
Enabling Cross-Platform Mobile Application

Development: A Context-Aware Middleware

Achilleas P. Achilleos and Georgia M. Kapitsaki

Department of Computer Science, University of Cyprus,
1 University Avenue, Nicosia, Cyprus

http://www.cs.ucy.ac.cy

Abstract. The emergence of mobile computing has changed the rules
of web application development. Since context-awareness has become al-
most a necessity in mobile applications, web applications need to adapt
to this new reality. A universal development approach for context-aware
applications is inherently complex due to the requirement to manage di-
verse context information from different sources and at different levels
of granularity. A context middleware can be a key enabler in adaptive
applications, since it can serve in hiding the complexity of context man-
agement functions, promoting reusability and enabling modularity and
extensibility in developing context-aware applications. In this paper we
present our work on a cross-platform framework that fulfils the above.
We elaborate on the need for cross-platform support in context-aware
web application development for mobile computing environments identi-
fying gaps in the current state of context support. The paper introduces
the architecture of the middleware that fills these gaps and provides
examples of its main components. An evaluation based on the develop-
ment of a prototype, web-based, context-aware application is detailed.
The application is compared against an analogous hybrid mobile appli-
cation showing the evolutionary potential introduced via the middleware
in delivering context-aware mobile applications.

Keywords: web applications, context middleware, context-awareness,
HTML5, mobile computing.

1 Introduction

The growth of mobile devices capabilities offered by a variety of mobile platforms
(e.g., iOS, Android, Windows Phone) increases the interest of users in person-
alized applications that can be accessed from any place and platform. This is
reflected in a mantra coined in 1991: ”giving all the freedom to communicate any-
where, anyplace, anytime, in any form” [1]. This vision is now more profound
due to the explosion of hardware, software and communication technologies pro-
vided by an abundance of smart devices. Mobile users are best served if the above
goal is fulfilled by keeping users requirements and their need for control in top
priority, without implementing applications that overwhelm users with redun-
dant information and futile functionality. Such a personalized technology view

B. Benatallah et al. (Eds.): WISE 2014, Part II, LNCS 8787, pp. 304–318, 2014.
c© Springer International Publishing Switzerland 2014

http://www.cs.ucy.ac.cy

Enabling Cross-Platform Mobile Application Development 305

has been adopted by various researchers to improve the user experience of web
applications [2], [3]. Currently the personalized perspective has been enriched
by the widespread presence of mobile sensors, such as GPS (Global Positioning
System) receivers, accelerometers, compasses, microphones and cameras that are
integrated in a mobile device [4], as well as the huge volume of social network
data available from different locations.

In order to keep up with these advancements, technologies should adapt to
the end-user’s perspective and aid in tailoring applications to the surrounding
context (i.e., location, situation, social data) exploiting the capabilities of smart
devices and platforms. Realization of this smart vision demands mechanisms
for ubiquitous and reliable acquisition, analysis and sharing of information to
improve user requirements, by anticipating user needs while the user remains
undisturbed by the underlying technology. Also, application developers that tar-
get those environments should have access to a transparent infrastructure and
a set of reusable context modules that support cross-platform development of
such context-aware applications.

Nowadays mechanisms and technologies that target cross-platform develop-
ment in the field of web applications are emerging, e.g., HTML5 [5]. Nevertheless,
a universal web application framework tailored to the needs of context-awareness
is missing. In this work we elaborate on these issues presenting the current state
on cross-platform web development and proposing a solution that facilitates the
development of such applications providing software engineers with reusable and
extensible elements. The contribution of this paper is twofold: on the one hand, it
provides an analysis and review on the HTML5 support in mobile web browsers
of widely-used mobile devices and, on the other hand, it gives on overview of
the proposed HTML5 Context Middleware (H5CM) that serves as a facilitator
for cross-platform development of context-aware web applications.

Regarding the former part of our contribution we have performed a study on
HTML5 support provided by widely used mobile browsers in different mobile
platforms. For the latter part we have exploited the results of this study in or-
der to design and implement a generic context management middleware that
relies on the HTML5 specification and the latest developments in mobile plat-
forms and browsers. The H5CM framework provides reusable context sensing
and reasoning modules in the form of plugins and offers the ability to extend
this pool of plugins through the development of additional modules. Modules
are provided in an hierarchical ordering. H5CM supports context-management
functions through a common interface to multi-domain context sources for facil-
itating the development of web-based context-aware mobile applications.

