph) are
also provided by the Logic layer. The Data layer generates
the multidimensional datasets needed to be fed to the CARS
system. These datasets include context-aware user-product
interaction patterns.

The UbiCARS MDD framework configures a CARS sys-
tem and a UbiCARS app as follows:

CARS is a server-side system (including the recommenda-
tion engine) that:

• Enables the tracking of user-product interaction on the
e-store: user ratings, browsing history and purchase his-
tory.

• Computes personalized recommendations.
• Presents recommendation of products to users within the

e-store.

UbiCARS app is a mobile application that:

• Enables the tracking of user-product interaction within
the physical store. Similar to [25, 27] that have used the
dwell time online as users’ implicit feedback (see “RS for
E-commerce” section), we propose using the “Staying
Time in front of a product”.

• Provides access to product recommendations to users
within the physical store.

Figure 2 presents a block diagram of the framework that
focuses on its components and their interactions. Starting
from the DSML that enables the creation of UbiCARS mod-
els, these models feed the CARS system that uses them to
configure the plugins and the database (DB) on the e-store,
the recommendation engine and the UbiCARS app.

From the users’ perspective, the framework tracks their
activities on the e-store and physical store, as well as related
context, provided that the developer has included in the
model the corresponding ContextParameter model
elements, and that the corresponding context sensing plugins
exist in the system (see “UbiCARS DSML” section).

From the developer’s perspective, interaction with the
framework is firstly made through the UbiCARS DSML,
via which the developer creates elements in models. Based
on these elements, e-store configurations will be conducted.
Once the UbiCARS model is created (an XML-based file),
it is uploaded to the framework by the developer through
the system UI. The system UI is an easy to use, three-button
user interface pre-installed on the e-store, through which the
developer: (i) uploads the model, (ii) conducts configura-
tions—including the creation of the datasets, and (iii) selects
a dataset from the set of available datasets and computes rec-
ommendations on demand. Recommendations are computed
by utilizing the selected dataset.

Fig. 2 UbiCARS framework
block diagram

SN Computer Science (2025) 6:370 Page 11 of 31 370

SN Computer Science

Prerequisites

For the integration of the framework with the e-store, the fol-
lowing software modules need to be installed on the e-store
in the form of plugins. These modules are provided by the
framework.

• System UI: the main UI for the developer to manage the
framework.

• Plugins for acquiring user feedback data from the e-store:
such plugins are required only for types of user feedbacks
for which the e-store does not already store data (e-stores
usually store user ratings on products and product pur-
chases).

• Context sensing plugins: used for sensing and storing the
context in the database in corresponding tables created
by the framework.

• A plugin for presenting the recommendations to users,
as well as plugins that offer other functionalities such as
registering user mobile device’s Bluetooth friendly name
(see paragraph “User Identification Across Devices” in
“Mobile App Specific Elements” section).

• A recommendation engine: a stand-alone recommen-
dation engine that can be configured and executed by
the framework (e.g., via a script). It is required that the
engine receives as input datasets of the same format as
those of the framework. Framework’s dataset format per
line (see also Listings 1 & 2 in “Introduction” section),
where context is not mandatory:

user,item,userFeedback[,context]

Configurations

The following configurations are conducted by the
framework.

Infrastructure configurations

• Creation of the necessary database infrastructure: the
required database tables are created.

• Configuration of the recommendation engine: based on
information from the model, specific settings are pro-
vided by altering configuration files of the engine.

• Configuration of the pre-installed plugins mentioned in
the subsection above “Prerequisites”.

• Configuration of the UbiCARS app involves selection
of the ubiquitous technology to be used to acquire user
feedback data from the physical store.

Context Related Configurations

• Creation of context-aware datasets, one for each of the
acquired user feedbacks: ratings, browsing history, pur-

chase history, staying time in front of products, scanning
of products.

• Context is automatically included in a user feedback data-
set if:

o The developer has included a ContextParam-
eter element in the model and linked it to the cor-
responding user feedback element, and

o There is a context sensing mechanism available on
the e-store or the physical store for sensing and stor-
ing the context in the database in the corresponding
table created by the framework. Then, the inclusion
of the context data in the dataset is undertaken by
the framework (see related paragraph in “UbiCARS
DSML” section).

Once recommendations are produced, the framework
makes them available to users (customers) through the
e-store and the UbiCARS app. The frequency with which
recommendations are computed is left upon the developer.
The framework does not provide the means for schedul-
ing the computation of recommendations automatically to
handle new user preference data that may be added to user
profiles at runtime; this can be done using utilities from the
hosting server, such as cron jobs.13

UbiCARS Architecture

Figure 3 presents the architecture of the framework, focus-
ing on users’ (customers’) interaction and tracking users’
behaviour (user feedback acquisition). The DSML usage and
model creation process is not depicted here; rather, we show
the framework components after system configurations were
conducted. The client-side frontend of the e-store enables for
tracking users’ behaviour on products via the browser and
other third-party software.

To track users’ behaviour server-side, users’ access to the
products’ webpages is recorded, as well as their purchases.
Ubiquitous user-product interaction is tracked through the
UbiCARS app via Bluetooth beacons (estimating users’ stay-
ing time in front of an item). It is possible for the framework
to be extended with more ubiquitous technologies. NFC tag-
ging would be a possibility, where a user would use his/her
smartphone to scan a product’s tag to indicate a preference to
it; however, this requires the user to take explicit action, and
thus interrupt his/her current task. All user-product interac-
tion data are stored in the database (DB). These data are later
retrieved by the CARS system to compile the corresponding

13 A utility on Unix-based systems that allows scheduling a script on
a server to run automatically at a specified time and date, or repeti-
tively.

 SN Computer Science (2025) 6:370 370 Page 12 of 31

SN Computer Science

datasets and make them available to the recommendation
engine, CARSKIT. Resulted recommendations are stored
in the database and may be presented through the e-store
front-end and the UbiCARS app. CARSKIT [52] is a Java-
based, open-source engine for CARS that offers algorithms
from the State-of-the-Art of Recommender Systems research
area (related with DP4). We have selected CARSKIT among
other engines because of the variation of algorithms offered,
while it is also flexible, easy to use and efficient.

UbiCARS DSML

The UbiCARS DSML aims to abstract the technical details
concerning the ubiquitous product recommendation domain
to the highest level possible, as well as to expedite RS devel-
opment, to simplify the usage and instantiation of models
by developers. For the creation of the DSML metamodel,
we have considered RS research, as well as existing RS and
parameters available in popular algorithms. The novelty of
the UbiCARS DSML is summarised as follows:

• It is domain specific for the physical and electronic com-
merce recommendation domain: as such, any domain
specifics are abstracted from developers to reduce devel-
opment complexity and expedite the design of UbiCARS
for commerce (related with DP1 and DP3).

• Details of complex recommendation algorithms (such as
model-based CF approaches) are abstracted from devel-
opers (related with DP3). Their usage is offered in an
easy and straightforward manner.

• The DSLM is cross-platform: it can be used to design
UbiCARS models for different types of e-store plat-
forms. This approach abstracts platform specific techni-
cal details from developers at design time (related with
DP1), such as how to create the database resources,
how to acquire user feedback data on products, how to
integrate a recommendation engine, etc. This reduces
complexity and expedites the design. By using the pro-
duced models, the framework conducts platform-specific
configurations for the platforms it supports, as shown in
Fig. 1.

• It offers automation (related with DP2).
• It increases productivity by enabling for dynamic integra-

tion with existing e-stores, as well as by offering reuse of
UbiCARS models: models can be reused for configura-
tion of e-stores (related with DP7, DP8).

• It is easily extendable, as model elements can be added
(removed) for additional (less) functionality, and the
updates are reflected in the CARS system in an auto-
mated fashion (related with DP6).

• It enhances comprehensibility of the physical and elec-
tronic commerce recommendation domain, as well as
promotes communication between RS professionals via
standardisation of the terminology in the domain.

For designing the DSML, the open-source Eclipse project
Sirius14 has been used. Sirius enables the creation of custom

Fig. 3 Framework architecture

14 www. eclip se. org/ sirius/.

http://www.eclipse.org/sirius/

SN Computer Science (2025) 6:370 Page 13 of 31 370

SN Computer Science

Fi
g.

 4

Th
e

pr
op

os
ed

 U
bi

CA
R

S
D

SM
L

 SN Computer Science (2025) 6:370 370 Page 14 of 31

SN Computer Science

graphical modelling workbenches by utilizing EMF and
GMF (Eclipse Modelling technologies). The Eclipse Model-
ling Framework15 (EMF) itself is a framework and code gen-
eration facility for building tools and applications based on a
structured data model. As the authors in [53] note, designing
an editor using the Eclipse platform with EMF and GML
results in a high-quality product, especially regarding usabil-
ity aspects. A comparison of development tools for DSML
conducted in the same paper (tools compared are: GME, Tau
G2, RSA, XMF-Mosaic, Eclipse EMF + GEF) concluded
that the Eclipse platform is the tool offering the highest level
of graphical completeness, as well as the best usability in
terms of user experience, tool feedback, and overall number
of features. For DSML development, we have used the Sirius
with Obeo Designer Community edition16 that simplifies the
creation of graphical modelling workbenches.

In Fig. 4, the DSML is presented as a metamodel.17 The
Application element represents a commerce RS that
consists of a CARS system and a UbiCARS app. CARS
defines the explicit user feedback elementRating that
represents users’ ratings on products, and the implicit user
feedback elementsPurchaseHistory, ClickStream
and BrowsingHistory. A CARS can instantiate at most
one of each of these elements.

The NewUserFeedback elements may be defined
by the developer if needed as new, custom user feedback
techniques that can be either explicit or implicit (default is
explicit). NewUserFeedback elements essentially con-
stitute a means for the developer to define new types of user
feedback on products within the model. An example of new
type of user feedback on products is the number of times a
user has watched a product video description through the
e-store: the more times watched, the more interested the user
is in that product.

If additional user feedbacks are included, then the devel-
oper needs to develop the necessary functionality to acquire
the new user feedback data from the users via the e-store
or app.

The UbiCARS app acts in the physical store and utilizes
the StayingTime implicit user feedback element that rep-
resents the staying time in front of products. The DSML also
includes the Scanning implicit user feedback element as
an alternative to the StayingTime, that represents the
scanning of NFC tags of products. UbiCARS element has
at most one of each of these elements, while explicit/implicit
NewUserFeedback elements are also available to be
defined by designers.