The rest of the paper is organized as follows. Section 2 introduces the notion
of context-awareness in mobile platforms settings that is acting as motivation for
our work, whereas section 3 analyses the support of HTML5 features relevant
to context-awareness on popular web browsers. We then describe in section 4
the main concepts of the H5CM framework. The framework’s plugin concept
is analysed through examples in section 5 along with the presentation of how
the plugins are used in a mobile application. A comparison and evaluation of

306 A.P. Achilleos and G.M. Kapitsaki

the context-aware application is performed in section 6, against an analogous
mobile application developed using hybrid technology (i.e., PhoneGap). The
final section concludes the paper.

2 Context-Awareness in Mobile Platforms

Context-awareness is a key enabling requirement for enhancing the ability of mo-
bile users to exploit efficiently different software applications and services using
different mobile devices (e.g., smartphones, tablets, and netbooks) at different
locations. In mobile computing context-awareness encompasses various aspects
spanning from sensing information at the hardware and network information
level, to context-based recommendations at the application level, such as the
case of context-based music recommendation presented in a previous work [6].

The popularity gained by different mobile platforms enables users to perform
everyday tasks and use diverse devices for various work and leisure activities [7].
In such mobile settings, the user needs to be dynamically assisted, by tailoring
the application and providing proactive behaviour. Mobile devices offer clear-cut
user benefits, but there are application usability and ease of use limitations (e.g.,
small screen, low battery) that must be considered. Perhaps the key issue that
needs to be addressed is this diversity of platforms even when only one user is
considered, since users own and use different devices.

The term of context-awareness as already introduced describes the process of
acquiring, managing and distributing different pieces of context to intelligently
adapt the application behaviour. We adopt the definition of Dey and Abowd [8]
which states that context is any information that can be used to characterize the
situation of an entity, in which the entity can be a person, a place, or a physical
or computational object that is considered relevant to the interaction between the
entity and the application. Directly from this definition it is apparent that the
requirement arises to be able to support diverse context sources via a modu-
lar, reusable and extensible mechanism. In specific, four driving requirements,
namely modularity, extensibility, code reusability and cross-platform develop-
ment, motivated us to define and develop a context-aware, web-based middleware
to handle context-awareness support in different environments.

Comparable approaches that handle context data in different platforms can be
found in the literature, such as MUSIC [9], [10] for the Java platform and Really
Simple Context Middleware (RSCM) [11] for the Android platform. The essen-
tial difference of the current work with existing solutions lies on the application
type focus, which is on the web development, rather than on native applications
that are not universally exploitable in various environments. The former case of
MUSIC refers to the results of a European project on Self-Adapting Applica-
tions for Mobile Users in Ubiquitous Computing Environments and its proposed
middleware runs using Java OSGi. The latter is available in Google code and fo-
cuses on Android, allowing the development of context-aware applications using
context plugins.

Differentiating from approaches that are tailored to specific platforms the
main driving motivation of this work is platform-independence. This point has

Enabling Cross-Platform Mobile Application Development 307

also been reflected in hybrid technologies that constitute a first attempt to satisfy
the assortment of mobile devices and platforms. Examples of such technologies
can be found in PhoneGap [12], Apache Cordova, i.e., the open-source engine
that runs PhoneGap, and Titanium1. The above solutions provide cross-platform
mobile development environments via a set of uniform JavaScript libraries that
can be invoked by the developer, wrapping (i.e., calling) device-specific native
backing code through these JavaScript libraries. This provides access to native
device functions, such as the camera or accelerometer from JavaScript. The main
criticisms against hybrid development environments is that the developer needs
to learn how to use the native libraries for each platform, but most importantly
that mobile devices are not fast enough to smoothly run a hybrid application [13].
On the other hand, native applications offer benefits in terms of performance and
API coverage. Still native applications lack in terms of instant deployment, since
they require manual installation and/or upgrades, and flexibility to combine data
from different resources [14].

In contrast to existing solutions we propose to exploit the rapidly developing
HTML5 capabilities of mobile browsers to define a middleware that supports
cross-platform application development using only web technologies [15]. In this
way, performance issues that are apparent in hybrid applications, and complex
deployment issues that appear with native applications can be avoided.

3 HTML: Features and Browser Support

The current landscape of mobile application development can benefit from the
new features of web technologies that provide interactivity and animation, and
support cross-platform development. HTML5 is the W3C specification referring
to the new version of HTML [5]. The first public working draft of the specification
was made available in January 2008, while the specification is currently at a very
mature stage and undergoes continuous development.

The question on whether HTML5 features are supported and can be exploited
in miscellaneous platforms remains open and is an issue that is constantly evolv-
ing. In this section we present the results of a study performed on different mobile
platforms, examining their support for HTML5 features. The comparison was
performed with the aid of a simple prototype application that we developed
for this purpose. While the survey provides also data on the general support
of HTML5 features, the focus of this work is on browser APIs that support
features with a context-awareness flavour, such as mobile device geolocation
tracking and monitoring, device orientation, motion and acceleration, monitor-
ing battery level, ability to connect to RESTful and SOAP Web Services, etc.
The main conclusion drawn is that mobile and tablet browsers support most
features including context-relevant ones, since vendors try to keep in line with
the evolving HTML5 specification. Moreover, as new sensors are added to mo-
bile devices additional features are continuously added by browser vendors, by
implementing new APIs in different browsers.

1 http://www.appcelerator.com/titanium/

http://www.appcelerator.com/titanium/

308 A.P. Achilleos and G.M. Kapitsaki

Table 1. Browser Support - [Samsung Galaxy Note 3 running Android 4.4.2 - Also
tested on S3, Tab 2], [Apple iPad 2 running iOS 7.1.2: Also tested on iPhone 4S]

Name D
e
fa
u
lt

(A
n
d
ro
id
)

D
o
lp
h
in

B
ro

w
se

r
H
D

1
0
.3
.1

(A
n
d
ro
id
)

F
ir
e
fo
x

M
o
b
il
e
3
1
.0

(A
n
d
ro
id
)

O
p
e
ra

M
in
i
7
.5

(A
n
d
ro
id
)

O
p
e
ra

M
o
b
il
e
2
2
.0

(A
n
d
ro
id
)

C
h
ro

m
e
D
e
v

3
6
.0
.1
9
8
5
.1
2
8
(A

n
d
ro
id
)

S
a
fa
ri

B
ro

w
se

r
-
D
e
fa
u
lt

(i
O
S
)

D
o
lp
h
in

B
ro

w
se

r
6
.5
.1

(i
O
S
)

O
p
e
ra

M
in
i
8
.0
.1

(i
O
S
)

C
h
ro

m
e
B
ro

w
se

r
3
6
(i
O
S
)

M
e
rc

u
ry

B
ro

w
se

r
8
.6
.1

(i
O
S
)

Popularity (Max. 5) - 4.5 4.5 4.4 4.5 4.5 - 4 - 4 4.5

Score (Max. 555) 475 463 483 53 486 492 410 410 410 410 410

Device Orientation � � � x � � � � x � �
Device Motion � � � x � � � � � � �
Geolocation �(x) �(x) � x � �(x) � � � � �
Battery Status x x � x x x x x x x x

Device Media x �(x) x x � �(x) x x x x x

Device Network � � � �(x) � � � � � � �
Web Sockets � � � x � � � � x � �
RESTful services � � � � � � � � � � �
SOAP services � � � � � � � � � � �

Legend - Supported: �, Not supported: x

The growing collection of HTML5 features and the ability to display 3D graph-
ics natively in a browser, i.e., via WebGL that is the key standard supported by
many browsers [16], make cross-platform development of applications a tangi-
ble target. The above table showcases the features considered critical to enable
context-awareness. A score is shown as calculated by the website html5test.com
in respect to browser support coverage for all HTML5 features. Popularity is
also shown based on available user reviews and the total number of downloads,
as retrieved for each application from the respective platform store.

Enabling Cross-Platform Mobile Application Development 309

In particular, Table 1 presents the support in different browsers for the An-
droid and iOS platforms. Note that the values shown in parenthesis in the table
indicate the features that are not supported on the Galaxy Tab 2 tablet, which
are though supported on smartphones Note 3 and Galaxy SIII. In overall, smart-
phone and tablet devices provide support for the HTML5 features (in five out
of six main browsers) up to a level of 86.8%, while most of the key features that
enable context-awareness are supported. Only the Battery Status and Device
Media APIs are currently lacking support in most browsers, with browsers like
Firefox Mobile 31.0 and Opera Mobile 22.0 providing support also for these fea-
tures. In this regard an application that needs to support, e.g., Battery Status,
can be executed at least on Firefox Mobile 31.0 for Android.