It is mandatory for each of the user feedback elements,
i.e., Rating, PurchaseHistory, ClickStream,
BrowsingHistory, StayingTime, Scanning and
NewUserFeedback to be linked to one DatabaseRe-
source element, while it may also be linked to a number
of ContextParameter elements. The DatabaseRe-
sourceelement, through parameter resourceValue,
defines where in the database the user feedback element that
is linked to it will be stored and how its information can
be retrieved. The timestampValue parameter is used
to denote whether timestamp is to be used as a time related
contextual information (by retrieving the time that the user-
product interaction occurred) and use it as context in the
recommendation computation. If enabled, the timestamp
is automatically embedded in the datasets. If a developer
assigns a timestampValue, then, in case this value pre-
exists as a database table column, then the system automati-
cally uses it (the developer needs to set the timestamp value
to be the same as the corresponding column name); other-
wise, the system creates it as a new column to record time.

To record the context in which user-product interaction
occurs (e.g., users’ staying time), the ContextParam-
eter element is used and linked to the respective user feed-
back element (e.g., StayingTime element). As an exam-
ple of context, we note the location of the user, which can
be expressed either by means of numbers (i.e., GPS coordi-
nates), or by using arbitrary keywords, such as “smartphone
section within store” or “1st floor”. isAvailable speci-
fies whether the respective context sensing mechanism for
the ContextParameter element has been implemented
and can be used, or whether it needs to be implemented by
the developer. The ContextParameter element is linked
to a DatabaseResource element as well, that specifies
the database location where the respective context informa-
tion will be stored (or has already been stored). With the
above design, the framework becomes aware that a dataset
is context aware. Implementation of context sensing mecha-
nisms and context plugins (e.g., to acquire users’ location) is
undertaken by the developer; however, the entire infrastruc-
ture in terms of context data storage, the inclusion of con-
text in datasets, the compilation of context-aware datasets
and the computation of context-aware recommendations is
undertaken by the framework. The implementation required
by the developer includes sensing of context data and storing
them in a specific database table.

The RecommendationEngine element is responsi-
ble for the recommendations’ computation. The CARSKIT
recommendation engine is specified in the metamodel as the
default engine; nevertheless, the framework allows for other
engines to be integrated and utilized by selecting “Other” as
the value of the selectedEngine parameter that corre-
sponds to the RecommendationEngineEn enumeration
in the metamodel. The RecommendationAlgorithm

15 proje cts. eclip se. org/ proje cts/ model ing. emf. emf.
16 www. obeod esign er. com/ en/ downl oad.
17 The metamodel in high resolution: www. cs. ucy. ac. cy/ ~metto ur/
Journ al/ CARSM etamo del. png.

http://www.projects.eclipse.org/projects/modeling.emf.emf
http://www.obeodesigner.com/en/download
http://www.cs.ucy.ac.cy/~mettour/Journal/CARSMetamodel.png
http://www.cs.ucy.ac.cy/~mettour/Journal/CARSMetamodel.png

SN Computer Science (2025) 6:370 Page 15 of 31 370

SN Computer Science

element is linked to the recommendation engine and speci-
fies the algorithm in use. The RecommendatioAlgo-
rithmEn enumeration specifies the available recommen-
dation algorithms for the corresponding recommendation
engine, which can be selected through the algorithm
parameter of the RecommendationAlgorithm ele-
ment. In case CARSKIT is the developer’s recommenda-
tion engine of choice, the metamodel assigns context-aware
matrix factorization CAMF_CUas the default algorithm in
use. Two additional algorithms (CAMF_ICS and CPTF Ten-
sor Factorization [52]) are available in the metamodel. The
metamodel is extendable with additional algorithms from
CARSKIT; this is simply done by adding more enumera-
tions in RecommendatioAlgorithmEn (see Fig. 4).
For example, the developer may select a hybrid algorithm,
or any other recommendation algorithm that could produce
better results when lack of data exists for a new user or a
new item (cold start problem), in which case the matrix in
a matrix factorization method would be sparse, and hence,
the algorithm ineffective. Algorithmic configurations to the
selected algorithm can be conducted via the algorithm-
Configurations parameter of the Recommendation-
Algorithm element. Currently, this parameter affects the
operation of CARSKIT; in case of use of another recom-
mendation engine, the parameter can be used for the setup
of the respective engine.

While RecommendationStorage defines the place
in the database, i.e., the database resource, where recom-
mendations are stored, the RecommendationPre-
sentation element defines, among other, the platform
on which the recommendations will be presented to users
(platformOfPresentation element) – whether this
would be the e-store via a web interface or through a mobile-
friendly interface on the UbiCARS app (these are defined
through the PlatformOfPresentationEn enumera-
tion). Currently, the framework provides a web interface
through a plugin for presenting the recommendations to
users (see “UbiCARS Methodology” section), which also
serves users via the UbiCARS app, provided that they are
logged-in to the e-store via the smartphone’s browser. In
addition, the RecommendationPresentation ele-
ment defines the visualizationFormat of the rec-
ommendations through the VisualizationFormatEn
enumeration: should the recommendations be presented as
a main screen element (e.g., as a webpage dedicated to rec-
ommendations), as a minor one, or perhaps in the form of a
widget (e.g., in WordPress)?

Another important parameter of Recommendation-
Presentation element is the enablement of explanations
for the presented recommendations, via the Boolean param-
eter enableExplanations. Recommendation explana-
tions help users understand the recommendation logic, and
can contribute, among other, to system transparency, trust,

and satisfaction [54]. For example, Amazon.com uses “Cus-
tomers Who Bought This Item Also Bought…”. Although the
task of offering correct and precise explanations is difficult,
especially when algorithms with high complexity are being
used, developers are enabled to offer a simpler and broader
version of recommendation explanations, e.g.: “Based on
your product ratings to date, as well as on your previous
transactions and product interaction in our showroom, the
following products are recommended for you!”. The topN
parameter specifies the total number of recommendations to
be displayed to users (e.g., top-5).

Supported Platforms

Two widely used, open-source e-commerce platforms are
used by the framework: WordPress WooCommerce18 and
Drupal Commerce.19 The WooCommerce plugin is updated
for acquiring and storing users’ browsing history on items.
The users’ ratings and product purchases are stored in the
database by the e-stores and the framework is configured to
use these data.

Custom platforms are also supported. A custom platform
refers to any other type of e-store platform. In case a custom
platform is used, for user feedbacks for which the platform
does not store the data (e.g., most platforms already store
users’ ratings on products and product purchases), the frame-
work creates the database tables required to store the user
feedback data. The acquisition of these user feedback data
that stem from user interaction with the e-store is left on the
developer.

For user feedbacks for which the custom platform stores
the data, as the structure of the corresponding database
tables is unknown to the framework, the developer needs to
write code to retrieve the data and compile the correspond-
ing datasets.

The model allows developers to select their platform
via the platformOfUse parameter of the config-
File element (see Fig. 4), which uses the enumeration
eCommercePlatform.

Model Reuse

A UbiCARS model may be reused for the configuration of
other e-stores, increasing thus productivity. For this to be
feasible, the platform of the target e-store needs to match
with the platform specified in the model (platformO-
fUse parameter). Then, for the model to be reused as is,
the following apply.

18 wordp ress. org/ plugi ns/ wooco mmerc e/# insta llati on.
19 drupa lcomm erce. org/.

http://www.wordpress.org/plugins/woocommerce/#installation
http://www.drupalcommerce.org/

 SN Computer Science (2025) 6:370 370 Page 16 of 31

SN Computer Science

In case a custom platform is used, for each database
resource in the model, the system checks whether the
corresponding table exists in the database to use its data,
otherwise it creates it. This enables the usage of pre-exist-
ing data, provided that the pre-existing table follows the
framework’s data format.

In case WordPress WooCommerce or Drupal Com-
merce are used, based on user’s input regarding the
resource parameter of the database resource element in
the model (see Fig. 8 as an example), the system uses the
e-stores’ pre-defined tables and any pre-existing data in
terms of user feedback techniques (for technical details
see paragraph “Pre-defined tables in supported e-stores”
in “Appendix”). Therefore, for model reuse to be feasi-
ble, the target e-store should be set-up having the same
characteristics with the source platform, as specified in
the model. If not, the model needs to be updated in terms
of the resource parameter of the corresponding database
resource to adhere to the target e-store’s characteristics.

Model Correctness

To avoid errors during configuration, UbiCARS models
need to be verified. The first verification step takes place
during design, as the DSML metamodel and the editor
restrict the user from performing a number of invalid
moves. For example, a PurchaseHistory element may
be connected at most to one DatabaseResourse (see
Fig. 4), and this can only be done by using a specific type
of edge, the PurchaseHistoryHasDBResource.
Requiring a specific edge type to connect a particular
element to another element makes the design more com-
prehensible, transparent and error free, but also extends
the number of available tools in the editor’s toolbox (see
Fig. 8), possibly making the tool selection process longer.
The second step takes place during configurations, where
the system informs the user in case of errors, e.g., more
than one element is requesting access to the same database
recourse.

Fig. 5 System workflow

SN Computer Science (2025) 6:370 Page 17 of 31 370

SN Computer Science

System Workflow

Figure 5 depicts the system workflow with a clear repre-
sentation of the two user roles: the developer and the user
(customer). After the model has been designed and uploaded
to the system through the System UI, the actions depicted in
the figure are then performed by the framework.

After the model has been parsed by the system UI, the
CARS system checks whether user feedback data pre-
exist in the database. For every user feedback element in
the model, a DatabaseResource element defines the
database table where the corresponding data will be stored.
There are two cases where such tables pre-exist: (i) when the
default e-store database includes such tables (e.g., for prod-
uct purchases and user ratings on products), and (ii) when
the model is re-executed by the system: a developer may
update parts of the model and repeat the execution process,
in which case the tables (and any data in them) will pre-
exist. If the database table does not exist, the system creates
it and configures the system so that, from that point onward,
the corresponding user feedback data from the e-store or the
app are stored in that table.

Tracking and storing user feedback data is the next step
after creating user feedback tables (Fig. 5). This step occurs
only in cases where the user feedback data are not already
being tracked and stored by the e-store. The framework
requires from the developer to create the necessary mecha-
nisms to acquire the user feedback data and store them in
the corresponding database table created by the framework
in the previous step. In the case of the WordPress WooCom-
merce platform for example, as the user browsing history
data do not exist, a plugin was developed and is provided by
the framework that tracks the users’ browsing history and
stores the data in the database.