The iOS platform and the browsers available for iOS offer high support in
terms of general HTML5 features, up to the level of 68.8%. At the same time
support for context-aware specific features is also at the highest level with 7 out
of 9 features being supported through APIs provided by the different browser
vendors. In particular, only two features are not supported and these refer again
to the Battery Status and Device Media APIs. On the basis though of the contin-
uous and progressive strive to implement new APIs (especially in terms of media
support) we strongly believe that support for these features will soon arrive also
on the browsers running on the iOS platform [17].

Finally, HTML5 support was also tested for the MS Windows Phone platform
on the Nokia Lumia 800 mobile device running Windows Phone 7.1. A detailed
presentation is omitted due to the low support encountered in this case in terms
of HTML5 features. In specific, the support was exceedingly limited for context-
aware features, with mainly the Device Network and Geolocation APIs being
supported in some of the five browsers (i.e., Explorer, UC Browser, Explora,
MetroUI and Incognito) that were considered in the test. Moreover, the support
of generic HTML5 features was approximately 25% for the MetroUI browser,
while support in all other browsers was basically non-existent. In the future we
aim to test HTML5 support in browsers, as soon as they become available in
newer mobile devices that support the Windows Phone 8 platform or higher.

4 HTML5 Context Middleware

Having in mind the necessity of providing cross-platform access to context-aware
elements we have designed the HTML5 Context Middleware to allow developers
to reuse existing modules making their code more compact. The implementation
of the H5CM takes into consideration the four basic requirements of modular-
ity, extensibility, reusability and the ”develop once deploy on any platform”
approach. H5CM follows a hierarchical structure: at the lower level there are
context-sensor modules (s-m) that allow acquiring and distributing low-level
context information that is relevant to the mobile device, the end-user and the
environment. At the second level of the hierarchy there are context-reasoner
modules (r-m) that accept low-level context from one or more sensor modules
and apply the appropriate reasoning logic so as to create high-level context in-
formation. The context-aware application is at the top of the hierarchy and is

310 A.P. Achilleos and G.M. Kapitsaki

Fig. 1. Main elements of the HTML5 Context Middleware

able to communicate at the software level with sensor and/or reasoner modules
to acquire context information that enables the adaptation of the application’s
logic.

The key architectural elements of H5CM are illustrated in Fig. 1. The Context
manager constitutes a central point that handles information originating from
different sources as gathered by respective plugins and distributes this informa-
tion accordingly to the context-aware applications that require it. These modules
(or plugins) act as enablers of context-awareness, empowering applications to be
adapted to end-user preferences and circumstances. The plugins cover four main
categories:

– modules that allow context acquisition directly from the mobile device (e.g.,
battery level)

– modules that provide information retrieved from social networks (e.g.,
LinkedIn, Delicious)

– modules that obtain input from the end-user, and
– modules that obtain information from the environment connecting to local

or remote sensors or servers (e.g., room temperature)

In specific, the Context manager orchestrates the management of modules
that retrieve information from the environment, the user and the device. The
Context manager is implemented as a singleton JavaScript web module, while
the context plugins are also implemented as JavaScript web modules. Hence, the
context-aware application can be also implemented using web technologies (i.e.,

Enabling Cross-Platform Mobile Application Development 311

HTML5, CSS, JavaScript). Through the Context manager, context modules (i.e.,
sensors, reasoners) required for an application are registered and loaded. In fact,
H5CM and the Context manager are based on the popular Q JavaScript frame-
work2, which offers the Promise object and complies fully with the Promises/A+
Specification3. A promise represents the result of an asynchronous operation.
Interacting with a Promise object through its then method allows registering
callbacks and receiving a fulfilled promise return value or the reason for failure.
Using this approach it is guaranteed that the context plugins required by the
application are loaded successfully.

At this point the application is able to interact and communicate with
the loaded context plugins (e.g., GPSCoordinates, BatteryLevel). The loaded
plugin(s) is(/are) actually registered with the ContextManager singleton, which
initializes the associated context property and creates a new CustomEvent as-
signing the name of the context property as the unique identifier for the event.
The context-aware application defines an EventListener associated with the
above context event, which allows monitoring and updating the application with
relevant context changes. The context plugin is responsible to update the context
property and dispatch a unique event, when new context is available.

The above functionality is accompanied by an extensible and reusable Context
Repository. The modules define an extensible and reusable repository. On the one
hand, they can be reused by developers, since they are generic and can be invoked
from any context-aware web application. On the other hand, the module set can
be extended by technical users that need additional functionality as features of
HTML5 expand and the respective support in mobile browsers is extended. The
modules to be loaded are defined as dependencies in the application. Since the
values of context data change more or less frequently depending on the type of
the data, H5CM is responsible for monitoring all context variables and updating
the application when relevant context changes are detected. This functionality
offers a context monitoring that allows the adaptation of the application while
it is executing.

As aforementioned, in order to provide context information at different lev-
els of granularity a concept introduced in H5CM is the differentiation between
sensor- and reasoner-modules. The former provide access to raw context data
in the form that these can be collected from context locations (e.g., user ge-
ographical coordinates), whereas the latter give access to higher level context
information that are derived from the ”basic” raw data and are meaningful to
the end-user. As a reasoner example consider the use of the raw data provided
by: 1) the battery status that actually comprises of the battery level of the device
and the information on whether the device is actually charging, 2) the coordi-
nates of the user location and 3) the device motion, to provide the information of
whether the user is currently walking on a street or driving. Application develop-
ers are able to contribute at this level by developing additional reasoner-modules
that aggregate content from different context-sensor modules.

2 Q Promises JavaScript Framework - http://documentup.com/kriskowal/q/.
3 Promises/A+ Specification - http://promises-aplus.github.io/promises-spec/.

http://documentup.com/kriskowal/q/
http://promises-aplus.github.io/promises-spec/

312 A.P. Achilleos and G.M. Kapitsaki

5 Context-Aware Sensor and Reasoner Modules

In this section we present the H5CM in more detail giving information on how
to make use of the context-middleware modules to build context-aware appli-
cations. The implementation of the H5CM is available at Google Code4, which
includes the context manager web component and the available context sensor
and reasoner modules. The presentation of these context modules serves as a
guideline for developers on how to develop additional context-aware sensor and
reasoner modules, enriching thus the functionality of the middleware, but also
how to use these modules for the implementation of context-aware applications.
At the time we have developed 8 sensor and 2 reasoner plugins that constitute
the current state of the middleware. We present for demonstration purposes in
more detail the BatteryLevel and the FacebookConnect sensor modules along
with the BatteryAnalyzer reasoner module.

Listing 1. Battery Level Sensor Module.

1. function getBatteryLevel() {
2. var singletonContextManager = ContextManagerSingleton.getInstance("batteryLevel");
3. var battery = navigator.battery || navigator.mozBattery || navigator.webkitBattery;
4. if (battery != undefined) {
5. var bLevel = Math.round(battery.level * 100);
6. battery.addEventListener("levelchange", updateBatteryStatus);
7. return bLevel;
8. }
9.
10. function updateBatteryStatus() {
11. var bLevel = Math.round(battery.level * 100);
12. singletonContextManager.batteryLevel.batteryLevel = bLevel;
13. }

The BatteryLevel sensor-module retrieves and continues monitoring the level of the
device battery (e.g., 74%), as required by the context-aware application. This is a hard-
ware specific sensor plugin, while the FacebookConnect is a social sensor plugin that
provides the means to acquire profile data of the user (i.e., public user data). It also
allows asking the user to grant access for retrieving additional restricted data (given in
comma separated string values). As a prerequisite the user of the mobile, web applica-
tion needs to provide his/her Facebook credentials and allow the application to access
these restricted data. FacebookConnect sensor module provides the connection point
to Facebook, but similar functionality can be achieved by implementing modules for
additional social networks, such as Google+, LinkedIn or Delicious. Note that security
and privacy of user data is supported and respected through the use of advanced mech-
anisms provided by the different social networks. Moreover, hosting and deployment
of the context-aware application on a secure web server (e.g., Apache) provides the
capability of layering the Hypertext Transfer Protocol (HTTP) on top of the Secure
Sockets Layer (SSL) protocol, thus adding the security capabilities of SSL to standard
HTTP communications.

Listing 1 presents part of the implementation of the battery level sensor module
that allows at first to register this plugin to the Singleton ContextManager instance
(i.e., line 2) that in turn attaches this context to the ContextListener. Following, the

4 https://code.google.com/p/h5cm/

https://code.google.com/p/h5cm/

Enabling Cross-Platform Mobile Application Development 313

battery is accessed by using one of the three web engines powering different browsers
(i.e., line 3) and the level of the battery is obtained, while an event listener allows
monitoring changes to battery level (i.e., lines 4-8). As soon as battery level change
event is fired the updateBatteryStatus function is invoked (i.e., lines 10-13) that up-
dates and distributes via the singleton ContextManager instance the new battery level
to the application or reasoner depending on the application scenario.