In cases where the default e-store database includes the
user feedback data (alternative flow in Fig. 5), the system
uses them. For example, for the WordPress WooCommerce
platform, the system checks whether the user ratings and
user product purchases exist and uses them.

In case the UbiCARS framework is to be applied on a new
type of e-store platform other than those already supported,
then in cases where the default e-store database includes
user feedback data, the developer is required to write code
to retrieve the data and compile the new datasets.

Figure 6 depicts the parsing and configuration steps fol-
lowed by the UbiCARS Framework. Input to this process
is the UbiCARS model. Configuration steps from the start,
down to the dotted line, regard configurations conducted
on the e-store platform by the CARS system in terms of
database resources from user feedback elements and their
context elements (if any). If the model specifies one of the
two supported platforms, then the required configurations
are conducted by the framework. If the model specifies a

custom platform, then, during the first execution, all the
database tables that correspond to the DatabaseRe-
source elements will be created. The dotted line signifies
the point during execution where the framework inspects
whether the respective data from user-product interaction
exist in the platform. If such data do not exist, execution
steps below the dotted line cannot be realised (this refers to
the cold start problem). In case data exist, the framework
proceeds with those to compile the corresponding datasets,
compute recommendations, and present them to users. For
example, if user ratings on products exist, but users did not
visit the physical store, and therefore, user staying time data
do not exist, the framework will proceed to compile the rat-
ings dataset only and make it available for the computation
of recommendations. The developer may at any time initi-
ate compilation of any dataset, provided that the aforemen-
tioned requirements are met, and then, initiate computation
of recommendations.

In case context database resources are defined in the
model but context data and resources do not yet exist in the
database, the context database resources need to be created.
In this case, context data are not yet available, and thus,
non-context-aware execution is initiated (see Fig. 6). For
example, while context parameters for user location tracking
may have been defined in the model during design, context
plugins for implementing tracking of user location may have
not yet been developed. During following system iterations
where context resources and the respective context data will
have been included in the database, context-aware datasets
will be compiled, and context-aware recommendation com-
putation will be initiated.

Mobile App Specific Elements

The UbiquitousTechnology element specifies the
ubiquitous technology in use by the UbiCARS app, as
depicted in Fig. 4. Currently, BluetoothBeacons and
NFCScanning are supported, as shown by the Ubiqui-
tousTechnologyType enumeration. Alternative poten-
tial technologies for use are Wi-Fi, or more modern indoor
positioning technologies such as smart floors [55].

Bluetooth Beacons

Bluetooth beacons can be used for indoor positioning, by
communicating with Bluetooth-enabled devices in the prox-
imity. Smartphones for example, through appropriate soft-
ware, can estimate their distance from Bluetooth Beacons.
Typical beacon range is 7 m to a few hundreds of meters.
There are already examples of physical stores that use bea-
cons to offer a more engaging experience to customers while
shopping [56].

 SN Computer Science (2025) 6:370 370 Page 18 of 31

SN Computer Science

Fig. 6 UbiCARS framework configuration steps

SN Computer Science (2025) 6:370 Page 19 of 31 370

SN Computer Science

Attaching Bluetooth beacons on products that are placed
adjacent to each other (in shelves or showroom tables)
causes signal coverage overlap. To overcome this, the Blue-
tooth Received Signal Strength Indicator (RSSI) is used by
the UbiCARS app to estimate users’ staying time in front
of a specific product. Users only need to install and run the
UbiCARS mobile application. RSSI serves as an indication
for the distance between the mobile device and the beacon:
the closer the device is to a beacon, the higher the registered
RSSI value. Depending on the particular beacons sensed by
the user’s device and the respective RSSIs registered, the
system estimates the distance of the device from each Bea-
con and opines on the products the user has stayed in front of
and for how long. The RSSI_minDetectionThresh-
old parameter of the StayingTime element (see Fig. 4)
is used to denote the minimum possible RSSI value that
indicates that the user is near enough to the product to be
considered that they “have stayed in front of the particular
product”. During experiments in the laboratory, we have
acquired RSSI values from − 30 (~ 2 m) to − 120 (~ 8 m),

based on which, the RSSI_minDetectionThreshold
default value was set to be − 50. As retrieved RSSI values
heavily depend on the type of sensors used, the characteris-
tics of the space and the contained objects, a number of tests
will be required to properly adjust the RSSI_minDetec-
tionThreshold to suit the specific use case.
MaxTimeInterval_BSD refers to the maximum time

interval between successive detections of a user in front of a
product, so that these detections are considered in the same
“staying time session” in front of that product (the default
value is 20). Figure 7 describes the staying time reasoning
algorithm for the abovementioned default values.

User Identification Across Devices

Using a simple interface on the e-store, users are able to
register to their user profile the Bluetooth friendly name of
their mobile device. This name does not correspond to the
real name of the user; rather, it is used as an identifier when
pairing Bluetooth devices with the user’s mobile device. In

Fig. 7 Staying time reasoning
algorithm

Fig. 8 UbiCARS model instance

 SN Computer Science (2025) 6:370 370 Page 20 of 31

SN Computer Science

this manner, the user device’s friendly name is associated
with the user’s profile. After sensing a beacon, the UbiC-
ARS app sends to the system the beacon’s H/W address that
uniquely identifies the item, together with the RSSI value
and the Bluetooth friendly name of the user’s mobile device.
The system associates the Bluetooth friendly name with the
user ID from the database and stores the received data to
the database as tracking data. Thus, the user is being identi-
fied in both the physical store and the e-store. The system
ensures that Bluetooth friendly names of users stored in the
system are unique by checking whether the new friendly
name already exists in the system with each new name inser-
tion. If it does, the user is prompted to change his/her device
friendly name and try again (changing the name is a simple
process).

Privacy Concerns

The tracking of users is strictly conducted within a physical
store. Tracking data could potentially reveal that the user
was indeed in the store during a certain period of time. In
this paragraph we discuss that our method does not raise any
privacy concerns for the following reasons:

• The data are anonymized: the user is being tracked using
his/her Bluetooth friendly name that is associated to the
user ID, and in relation to his/her distance from a H/W
address of a beacon. Such tracking data alone cannot
trace back to the name of the user, neither the items that
the user interacted with, unless the entire database is
compromised.

• The tracking data are stored in a database table. They are
not available to any type of users such as administrators
or e-store owners, and furthermore, they are not acces-
sible from any user interface within the system UI, the
e-store or the app, as such functionality was not imple-
mented.

The above information should be available to users
though the privacy policy of the system and all users should
give their consent before using it.

Design Demonstration

This section demonstrates the usage of the DSML in design-
ing a UbiCARS model. In Fig. 8, a model within the editor
and part of the editor’s toolbox20 are depicted. The toolbox
is situated at the right-hand side of the editor. To add an

element in the editor, the user clicks on the respective item
in the toolbox and then clicks in the white space within the
editor or drags-and-drops the element from the respective
item toolbox to the canvas. Through the properties view
(also shown in Fig. 8), developers add/edit information
regarding the corresponding element.

Regarding the UbiCARS models, there are 4 types of Ele-
ments: dark blue are the CARS and UbiCARS elements that
serve as starting points for designing the model; light blue
are the main elements of a model, including all user feed-
back elements, ubiquitous technology elements, recommen-
dation engine, algorithm, storage, and presentation elements;
with yellow colour are the Database Resource elements; and
with orange are the Context elements.

For testing purposes, both WooCommerce and Drupal
Commerce platforms have been set up and used as example
e-stores. Each e-store included several electronic products,
similar to real life e-stores.

Cold Start Problem

At this point, the cold start problem affected system execu-
tion, since after system configuration has completed, the
CARS system was unable to compute recommendations
due to the lack of user-product interaction data (new user
problem). To address this, lab personnel interacted with the
e-stores to produce user feedback data. This meant to repre-
sent real-life user-product interaction activity on an e-store
(rating, browsing, and buying products).

To simulate the physical store scenario, the typical layout
of a smartphones showroom was used in which lab personnel
interacted with the products (Bluetooth enabled smartphones
were used that could act as Bluetooth beacons as well). We
note that the system is able to utilize any pre-existing data
that has resulted from prior user-product interaction. For
example, if users’ ratings on products exist in the Drupal
Commerce e-store prior to system configuration, the system
will use the data during configuration and for computing
recommendations.

Using the abovementioned system setup, the framework
was able to produce four datasets: ratings, purchasing his-
tory, browsing history (resulting from users’ accesses on
product webpages) and staying time. Each dataset was able
to produce some recommendations.

Evaluation

Process Description

The framework was evaluated via three different evaluation
processes.20 A video on the usage of the UbiCARS Modelling Editor: www.

youtu be. com/ watch?v= FRJ7n w2J3c4.

http://www.youtube.com/watch?v=FRJ7nw2J3c4
http://www.youtube.com/watch?v=FRJ7nw2J3c4

SN Computer Science (2025) 6:370 Page 21 of 31 370

SN Computer Science

The modelling against coding comparison was con-
ducted by the authors and aimed to directly compare the
proposed modelling method with the manual (coding)
method to estimate the effort a developer needs to put for
each of them in developing a UbiCARS. The metrics used
were: number of logical lines of code, number of database
queries and development time in hours.

The second evaluation process was conducted via a
survey by using a task-oriented questionnaire. The aim
was e-store developers and engineers with no expertise
in RS to use the UbiCARS MDD Framework to deploy a
UbiCARS on an e-store: use the DSM to create a model,
upload it via the system UI, perform the configurations on
the e-store and generate recommendations. Twenty par-
ticipants participated in this evaluation.

The third evaluation was a remote evaluation that took
place after the task-oriented evaluation was completed.
The aim of the third and final evaluation method was to
allow for more experts to use the UbiCARS framework and
receive feedback on framework usage. Seventeen partici-
pants participated in the remote evaluation.

In the remaining of this subsection, we describe the
evaluation processes in detail.

Modelling Against Coding Comparison

We consider developing a RS of an e-store that uses users’
ratings on products, users’ browsing history on products
(number of product webpage accesses), users’ purchase
history and users’ staying time in front of products as user
feedbacks. In addition, the purchase history user feedback is
context-aware regarding the type-of-day (whether the pur-
chase was conducted on a weekday or weekend) and the
time-of-day (whether the purchase was conducted in the
morning, noon, afternoon, evening, or late at night). For the
computation of context values, the purchase timestamp is
used (no database query needed).