Listing 2. Invoking Battery Level Sensor and Reasoner modules.

1. var cms = ContextManagerSingleton.getInstance("application");
2.
3. batteryLevel = getBatteryLevel();
4. document.getElementById("batteryLevel").innerHTML = batteryLevel;
5. reasoning = getBatteryAnalyser(parseInt(batteryLevel),30);
6.
7. var coords = getGPSlocation();
8. cms.gpsCoordinates.watch("gps", function (id, oldval, newval) {
9.
10. if (reasoning == false){
11. document.getElementById("gps").innerHTML = "Latitude: " + myLat + " Longitude: " + myLng;
12. }
13. else if (reasoning == true){
14. document.getElementById("gps").innerHTML = "Latitude: " + myLat + " Longitude: " + myLng;
15. mapThisGoogle(myLat,myLng);
16. }
17. return newval;
18. });
19.
20. var fbData =new Array("name","email","gender","username","birthday");
21. getFBInfo(fbData);

Based on the battery level we have defined a module that allows reasoning and
adapting the application. The developer is allowed to set a cut off value for the battery
level that defines if the application should restrict its functionality to preserve resources.
The example application code shown at line 3 (Listing 2), allows invoking firstly the
BatteryLevel sensor module presented in Listing 1. Then as shown in Listing 2, based
on the value detected for the battery level the BatteryAnalyser reasoning module (see
Listing 3) is invoked, which takes the final decision by comparing the two values and
returning the result in the form of a boolean variable. In the example demonstrated
this allows to make a decision (lines 7-16), when the location tracking sensor module
is called, whether to show the location of the user using a text-based representation or
using Google Maps.

Listing 3. Battery Analyser Reasoner Module.

1. function getBatteryAnalyser(batteryLevel, batteryLevelCutoff){
2. var singletonContextManager = ContextManagerSingleton.getInstance("batteryAnalyser");
3. if (batteryLevel>=batteryLevelCutoff) {
4. return true;
5. }
6. else if (batteryLevel<batteryLevelCutoff) {
7. return false;
8. }
9. }

Listing 4 presents a small part of the sensor module that allows connecting to Face-
book. In particular, after user credentials are validated and the permissions to access
the profile data are confirmed, the Facebook API is invoked for retrieving these data.

314 A.P. Achilleos and G.M. Kapitsaki

Then via the singleton ContextManager instance the application is notified that the
profile data have been retrieved and the web application needs to only parse and display
these data. This specific module can be invoked from a context-aware web application
as shown in lines 20-21 of Listing 2.

Listing 4. Facebook Connect Sensor Module.

1. function getFBInfo(data) {
2. var singletonContextManager = ContextManagerSingleton.getInstance("facebookInfo");
3. FB.api(’/me’, function(response) {
4, for (i=0;i<data.length;i++){
5. var data_next = data[i];
6. if (profile){
7. var profile = profile + "@%@" + response[data_next];
8. }
9. else{
10. var profile = response[data_next];
11. }
12. }
13. singletonContextManager.facebookInfo.facebookInfo = profile;
14. });
15. }

For the development of these modules we used HTML5 APIs to implement context-
sensor plugins that enable access to device-specific hardware information, along with
additional APIs that enable acquisition of network-specific information from RESTful
and SOAP Web Services. Moreover, we have exploited APIs of social networks to
define web-based context-sensor modules that allow retrieving the user profile and
other data. Reasoners are also defined that allow acquiring low-level information from
context-sensors and applying reasoning logic to generate high-level information.

6 Use Case Evaluation

As a use case for our evaluation we have chosen to implement a typical context-aware
application: the restaurant finder application. Usually restaurant finder applications
rely on the current user position and propose nearby restaurants allowing users to
view the location of the restaurant, browse restaurant reviews and consult opening
hours. Our version of My Restaurant Out There offers similar features in a context-
aware fashion utilizing information collected through a number of context modules.
Specifically, the application utilizes the following information:

– The location of the user that is used to return restaurant options in the vicinity
of the user,

– The battery level of the device based on which it can either display the returned
results in a tabular format (e.g., for battery level < 30%) or on Google maps that
offer a resource-demanding alternative (e.g., for battery level >= 30%).