We assume that the e-store has records of its users’ rat-
ings on products and its users’ product purchases in its data-
base, as any modern e-store. Thus, for acquiring these data,
a developer would only need one database query for each of
these feedbacks.

We examine the development of the UbiCARS in three
different ways:

• Using the UbiCARS framework with one of its supported
e-store platforms (modelling using supported e-stores).

Table 3 Developers’ effort comparison for the three implementation methods

Metrics Methods

Modelling using sup-
ported e-stores

Modelling using custom e-stores Manual method: coding

Number of Lines of Code (logical lines of code
excluding blank lines, comments, and prints)

18 (c) 12 (uf)
18 (c)
13 (o) ratings
13 (o) purchasing h
Total: 56

358

Number of database queries 0 2 (uf)
2 (o)
Total: 4

30

Development Time (hours) 2 (c) 4 (uf)
2 (c)
2 (o)
Total: 8

44

Software modules to be developed (c) Purchase History (uf) Browsing History
(c) Purchase History
(o) Compilation of datasets

(uf) Browsing History
(uf) Staying Time
(c) Purchase History
(o) Compilation of

datasets
(o) Recommendation

engine configuration
(o) Computation of

recommendations
(o) Storage of recom-

mendations
(o) Presentation of

recommendation

 SN Computer Science (2025) 6:370 370 Page 22 of 31

SN Computer Science

The context sensing and storing plugin needs to be devel-
oped.

• Using the UbiCARS framework with any other type of
e-store platform (modelling using custom e-stores). In
terms of user feedbacks, the developer is required to
develop only one module, to acquire the missing user
feedback (browsing history). The modules for the compi-
lation of datasets for ratings and purchasing history also
need to be developed, as the framework is not aware of
the respective database tables’ format. For each one of
them, a query for retrieving the data and respective code
for compiling the dataset is required. Regarding browsing
history, the framework will automatically create the data-
base table based on the model, thus its respective mecha-
nism for dataset compilation will be used. The context
sensing and storing plugin also needs to be developed.

• By developing the UbiCARS (manual method: coding in
PHP, JavaScript, and MySQL).

For the three ways to be comparable, we did not develop a
recommendation algorithm for the manual method; instead,
we used the CARSKIT recommendation engine as with the
other methods. In addition, for the analysis of the manual
method, we excluded the code for the mobile app, as the
modelling process does not directly act upon that code.
Instead, any configurations in relation to the UbiCARS App
specific elements (e.g., applying the Staying Time Reason-
ing Algorithm, see Fig. 7) are conducted on the e-store and
its database (see “Mobile App Specific Elements” section).

The above methodology aims to estimate the effort a
developer needs to put for each of the three ways of devel-
oping the UbiCARS. The objective is to compare the three
methods in terms of the metrics shown in Table 3. One
expert computer scientist from the authors performed the
task of developing the UbiCARS using the three different
ways and the coding task was reviewed by one of the other
authors to ensure the quality of the approach and the code.

The metric “Software modules to be developed” is meas-
ured independently from the other metrics and indicates the
different software modules the developer needs to develop
from the following types: module to acquire user feedback
(uf), module for context sensing and storing (c), other soft-
ware modules (o).

The metrics for the manual method stem from an analysis
of the respective source code of the developed UbiCARS
that is based on the source code of the UbiCARS framework
(PHP, JavaScript, MySQL). In this analysis, we have used
parts of the code that are required to develop a UbiCARS,
according to the requirements set in the beginning of this
section. The values of the metrics are perceived as an estima-
tion of the effort a developer would need to develop a UbiC-
ARS. Please note that we cannot guarantee that our imple-
mentation is the most efficient in terms of these metrics.

Evaluation with Developers: Task‑Oriented Evaluation

The evaluation of the framework was conducted via a sur-
vey by using a task-oriented questionnaire.21 The aim was
for users in our target group—e-store developers and engi-
neers with no expertise in RS—to use the UbiCARS MDD
Framework to deploy a full UbiCARS on an e-store to the
point where recommendations are presented. For a detailed
description of the steps followed, interested readers may
refer to the tasks defined in the questionnaire. The evalua-
tion was conducted by involving one participant at a time,
with the first author observing the entire process with each
participant. Participants were also given a short developer’s
manual.22 Estimated duration for an evaluation session was
60 min (reading time for manual excluded). Professional
developers with no RS expertise were invited by the authors
to participate. Through the questionnaire, participants were
given a set of tasks to complete using the framework and,
at the same time, they were asked to report their findings
and respond to various questions about their experience. For
the purposes of this evaluation, participants were asked to
assume that they are developers for an e-store for electronic
products that also has a physical store.

The survey was split into three parts: the first one consti-
tuted the modelling part, where participants were requested
to use the modelling editor and its toolbox to add and edit
elements on the canvas to create a UbiCARS model (see
Fig. 8). The process consisted of nine tasks: tasks 1–8 and
task 14, as shown in Table 4 (in “Appendix”). Each of the
nine tasks was comprised of several subtasks. As partici-
pants were requested to use a modelling language they have
not used before in one and only session to build a UbiCARS,
a detailed description of the initial tasks was needed. Espe-
cially for the initial tasks where participants were inexpe-
rienced with the editor, the subtasks were designed to be
simple activities; as the evaluation progressed though, sub-
tasks’ complexity increased while their description details
decreased. Furthermore, towards the end of the evaluation,
Task 14 required from participants to re-execute the whole
process without having any instructions on how to do so,
i.e., to return to the modelling editor to enhance the model
by including additional elements. This task aims to exam-
ine whether participants became familiar with the language.
Table 4 summarizes the aim of each task, as well as the num-
ber of their subtasks. By successfully completing the first
8 tasks, a full UbiCARS model was constructed that could
successfully be deployed on the system UI. Task 14 was

21 The questionnaire can be found here: www. cs. ucy. ac. cy/ ~metto ur/
Journ al/ UbiCA RSQue stion naire. pdf.
22 Developer’s manual can be found here: www. cs. ucy. ac. cy/ ~metto
ur/ Journ al/ UbiCA RSDev elope rsMan ual. pdf.

http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSQuestionnaire.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSQuestionnaire.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSDevelopersManual.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSDevelopersManual.pdf

SN Computer Science (2025) 6:370 Page 23 of 31 370

SN Computer Science

executed only after the next part of the evaluation survey,
namely the configuration part, was completed. The aim was
to include customers’ location in the physical store as a con-
text parameter, to enable context-aware recommendations.

The second part of the survey, namely the configuration
part, consisted of six tasks (tasks 9–14, see also Table 4
in “Appendix”), during which participants were instructed
on how to upload their model on the system UI to conduct
e-store configurations, datasets compilation, recommen-
dations computation and recommendations presentation
through the e-store. These tasks were short in duration and
simple to accomplish, mainly requesting from participants to
use the system UI and observe the computed results. Here,
task 14 includes the execution of the model designed in task
14 of the modelling part.

The third and final part of the evaluation was the ques-
tionnaire. It did not include any tasks for participants to work
on. Instead, it included demographic questions, questions
related to users’ experience with the modelling editor and
the system UI, as well as questions on the usefulness of
the framework and its ease of use. Similarly to the work in
[57], we have used questions from the Technology Accept-
ance Model (TAM) satisfaction questionnaire [58, 59], and
from the User Experience Questionnaire—UEQ [60, 61].
Additional questions were also defined that explicitly tar-
geted the evaluation of the UbiCARS framework. For the
questionnaire, we have used 7-point Likert scale agreement
questions (1 corresponds to “Strongly Disagree” and 7 to
“Strongly Agree”).

Nineteen developers and an e-store administrator partici-
pated in the evaluation for about one full hour each (brief-
ing excluded), completing tasks and answering questions.
Although the number of participants is statistically small,
our results are significant since these 20 participants fall well
within our target group, i.e., developers with no experience
in developing RS, and they have each used the framework
for a considerable amount of time. The e-store administra-
tor, although not a developer himself, he was leading a team
of e-store developers. The 19 developers had at least four
years of programming experience each and 10.52 years on
average. In terms of experience in developing recommender
systems, 75% of participants had little to none experience,
while 80% of participants had little to none experience in
recommendation algorithms. On the contrary, 70% of par-
ticipants had experience in developing and/or technically
administrating e-stores.

Evaluation with Experts: Remote Evaluation

To allow for more experts to use the UbiCARS framework,
a remote evaluation23 of the framework took place after the
task-oriented evaluation with developers was completed.
Professionals and researchers on MDD and recommender
systems were invited through social networks, professional
groups, and mailing lists to participate. They could par-
ticipate either by downloading and using the modelling
 framework23, or, in case they did not have time available, by
watching a video24 about the framework and then respond to
a questionnaire.25 The questionnaire included similar ques-
tions to the one used for the task-oriented evaluation, but
it needed less time to be completed. By downloading the
framework, participants were able to interact with a model
that represented a RS for an e-store. The model was provided
instead of guiding participants to design it themselves to
keep the evaluation session short. In case, however, they
would like to design it from start to end, they were provided
with a design guide.26 After interacting with the modelling
editor, participants were instructed23 to access the e-store
and use the System UI to upload the model, compute recom-
mendations and view them through the e-store.

Seventeen participants participated in the remote evalu-
ation. Fifteen of them by watching the video, whereas two
participants downloaded and used the framework after they
had watched the video. Reasons that most participants pre-
ferred to watch the video are that this was the easiest and
least time-consuming approach, whereas using the frame-
work required downloading a zip file and following instruc-
tions to run it23. While we are aware that users may avoid
downloading and using software if there is an alternative, we
have made attempts to make the process as easy and quick
as possible, estimating that it would take about 20 min for
the participants to complete.

Thirteen participants stated to be developers among other,
four participants stated to be MDD experts among other and
five participants stated to be RS experts among other. The
two participants that used the framework were not among
the MDD experts, neither among the RS experts.

23 Instructions: www. cs. ucy. ac. cy/ seit/ wp- conte nt/ uploa ds/ 2020/ 11/
UbiCA RS- MDD- Frame work- Evalu ation. pdf.
24 www. youtu be. com/ watch?v= YvYm4 EBZ1p w& featu re= youtu. be.
25 The questionnaire can be found here: www. cs. ucy. ac. cy/ ~metto ur/
Journ al/ Quest ionna ire. pdf.
26 www. cs. ucy. ac. cy/ ~metto ur/ Journ al/ UbiCA RSMod elDes ignGu ide.
pdf.

http://www.cs.ucy.ac.cy/seit/wp-content/uploads/2020/11/UbiCARS-MDD-Framework-Evaluation.pdf
http://www.cs.ucy.ac.cy/seit/wp-content/uploads/2020/11/UbiCARS-MDD-Framework-Evaluation.pdf
http://www.youtube.com/watch?v=YvYm4EBZ1pw&feature=youtu.be
http://www.cs.ucy.ac.cy/~mettour/Journal/Questionnaire.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/Questionnaire.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSModelDesignGuide.pdf
http://www.cs.ucy.ac.cy/~mettour/Journal/UbiCARSModelDesignGuide.pdf

 SN Computer Science (2025) 6:370 370 Page 24 of 31

SN Computer Science

Summary of Evaluation Results

Table 5 summarizes the evaluation results by displaying
the mean and standard deviation (σ) for each question.
Evaluation results were overall very positive. In terms of
the task-oriented questionnaire, in about one hour on aver-
age, participants non-experts in the RS domain were able
to successfully utilize the capabilities of the UbiCARS
DSML, the modelling editor and the system UI, to design,
develop and deploy UbiCARS on an example e-store. Par-
ticipants stated that they have understood the results of
each completed task. The UbiCARS MDD Framework
was perceived by participants to be, among other, useful,

quick, to improve developers’ performance, to increase
developers’ productivity, to reduce developers’ effort and
to be easy to use. Participants agree that much mental
effort was not needed to interact with the framework, and,
furthermore, stated feeling positive toward the UbiCARS
framework.

Regarding the remote evaluation, results were also
positive, but the means were smaller by 1.22 on average
(σ = 0.3), in comparison to the results of the task-oriented
evaluation. This indicates that, although participants see
the framework positively in terms of usefulness (average
mean = 5.2) and ease of use (average mean = 5.11), they
find it less useful and not as easy-to-use in comparison

Table 5 Summary of evaluation results (7-point Likert scale was used: 1 corresponds to “strongly disagree” and 7 to “strongly agree”)

Question Task-oriented
evaluation

Remote evalu-
ation

Mean σ Mean σ

Perceived usefulness of the UbiCARS MDD framework
Using the UbiCARS framework would enable me to develop Recommender Systems more quickly 6.75 0.64 5.47 1.18
Using the UbiCARS framework would improve my performance in developing Recommender Systems 6.6 0.68 5.06 1.39
Using the UbiCARS framework would increase my productivity in developing recommender systems 6.75 0.55 5.12 1.41
Using the UbiCARS framework would make it easier to develop recommender systems 6.7 0.57 5.12 1.5
I would find the UbiCARS framework useful in developing recommender systems 6.8 0.41 5.29 1.53
Using the UbiCARS framework would enhance my effectiveness in developing recommender systems 6.45 0.88 5.12 1.45
Perceived ease-of-use of the UbiCARS MDD framework
I would find the UbiCARS framework easy to use 6.5 0.76 5.18 1.38
Learning to operate the UbiCARS framework would be easy for me 6.3 0.92 5.59 1.46
I would find it easy to get the UbiCARS framework to do what I want it to do 5.95 0.94 4.94 1.39
My interaction with the UbiCARS framework would be clear and understandable 6.3 0.92 4.81 1.05
I would find the UbiCARS framework to be flexible to interact with 6.05 0.94 4.71 1.69
It would be easy for me to become skilful at using the UbiCARS framework 6.2 1.15 5.41 1.28
Other questions
Using the UbiCARS framework for developing Recommender Systems would reduce my effort in terms

of lines of code and database queries needed
6.7 0.73 5.65 1.54

I would revisit the UbiCARS framework within a week's time if it was available for use 5.95 1.36
I would revisit the UbiCARS framework regularly if it was available for use 5.65 1.30 4.82 1.74
It does not require a lot of mental effort to interact with the UbiCARS framework 6.2 0.95 5.12 1.22
Using a Model Driven Development approach through the UbiCARS framework to develop Recom-

mender Systems is a good idea
6.75 0.44 5.88 1.32

I feel positive toward the UbiCARS framework 6.8 0.41 5.47 1.46

Table 6 UEQ mean scores for remote evaluation on a scale from 3 (highly positive) to − 3 (highly negative)

Enjoyable 0.88 Understandable 1.56 Creative 1.13 Easy to learn 1.31 Valuable 1.31

Exciting 1.13 Interesting 1.69 Predictable 1.13 Fast 1.69 Inventive 1.38
Supportive 0.88 Good 1.73 Easy 1.38 Pleasing 1.31 Leading edge 0.69
Pleasant 1.38 Secure 0.06 Motivating 1.06 Meets expectations 1.25 Efficient 1.05
Clear 1.13 Practical 1.19 Organized 1.06 Attractive 0.31 Friendly 1.13
Innovative 1.13

SN Computer Science (2025) 6:370 Page 25 of 31 370

SN Computer Science

to the participants of the task-oriented questionnaire that
spent more time with the framework.

Participants from both evaluations agree that using a
MDD approach through the UbiCARS framework to develop
UbiCARS is a good idea. Furthermore, although results for
both the perceived usefulness and perceived ease-of-use are
positive, participants seem to value higher the usefulness

of the framework. Across all questions and all participants,
mean value for perceived usefulness is 5.94, while mean
value for perceived ease-of-use is 5.66.

In terms of the UEQ, on a scale from 3 (highly positive) to
− 3 (highly negative), participants of the task-oriented evalu-
ation found the framework to be enjoyable (2.25), pleasing
(2.1), interesting (2.1) and exciting (2). Table 6 shows the

Fig. 9 Time distributions of tasks (a) and modelling tasks’ duration (b)

 SN Computer Science (2025) 6:370 370 Page 26 of 31

SN Computer Science

mean values for the remote evaluation, where participants
replied for all the 26 items of the UEQ. The results are posi-
tive: all items but four have received mean scores of more
than 1. The items with the highest scores are: good (1.73),
interesting (1.69), fast (1.69) and understandable (1.56).

Tasks’ Duration (for Task‑Oriented Evaluation)

The time that participants took to complete each of the
evaluation tasks, as well as the total time spent to deploy a
UbiCARS is of particular importance as it is directly related
to RQ1 on whether the framework reduces the development
time and expedites the development of UbiCARS for com-
merce (see “Introduction” section). During the task-oriented
evaluation process, the tasks’ durations have been measured.
Figure 9a depicts three time distributions: the distribution of
the total duration of all tasks (modelling and configuration
tasks), the distribution of the total duration of modelling
tasks, and the distribution of the total duration of configura-
tion tasks.

The numbers in the figure show the quartile ranges in
minutes (the first quartile is the lower one). It can be seen

that participants achieving the best results in the overall pro-
cess (lower end of first quartile of left box plot) have compa-
rable timings with participants achieving the worst results in
the modelling tasks (upper end of the fourth quartile of mid-
dle box plot). Moreover, the boxplot for the modelling tasks
has a similar distribution with the one for the configuration
tasks and is located about 13 min higher in the minutes scale,
which is an acceptable time difference: it suggests that the
modelling tasks did not introduce considerable delays to par-
ticipants, in comparison to the simpler configuration tasks.
Figure 9b depicts the time distributions of the duration of
each task for the tasks of the modelling part. Most of or all
the participants were able to complete each task but task 14
in under 5 min. Task 2 lasted for 12 min for two participants;
the remaining 18 participants where around the 5-min mark
or lower. Task 14 is regarded as the most time-consuming
task, as it required from participants to alter their model and
re-execute the configuration tasks without instructions. Still,
participants were able to complete the task in under 9 min,
the median being at 6.5 min.

The following mean values should be noted: mean value
for the total duration of all tasks was 59.16 min, mean value

Fig. 10 Mean and Standard
Deviation of participants’
perceived comprehension of
tasks and their results (a) and
perceived difficulty for model-
ling tasks (b)

SN Computer Science (2025) 6:370 Page 27 of 31 370

SN Computer Science

for the duration of modelling tasks was 36.16 min and mean
value for the duration of configuration tasks was 23 min.
Thus, participants required a bit more than half an hour to
complete the modelling tasks and less than that to complete
the configuration tasks.

Perceived Task Comprehension and Difficulty
(Task‑Oriented Evaluation)

Task comprehension and perceived difficulty by partici-
pants during the task-oriented evaluation are examined in
this paragraph as they are related to RQ2 on whether the
framework reduces development complexity in developing
UbiCARS. After completing each modelling task (Tasks 1–8
& Task 14) and configuration task (Tasks 9–13 and Task 14
that included executing the model designed in Task 14 of
the modelling part), participants were requested to indicate
their agreement with the statement “I was able to under-
stand the task” (for modelling tasks) and “I was able to
understand the produced results” (for configuration tasks),
by using a 7-point Likert scale (1 for “Strongly Disagree” to
7 for “Strongly Agree”). Figure 10a shows the mean (num-
bers in the graph) and standard deviation (error lines) of the
responses for each task. Participants strongly agree to have
understood the tasks and their outcomes, indicating that the
modelling framework was easy to adopt, understand and use.

After completing each modelling task, participants were
also requested to indicate their agreement with the state-
ment “This task was difficult for me to accomplish”, using
the same 7-point Likert scale. For the configuration tasks
this question would not apply due to the tasks’ simplicity.
Figure 10b shows the results. Participants disagree that the
tasks were difficult for them to accomplish. The high Stand-
ard Deviations for Tasks 1, 2 and 14 are a result of a single
negative response for each of these tasks. For Tasks 1 and 2,
the negative response originated from the same participant,
who responded positively for all other tasks.

Discussion

Based on the evaluation results, in this section we answer
to the Research Questions stated in “Introduction” section.

RQ1: In the following paragraphs we discuss how the
evaluation results indicate that the UbiCARS framework
reduces the development time of UbiCARS.

Based on the results of the task-oriented evaluation, the
framework enables the development of UbiCARS for com-
merce by developers that are non-experts in RS on average in
59.16 min. In cases where additional modules need to be devel-
oped by the developer, the results reported in the “Modelling

Against Coding Comparison” evaluation (“Process Descrip-
tion” section) indicate an estimated time of 2 development
hours for developing a context sensing module and 4 develop-
ment hours for developing a browsing history user feedback
module. It is important to note that the author involved in the
implementations shown in Table 3 had knowledge on UbiC-
ARS and the concepts of user feedback acquisition and context
sensing. It is possible that developers lacking this knowledge
would need more time to complete these implementations.