Existing sensor-module plugins from H5CM are used to offer the above functionality
to the restaurant finder application. The BatteryLevel is used to understand the battery
level and status of the device, whereas Geolocation gives the current user coordinates
or the city the user is located in. Regarding the battery use, instead of using directly
the respective sensor-module the BatteryAnalyser reasoner presented in the previous
section is called, since it offers a finer representation of the context value returning true
or false based on the battery level.

Enabling Cross-Platform Mobile Application Development 315

Fig. 2. Execution of My Restaurant out There

For evaluation purposes we have implemented two variants of the restaurant finder
application: the first variant utilizes the proposed framework, whereas the second is
based on one of the most popular framework for hybrid technologies PhoneGap. The
latter variant was implemented for Android. Screenshots of the two applications under
execution are shown in Fig. 2 with the left side indicating the list of restaurants as
returned from the web applicaiton on FireFox (that supports the battery status feature
of HTML5) for low battery level levels (i.e., 6%) and the right side depicting a map of
restaurants as returned by the hybrid application for higher battery level (i.e., 81%).

Fig. 3. CPU usage for the H5CM and PhoneGap variants of the restaurant finder
application

316 A.P. Achilleos and G.M. Kapitsaki

Since one of the driving forces of the design of the proposed framework was the
minimization of resources required from the mobile device we have measured the fol-
lowing parameters for the two variants: (i) CPU usage and (ii) network traffic usage
including both outgoing and incoming traffic. For the evaluation a Samsung galaxy S3
device with Android version 4.3 was employed. The measurements were based on the
”show CPU usage” feature of Android (available from Developer options) that depicts
among other information the CPU usage in the last minute and the Traffic Monitor
Android application5 that provides traffic data information per application for differ-
ent time intervals including measurements for the current date. We have measured
the approximate values for each metric when Firefox or the restaurant finder hybrid
application is running on the device, along with a number of Android applications or
services (roughly 9). The results are displayed in Figs. 3 and 4 respectively. Note that
for network traffic the diagram indicates the traffic measured only for the case when
the application is running on a device with low battery level. We have omitted the high
battery level case, since the traffic is in that case highly dependent on the interaction of
the user with Google maps (zooming etc.) and no concrete conclusions could be drawn.

Fig. 4. Network traffic for the H5CM and PhoneGap variants of the restaurant finder
application

Regarding CPU usage the results for the two variants are comparable. This is plau-
sible, since CPU usage is highly dependent on the number of applications and services
running on the device (in the last minute based on the measurements used). For both
incoming and outgoing traffic there is a difference in the data volume between the
two variants. This may be attributed mainly to the additional traffic that needs to be
handled by a native application, since the PhoneGap application is in essence installed
as a native application on the mobile device, and to the fact that PhoneGap-based
applications make use of dedicated libraries of PhoneGap. Overall, our experiments
indicate that the H5CM-based application is less resource-demanding. However, the
application scale is also a parameter that needs to be considered for drawing general
conclusions, since the application use case is rather simplistic.

5 https://play.google.com/store/apps/details?id=com.radioopt.tmplus

https://play.google.com/store/apps/details?id=com.radioopt.tmplus

Enabling Cross-Platform Mobile Application Development 317

From the above initial proof of concept and the description of the proposed procedure
many benefits can be observed from the developer side. These are mainly found in the
elements of modularity, extensibility, code reusability and cross-platform development
provided by the H5CM as introduced earlier in the paper. An additional benefit can be
found in an increase in code quality, since the application design based on the framework
modules produces more compact and comprehensible code, an essential element also
for the phase of software maintenance.

7 Conclusions

Cross-platform support in the development of context-aware applications is a desirable
feature to simplify application development. In the field of web applications the most
popular choice towards this direction is HTML5. Support for HTML5 features on
mobile web browsers of popular platforms is necessary in order to take advantage
of access to context data as facilitated by HTML5 constructs making thus the user
experience adaptive and personalized.