In the hypothetical scenario where a developer that par-
ticipated in the task-oriented evaluation was asked to partici-
pate to the “Modelling against Coding comparison” scenario
to implement a CARS using the method “modelling using
supported e-stores”, the estimated time would be one hour to
use the modelling framework (according to the task-oriented
evaluation), and about 2 additional hours to develop the con-
text sensing module for the purchase history. This time is sig-
nificantly less than the time the authors spent on developing
the UbiCARS using the manual method, which was estimated
to 44 h.

Based on the evaluation results, the framework is consid-
ered by participants to (i) enable them to develop UbiCARS
more quickly: this statement refers to development time; and
(ii) increase their productivity in developing UbiCARS: this
statement refers to finishing tasks related to UbiCARS devel-
opment more quickly or at a more rapid rate. RQ1 is validated.

RQ2: In the following paragraph we discuss how the
evaluation results indicate that the UbiCARS framework
reduces development complexity in developing UbiCARS
by reducing the lines of code and database queries develop-
ers need to write.

The task-oriented evaluation proved that participants
while being non-experts in RS, were able to complete all
tasks successfully in less than one hour on average, having
also understood all the tasks performed and their outcomes,
supporting thus that the modelling framework was not com-
plicated for them to use. In that scenario there was no need
to write code, nor conduct database queries to accomplish
this. During both evaluations with participants, develop-
ers and RS/MDD experts agreed that using the framework
to develop UbiCARS would reduce their effort in terms
of lines of code and database queries, since they observed
that by using the DSML to create models and through the
automated system configurations conducted by the frame-
work, the required UbiCARS was created and configured in
an automated manner. The evaluation “Modelling against
Coding comparison” serves as an indication of how much
development effort the framework would reduce for the
respective scenario under examination. Based on the RQ2
is validated.

 SN Computer Science (2025) 6:370 370 Page 28 of 31

SN Computer Science

Conclusions and Future Work

In this paper we have presented our work, a Model Driven
Development Framework for Ubiquitous Context-Aware
Recommender Systems that makes their development easier
and faster. The evaluation results show the potential of the
UbiCARS MDD Framework. Participants appreciated the
abstraction of the technical details that the framework offers
and liked the fact that they did not need to write code to
develop UbiCARS, neither to learn any specifics about RS.
The expedited development of UbiCARS that the framework
offers, in comparison to any manual method that requires
coding and comprehension by developers of Recommender
Systems domain specifics, was a clear benefit mentioned by
participants. In addition, during a direct comparison of the
effort needed to develop a UbiCARS for an e-store using the
framework against the manual method (coding), the authors
report that using the framework together with its supported
e-stores eliminates the need to write code, while using the
framework with non-supported e-stores reduces the develop-
ment effort in terms of lines of code and database queries

by 84.4% and 86.7% respectively against the manual method
(see Table 3). Time was estimated to have been reduced by
81.8%.

As stated in “Design Demonstration” section, user-prod-
uct interaction data used during the evaluation stemmed
from our limited interaction with the example e-stores and
the physical store scenario, in which lab personnel interacted
with the products. As such, these data are few and not of
the required quality. In this sense, validating the claim for a
potential improvement of recommendations’ accuracy and
availability was not possible due to the lack of real-world
data. The recommendations currently provided by the frame-
work should only be considered as a proof-of-concept. As
future work, we aim to validate the claimed accuracy and
availability improvement of the recommendations produced
by the UbiCARS framework by using it in real world sce-
narios for an extended period of time. We plan to offer the
framework for usage to interested e-commerce businesses
that currently do not provide recommendations to their cus-
tomers, and study whether the recommended products are
indeed being selected by customers.

Table 4 Task description for the modelling and configuration parts of the evaluation

Task # Number
of sub-
tasks

Aim of task

Modelling part
1 3 Familiarize participants with modelling editor and toolbox by creating simple model elements for CARS and

UbiCARS
2 6 Add elements in the model relevant to computation of recommendations, i.e. a recommendation engine and an

algorithm
3 5 Add elements related to tracking of customers’ browsing history on products in the e-store, i.e. customer

accesses in product webpages
4 4 Add elements related to customers’ “staying time in front of a product” as user feedback data on products from

the physical store
5 2 Add elements for enabling the UbiCARS app to utilize customers’ staying time in front of a product via Blue-

tooth beacons
6 2 Configure RSSI min Detection Threshold and Max Time Interval BSD parameters of Staying Time element
7 7 Complete model by adding more user-product interaction elements and database resources and link them

together
8 2 Add a Configuration File element
14 4 (Without instructions to participants) Alter the model to include customers’ location while staying in front of

products as context, to enable context-aware recommendations
Configuration part
9 – Parse the model to configure the e-store and its database
10 – Fill new database with data
11 – Compile datasets and then compute recommendations
12 – Store recommendations
13 – Present recommendations
14 – Execute the altered context-aware model to enable context-aware recommendations

SN Computer Science (2025) 6:370 Page 29 of 31 370

SN Computer Science

While recommendation explanations have been included
in the DSML and can drive enablement or disablement of
simple explanations on e-stores, explanations can be facili-
tated to a greater extend within the DSML, by abstracting
the different explanation techniques and making them avail-
able in the model.

We aim to investigate whether recommendation algorithm
specific details could be included in the DSML through new
elements and parameters, while two critical requirements
are met: (i) the abstraction of the DSML is maintained:
such elements should facilitate a cross-recommendation
algorithm/engine design, (ii) the complexity of the DSML
is not increased, as too complex DSMLs result in designers
not using them, or, in the best-case scenario, not using their
entire potential.

In terms of users’ privacy, the New EU regulation on the
General Data Protection Regulation (GDPR) defines several
articles that can be mapped to software functions of software
systems, demanding that all systems conform to these arti-
cles. RS, as systems functioning exclusively on users’ data,
are affected by the regulation. Examples of articles that may
affect RS are:

• “Data Minimisation”: affects preference elicitation pro-
cesses of RS when they explicitly ask users for personal
information or implicitly tracking their behaviour.

• The “Right to Erasure”: affects RS performance in terms
of recommendations’ accuracy, as it reduces the amount
of data upon which the recommendations are computed.
Moreover, it enhances the cold start problem, as it may
reduce the ratings of particular items that have few rat-
ings in overall.

• The “Right to Rectification”: in case of implicit user
feedback techniques, should the system provide means
for users to be able to update their data, i.e. be able to
change data related with their interaction with the sys-
tem? This would interfere with the recommendation pro-
cess, rendering it inaccurate.

Based on the above discussion, future work will focus
on the extension of the UbiCARS DSML with GDPR com-
pliance enabling elements, aiming to guide the design and
development of GDPR compliant UbiCARS. Since UbiC-
ARS utilize user behaviour data from the e-store and the
physical store, such data are inherently sensitive. As an
example, we note that during indoor positioning, while
location estimation software is run on the mobile client and
not on the beacon, the data are nevertheless transferred to
the CARS system and stored in the server’s database to be
exploited by the recommendation engine. Thus, privacy-
preserving methods are required to ensure users’ privacy.

Appendix

Pre‑defined Tables in Supported E‑stores

WordPress WooCommerce defines tables for storing user
ratings and user purchase history. The WordPress database
uses the “wp_” prefix for all its tables, which the user may
change to any other prefix during installation. The frame-
work facilitates three possible options: (i) “wp_” prefix is
maintained (see DatabaseResource of RATING in
Fig. 8), (ii) “wp_” is replaced with a user defined prefix:
user provides the new prefix in the DatabaseResource
element, and (iii) user changes the table names entirely:
user provides in the DatabaseResource element the
names of the new tables (single string comma-separated).
The framework can automatically detect which of the three
abovementioned options the user has selected and proceed
accordingly.

Authors’ Contributions CM: Conceptualization, Methodology, Inves-
tigation, Software, Writing—Original Draft. APA: Conceptualization,
Validation, Writing—Review and Editing. GMK: Validation, Writ-
ing—Review and Editing. GAP: Methodology, Writing—Review and
Editing, Supervision.

Funding Open access funding provided by the Cyprus Libraries
Consortium (CLC). No funding was received for the preparation of
this manuscript.

Data Availability The data supporting the findings of this study are
available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Informed Consent Informed consent was obtained from all individual
participants included in the study.

Research Involving Human and/or Animals Not Applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 SN Computer Science (2025) 6:370 370 Page 30 of 31

SN Computer Science

References

 1. Ricci F, Rokach L, Shapira B, Kantor PB. Recommender
systems handbook. Springer; 2011. https:// doi. org/ 10. 1007/
978-0- 387- 85820-3.

 2. Mettouris C, Papadopoulos GA. Ubiquitous recommender sys-
tems. Computing. 2014;96(3):223–57. https:// doi. org/ 10. 1007/
s00607- 013- 0351-z.

 3. Walter FE, Battiston S, Yildirim M, Schweitzer F. Moving rec-
ommender systems from on-line commerce to retail stores. Inf
Syst E-Bus Manag. 2012;10:367–93. https:// doi. org/ 10. 1007/
s10257- 011- 0170-8.

 4. Hu Y, Koren Y, Volinsky C. Collaborative filtering for implicit
feedback datasets. In: Proceedings of the 8th IEEE international
conference on data mining; 2008. pp. 263–72. https:// doi. org/
10. 1109/ ICDM. 2008. 22.

 5. Fang B, Liao S, Xu K, Cheng H, Zhu C, Chen H. A novel mobile
recommender system for indoor shopping. Expert Syst Appl.
2012;39(15):11992–2000. https:// doi. org/ 10. 1016/j. eswa. 2012.
03. 038.

 6. Statista. Retail e-commerce sales worldwide from 2014 to 2021
(in billion U.S. dollars). https:// www. stati sta. com/ stati stics/
379046/ world wide- retail- e- comme rce- sales/. Accessed 02 Aug
2021.

 7. International Council of Shopping Centers-ICSC. Shopping Cent-
ers: America’s First and Foremost Marketplace. https:// www. icsc.
org/ uploa ds/ resea rch/ gener al/ Ameri ca- Marke tplace. pdf. Accessed
25 July 2021.

 8. Chen CC, Huang TC, Park JJ, Yen NY. Real-time smartphone
sensing and recommendations towards context-awareness shop-
ping. Multimedia Syst. 2015;21(1):61–72. https:// doi. org/ 10. 1007/
s00530- 013- 0348-7.

 9. So WT, Yada K. A framework of recommendation system based
on in-store behavior. In: Proceedings of the 4th multidisciplinary
international social networks conference, New York, NY, USA;
2017. pp. 33:1–33:4. https:// doi. org/ 10. 1145/ 30920 90. 30921 30.

 10. Hussein T, Linder T, Gaulke W, Ziegler J. Hybreed: a software
framework for developing context-aware hybrid recommender sys-
tems. User Model User-Adap Int. 2014;24(1–2):121–74. https://
doi. org/ 10. 1007/ s11257- 012- 9134-z.

 11. Inzunza S, Juárez-Ramírez R, Jiménez S. User modelling
framework for context-aware recommender systems. In: Recent
advances in information systems and technologies; 2017. pp.
899–908. https:// doi. org/ 10. 1007/ 978-3- 319- 56535-4_ 88.

 12. Portugal I, Alencar P, Cowan D. The use of machine learning
algorithms in recommender systems: a systematic review. Expert
Syst Appl. 2018;97:205–27. https:// doi. org/ 10. 1016/j. eswa. 2017.
12. 020.

 13. Aldrich SE. Recommender systems in commercial use. AI Mag.
2011;32(3):28–34. https:// doi. org/ 10. 1609/ aimag. v32i3. 2368.

 14. Rojas G, Domínguez F, Salvatori S. Recommender systems on
the web: a model-driven approach. In: Proceedings of the 10th
international conference EC-Web 2009. Linz, Austria. Springer,
Berlin; 2009. pp. 252–63. https:// doi. org/ 10. 1007/ 978-3- 642-
03964-5_ 24.

 15. Rodríguez-Hernández MC, Ilarri S. Pull-based recommen-
dations in mobile environments. Comput Stand Interfaces.
2016;44(C):185–204. https:// doi. org/ 10. 1016/j. csi. 2015. 08. 002.

 16. White J, Schmidt DC, Czarnecki K, Wienands C, Lenz G, Wuch-
ner E, Fiege L. Automated model-based configuration of enter-
prise Java applications. In: 11th IEEE international enterprise dis-
tributed object computing conference (EDOC 2007), Annapolis,
MD. 2007; p. 301. https:// doi. org/ 10. 1109/ EDOC. 2007. 22.

 17. Achilleos AP, Kapitsaki GM, Constantinou E, Horn G, Papado-
poulos GA. Business-oriented evaluation of the PaaSage platform.

In: 2015 IEEE/ACM 8th international conference on utility and
cloud computing (UCC); 2015. pp. 322–6. https:// doi. org/ 10.
1109/ UCC. 2015. 51.

 18. Mettouris C, Achilleos AP, Kapitsaki GM, Papadopoulos GA.
The UbiCARS model-driven framework: automating development
of recommender systems for commerce. In: Kameas A, Stathis
K, editors. Ambient intelligence, AmI 2018; 2018. LNCS, vol.
11249. Cham: Springer; 2018. p. 37–53. https:// doi. org/ 10. 1007/
978-3- 030- 03062-9_3.

 19. Adomavicius G, Sankaranarayanan R, Sen S, Tuzhilin A.
Incorporating contextual information in recommender systems
using a multidimensional approach. ACM Trans Inf Syst TOIS.
2005;23:103–45. https:// doi. org/ 10. 1145/ 10557 09. 10557 14.

 20. Karatzoglou A, Amatriain X, Baltrunas L, Oliver N. Multiverse
recommendation: N-dimensional tensor factorization for context-
aware collaborative filtering. In: Proceedings of the fourth ACM
conference on recommender systems, New York, NY, USA; 2010.
pp. 79–86. https:// doi. org/ 10. 1145/ 18647 08. 18647 27.

 21. Nguyen TV, Karatzoglou A, Baltrunas L. Gaussian process fac-
torization machines for context-aware recommendations. In: Pro-
ceedings of the 37th international ACM SIGIR conference on
research & development in information retrieval, New York, NY,
USA; 2014. pp. 63–72. https:// doi. org/ 10. 1145/ 26004 28. 26096 23.

 22. Shafiee S. Unveiling the latest trends and advancements in
machine learning algorithms for recommender systems: a litera-
ture review. Procedia CIRP. 2024;121:115–20. https:// doi. org/ 10.
1016/j. procir. 2023. 08. 062.

 23. Raza S, Rahman M, Kamawal S, Toroghi A, Raval A, Navah F,
Kazemeini A. A comprehensive review of recommender systems:
transitioning from theory to practice. 2025. arXiv preprint arXiv:
2407. 13699.

 24. Mateos P, Bellogín A. A systematic literature review of recent
advances on context-aware recommender systems. Artif Intell Rev.
2024;58(1):1–53. https:// doi. org/ 10. 1007/ s10462- 024- 10939-4.

 25. Peska L. Using the context of user feedback in recommender
systems. In: Proceedings of the 11th doctoral workshop on math-
ematical and engineering methods in computer science, MEMICS
2016; 2016. pp. 1–12. https:// doi. org/ 10. 4204/ EPTCS. 233.1.

 26. Yang B, Lee S, Park S, Lee S. Exploiting various implicit feedback
for collaborative filtering. In: Proceedings of the 21st international
conference companion on world wide web, WWW ’12 Compan-
ion, ACM, New York, NY, USA; 2012. pp. 639–40. https:// doi.
org/ 10. 1145/ 21879 80. 21881 66.

 27. Yi X, Hong L, Zhong E, Liu NN, Rajan S. Beyond clicks: dwell
time for personalization. In: Proceedings of the 8th ACM confer-
ence on recommender systems, RecSys ’14, ACM, New York,
NY, USA; 2014. pp. 113–20. https:// doi. org/ 10. 1145/ 26457 10.
26457 24.

 28. Oard DW, Kim J. Implicit feedback for recommender systems. In:
Proceedings of the AAAI workshop on recommender systems;
1998. vol. 83. WoUongong.

 29. Sulikowski P, Zdziebko T. Horizontal vs. vertical recommendation
zones evaluation using behavior tracking. Appl Sci. 2021;11:56.
https:// doi. org/ 10. 3390/ app11 010056.

 30. Sulikowski P, Zdziebko T, Turzynski D, Kantoch E. Human-
website interaction monitoring in recommender systems. Procedia
Comput Sci. 2018;126:1587–96. https:// doi. org/ 10. 1016/j. procs.
2018. 08. 132.

 31. Fahim Shahriar ABM, Zaman Moon M, Mahmud H, Hasan K.
Online product recommendation system by using eye gaze data.
In: Proceedings of the international conference on computing
advancements (ICCA 2020). Association for Computing Machin-
ery, Dhaka, Bangladesh, 10–12 January 2020; Article 61; pp. 1–7.
https:// doi. org/ 10. 1145/ 33770 49. 33771 08.

https://doi.org/10.1007/978-0-387-85820-3
https://doi.org/10.1007/978-0-387-85820-3
https://doi.org/10.1007/s00607-013-0351-z
https://doi.org/10.1007/s00607-013-0351-z
https://doi.org/10.1007/s10257-011-0170-8
https://doi.org/10.1007/s10257-011-0170-8
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1016/j.eswa.2012.03.038
https://doi.org/10.1016/j.eswa.2012.03.038
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://www.icsc.org/uploads/research/general/America-Marketplace.pdf
https://www.icsc.org/uploads/research/general/America-Marketplace.pdf
https://doi.org/10.1007/s00530-013-0348-7
https://doi.org/10.1007/s00530-013-0348-7
https://doi.org/10.1145/3092090.3092130
https://doi.org/10.1007/s11257-012-9134-z
https://doi.org/10.1007/s11257-012-9134-z
https://doi.org/10.1007/978-3-319-56535-4_88
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1016/j.eswa.2017.12.020
https://doi.org/10.1609/aimag.v32i3.2368
https://doi.org/10.1007/978-3-642-03964-5_24
https://doi.org/10.1007/978-3-642-03964-5_24
https://doi.org/10.1016/j.csi.2015.08.002
https://doi.org/10.1109/EDOC.2007.22
https://doi.org/10.1109/UCC.2015.51
https://doi.org/10.1109/UCC.2015.51
https://doi.org/10.1007/978-3-030-03062-9_3
https://doi.org/10.1007/978-3-030-03062-9_3
https://doi.org/10.1145/1055709.1055714
https://doi.org/10.1145/1864708.1864727
https://doi.org/10.1145/2600428.2609623
https://doi.org/10.1016/j.procir.2023.08.062
https://doi.org/10.1016/j.procir.2023.08.062
http://arxiv.org/abs/2407.13699
http://arxiv.org/abs/2407.13699
https://doi.org/10.1007/s10462-024-10939-4
https://doi.org/10.4204/EPTCS.233.1
https://doi.org/10.1145/2187980.2188166
https://doi.org/10.1145/2187980.2188166
https://doi.org/10.1145/2645710.2645724
https://doi.org/10.1145/2645710.2645724
https://doi.org/10.3390/app11010056
https://doi.org/10.1016/j.procs.2018.08.132
https://doi.org/10.1016/j.procs.2018.08.132
https://doi.org/10.1145/3377049.3377108

SN Computer Science (2025) 6:370 Page 31 of 31 370

SN Computer Science

 32. Atashkar M, Safi-Esfahani F. Item-based recommender systems
applying social-economic indicators. SN Comput Sci. 2020;1:113.
https:// doi. org/ 10. 1007/ s42979- 020- 0115-8.

 33. Necula SC, Păvăloaia VD. AI-driven recommendations: a sys-
tematic review of the state of the art in E-commerce. Appl Sci.
2023:13, Article 5531. https:// doi. org/ 10. 3390/ app13 095531.

 34. Wang Y, Li Z, Zhang C, Chen S, Zhang X, Xu J, Lin Q. Do not
wait: learning re-ranking model without user feedback at serving
time in E-commerce. In: Proceedings of the 18th ACM conference
on recommender systems (RecSys '24). Association for Comput-
ing Machinery, New York, NY, USA; 2024. pp. 896–901. https://
doi. org/ 10. 1145/ 36404 57. 36881 65.

 35. Hwangbo H, Kim YS, Cha KJ. Recommendation system develop-
ment for fashion retail e-commerce. Electron Commer Res Appl.
2018;28:94–101. https:// doi. org/ 10. 1016/j. elerap. 2018. 01. 012.

 36. Hasan E, Rahman M, Ding C, Huang JX, Raza S. Review-based
recommender systems: a survey of approaches, challenges and
future perspectives. 2024. arXiv preprint arXiv: 2405. 05562.

 37. Anindya G, Li B, Liu S. Mobile advertising using customer move-
ment patterns. Doctoral dissertation, Working paper, New York
University, New York; 2015. https:// doi. org/ 10. 1287/ mnsc. 2018.
3188.

 38. Bell DR, Corsten D, Knox G. From point of purchase to path
to purchase: how preshopping factors drive unplanned buying. J
Mark. 2011;75(1):31–45.

 39. Granbois DH. Improving the study of customer in-store behavior.
J Mark. 1968;32(4):28–33. https:// doi. org/ 10. 2307/ 12493 34.

 40. Jeffrey IJ, Winer RS, Ferraro R. The interplay between category
characteristics, customer characteristics and customer activities
on in-store decision making. J Mark. 2009;73:19–29. https:// doi.
org/ 10. 1509/ jmkg. 73.5.

 41. Jie C, Dong W, Canquan L. Recommendation system technolo-
gies of intelligent large-scale shopping mall. In: Proceedings of
2nd international conference on computer science and network
technology, Changchun; 2012. pp. 1058–62. https:// doi. org/ 10.
1109/ ICCSNT. 2012. 65261 08.

 42. Zimmermann R, Mora D, Cirqueira D, Helfert M, Bezbradica
M, Werth D, Weitzl WJ, Riedl R, Auinger A. Enhancing brick-
and-mortar store shopping experience with an augmented reality
shopping assistant application using personalized recommenda-
tions and explainable artificial intelligence. J Res Interact Mark.
2023;17(2):273–98. https:// doi. org/ 10. 1108/ JRIM- 09- 2021- 0237.

 43. Kawashima H, Matsushita T, Satake S, Imai M, Shinagawa Y,
Anzai Y. PORSCHE: a physical objects recommender system for
cell phone users. In: Proceedings of 2nd international workshop
on personalized context modeling and management for UbiComp
applications, California, USA; 2006.

 44. Pfeiffer J, Pfeiffer T, Meißner M. Towards attentive in-store rec-
ommender systems. In: Reshaping society through analytics, col-
laboration, and decision support. 2015; vol. 18. https:// doi. org/ 10.
1007/ 978-3- 319- 11575-7_ 11.

 45. Reischach FV, Michahelles F, Schmidt A. The design space of
ubiquitous product recommendation systems. In: Proceedings of
the 8th international conference on mobile and ubiquitous multi-
media; 2009. pp. 1–10. https:// doi. org/ 10. 1145/ 16585 50. 16585 52.

 46. Reischach FV, Michahelles F. Apriori: a ubiquitous product rating
system. In: PERMID '08, workshop on pervasive mobile interac-
tion devices at pervasive conference; 2008.

 47. Mora D, Jain S, Nalbach O, Werth D. An in-store recommender
system leveraging the Microsoft HoloLens. In: HCI International

2020—posters. Springer, Cham; 2020. pp. 99–107. https:// doi. org/
10. 1007/ 978-3- 030- 50729-9_ 14.

 48. Dadouchi C, Agard B, Montreuil B. Context-aware interactive
knowledge-based recommendation. SN Comput Sci. 2022;3:472.
https:// doi. org/ 10. 1007/ s42979- 022- 01328-1.

 49. Barbosa NM, Wang G, Ur B, Wang Y. Who am I? A design probe
exploring real-time transparency about online and offline user pro-
filing underlying targeted ads. Proc ACM Interact Mob Wearable
Ubiquitous Technol 5(3), Article 88 (2021). https:// doi. org/ 10.
1145/ 34781 22.

 50. Saad S, Inayat I. Model-driven development based cross-platform
development: a review. J Inf Sci Eng. 2017;33(6):1561–73. https://
doi. org/ 10. 6688/ JISE. 2017. 33.6. 11.

 51. Sosa-Reyna CM, Tello-Leal E, Lara-Alabazares D. Methodology
for the model-driven development of service oriented IoT appli-
cations. J Syst Archit. 2018;90:15–22. https:// doi. org/ 10. 1016/j.
sysarc. 2018. 08. 008.

 52. Zheng Y, Mobasher B, Burke R. CARSKit: a Java-based context-
aware recommendation engine. In: 2015 IEEE international con-
ference on data mining workshop (ICDMW); 2015. pp. 1668–71.
https:// doi. org/ 10. 1109/ ICDMW. 2015. 222.

 53. Amyot D, Farah H, Roy JF. Evaluation of development tools for
domain-specific modeling languages. In: System analysis and
modeling: language profiles; 2006. Pp. 183–97. https:// doi. org/
10. 1007/ 11951 148_ 12.

 54. Tintarev N, Masthoff J. Evaluating the effectiveness of expla-
nations for recommender systems. User Model User-Adap Int.
2012;22:399–439. https:// doi. org/ 10. 1007/ s11257- 011- 9117-5.

 55. Fu B, Kirchbuchner F, von Wilmsdorff J, Grosse-Puppendahl T,
Braun A, Kuijper A. Indoor localization based on passive electric
field sensing. In: Braun A, Wichert R, Maña A, editors. Ambient
intelligence, AmI 2017; 2017. LNCS, vol. 10217. Springer; 2017.
https:// doi. org/ 10. 1007/ 978-3- 319- 56997-0_5.

 56. Huffingtonpost. How Bluetooth beacons will transform retail in
2016. https:// www. huffi ngton post. com/ kenny- kline/ how- bluet
ooth- beaco ns- wil_b_ 89827 20. html. Accessed 28 Nov 2020.

 57. Mohagheghi P. An approach for empirical evaluation of model-
driven engineering in multiple dimensions. In: Proceedings of
C2M:EEMDD 2010 workshop at ECMFA 2010-from code centric
to model centric: evaluating the effectiveness of MDD; 2010. pp.
6–17.

 58. Davis F. Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Q. 1989;13(3):318–
39. https:// doi. org/ 10. 2307/ 249008.

 59. Heijden H. User acceptance of hedonic information systems. MIS
Q. 2004;28(4):695–704. https:// doi. org/ 10. 2307/ 25148 660.

 60. Schrepp M. User experience questionnaire handbook; 2015.
https:// doi. org/ 10. 13140/ RG.2. 1. 2815. 0245.

 61. Laugwitz B, Held T, Schrepp M. Construction and evaluation
of a user experience questionnaire. In: Holzinger A, editor. HCI
and usability for education and work. USAB; 2008. LNCS,
vol. 5298. Berlin: Springer; 2008. https:// doi. org/ 10. 1007/
978-3- 540- 89350-9_6.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s42979-020-0115-8
https://doi.org/10.3390/app13095531
https://doi.org/10.1145/3640457.3688165
https://doi.org/10.1145/3640457.3688165
https://doi.org/10.1016/j.elerap.2018.01.012
http://arxiv.org/abs/2405.05562
https://doi.org/10.1287/mnsc.2018.3188
https://doi.org/10.1287/mnsc.2018.3188
https://doi.org/10.2307/1249334
https://doi.org/10.1509/jmkg.73.5
https://doi.org/10.1509/jmkg.73.5
https://doi.org/10.1109/ICCSNT.2012.6526108
https://doi.org/10.1109/ICCSNT.2012.6526108
https://doi.org/10.1108/JRIM-09-2021-0237
https://doi.org/10.1007/978-3-319-11575-7_11
https://doi.org/10.1007/978-3-319-11575-7_11
https://doi.org/10.1145/1658550.1658552
https://doi.org/10.1007/978-3-030-50729-9_14
https://doi.org/10.1007/978-3-030-50729-9_14
https://doi.org/10.1007/s42979-022-01328-1
https://doi.org/10.1145/3478122
https://doi.org/10.1145/3478122
https://doi.org/10.6688/JISE.2017.33.6.11
https://doi.org/10.6688/JISE.2017.33.6.11
https://doi.org/10.1016/j.sysarc.2018.08.008
https://doi.org/10.1016/j.sysarc.2018.08.008
https://doi.org/10.1109/ICDMW.2015.222
https://doi.org/10.1007/11951148_12
https://doi.org/10.1007/11951148_12
https://doi.org/10.1007/s11257-011-9117-5
https://doi.org/10.1007/978-3-319-56997-0_5
https://www.huffingtonpost.com/kenny-kline/how-bluetooth-beacons-wil_b_8982720.html
https://www.huffingtonpost.com/kenny-kline/how-bluetooth-beacons-wil_b_8982720.html
https://doi.org/10.2307/249008
https://doi.org/10.2307/25148660
https://doi.org/10.13140/RG.2.1.2815.0245
https://doi.org/10.1007/978-3-540-89350-9_6
https://doi.org/10.1007/978-3-540-89350-9_6

	An MDD Framework Towards the Automated Development of Ubiquitous Context-Aware Recommender Systems for Commerce
	Abstract
	Introduction
	UbiCARS Example of Use

	Background and Related Work
	RS, CARS and UbiCARS
	Challenges
	RS for E-commerce
	RS for Physical Stores
	Model-Driven Development
	Using MDD for Automated Configuration of Applications

	Related Work

	The UbiCARS MDD Framework
	Framework Design Principles
	UbiCARS Methodology
	Prerequisites
	Configurations
	UbiCARS Architecture

	UbiCARS DSML
	Supported Platforms
	Model Reuse
	Model Correctness

	System Workflow
	Mobile App Specific Elements
	Bluetooth Beacons
	User Identification Across Devices
	Privacy Concerns

	Design Demonstration
	Cold Start Problem

	Evaluation
	Process Description
	Modelling Against Coding Comparison
	Evaluation with Developers: Task-Oriented Evaluation
	Evaluation with Experts: Remote Evaluation

	Summary of Evaluation Results
	Tasks’ Duration (for Task-Oriented Evaluation)
	Perceived Task Comprehension and Difficulty (Task-Oriented Evaluation)

	Discussion
	Conclusions and Future Work
	Appendix
	Pre-defined Tables in Supported E-stores

	References