In this paper we have performed a review on the support of HTML5 features on
widely used mobile browsers, observing that many features are indeed supported. This
tendency will strengthen as the HTML5 specification evolves to embrace the emerging
needs of mobile users, while the modular architecture of the HTML5 Context Mid-
dleware allows supporting new HTML5 features as soon as they become available, by
implementing additional modules. Moreover, we have introduced our context-aware
framework, namely the H5CM, that alleviates developers workload and puts applica-
tion development for different mobile devices in a common perspective by providing a
selection of plugins that make the access to context data seamless. Context data are
also monitored in order to reflect changes to the actual application. Also, the evaluation
served as an initial proof of concept and showcased that HTML5 context-aware appli-
cations designed using the H5CM are less resource-demanding than mobile applications
developed using hybrid technologies; especially in terms of network load.

As future work we intend to expand the library of plugins available on Google Code.
This will enable developers to use additional context-aware features and thus reduce the
time in developing context-aware applications. We will investigate also the integration
of additional security and privacy guarantees in the use of H5CM, on top of social
networks guarantees and the use of an HTTPS-enabled web server, since protection of
user-relevant data is vital in context-awareness.

References

1. Weiser, M.: The Computer for the 21st Century. Scientific American (September
1991)

2. Rodden, K., Hutchinson, H., Fu, X.: Measuring the user experience on a
large scale: user-centered metrics for web applications. In: Proc. SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 2395–2398 (2010),
doi:10.1145/1753326.1753687

3. Rossi, G., Schwabe, D., Guimarães, R.: Designing personalized web applications.
In: Proc. 10th Int’l Conf. World Wide Web, pp. 275–284 (2001)

4. Lee, Y., Ju, Y., Min, C., Yu, J., Song, J.: MobiCon: A Mobile Context-
Monitoring Platform. Communications of the ACM 55(3), 54–65 (2012),
doi:10.1145/2093548.2093567.

318 A.P. Achilleos and G.M. Kapitsaki

5. Berjon, R., Faulkner, S., Leithead, T., Navara, E.D., O’Connor, E., Pfeiffer, S.,
Hickson, I.: HTML5 - A vocabulary and associated APIs for HTML and XHTML.
W3C Candidate Recommendation (February 2014),
http://www.w3.org/TR/html5/

6. Han, B.-J., Rho, S., Jun, S., Hwang, E.: Music emotion classification and context-
based music recommendation. Multimedia Tools and Applications 47(3), 433–460
(2010), doi:10.1007/s11042-009-0332-6.

7. Tarkoma, S., Lagerspetz, E.: Arching over the Mobile Computing Chasm: Plat-
forms and Runtimes. IEEE Computer 44(4), 22–28 (2011)

8. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context
Awareness, Workshop: What, Who, Where, When, and How of Context Awareness.
In: ACM Conf. Human Factors in Computer Systems, The Hague, Netherlands
(2000)

9. Paspallis, N., Achilleos, A., Kakousis, K., Papadopoulos, G.A.: Context-aware Me-
dia Player (CaMP): Developing context-aware applications with Separation of Con-
cerns. In: IEEE Globecom 2010 Workshop on Ubiquitous Computing and Networks
(UbiCoNet), Miami, Florida, USA, December 6, pp. 1741–1746 (2010)

10. Floch, J., Fr, C., Fricke, R., et al.: Playing MUSIC building context–aware and self–
adaptive mobile applications. Journal Software: Practice and Experience (2012)

11. Ioannides, F., Kapitsaki, G.M., Paspallis, N.: Demo: Professor2Student – connect-
ing supervisors and students. In: Daniel, F., Papadopoulos, G.A., Thiran, P. (eds.)
MobiWIS 2013. LNCS, vol. 8093, pp. 288–291. Springer, Heidelberg (2013)

12. Wargo, J.M.: PhoneGap Essentials: Building Cross-platform Mobile Apps.
Addison-Wesley Professional (2012)

13. Gai, D.: Hybrid VS Native Mobile Apps (2013),
http://www.gajotres.net/hybrid-vs-native-apps/

14. Mikkonen, T., Taivalsaari, A.: Reports of the Web’s Death Are Greatly Exagger-
ated. IEEE Computer 44(5), 30–36 (2011)

15. Mikkonen, T., Taivalsaari, A.: Apps vs. Open Web: The Battle of the Decade. In:
Proc. 2nd Annual Wksp. Software Engineering for Mobile Application Develop-
ment (2011)

16. Khronos Group, WebGL Specification, Editor’ s Draft (2011),
http://www.khronos.org/registry/webgl/specs/latest/

17. Melamed, T., Clayton, B.: A comparative evaluation of HTML5 as a pervasive
media platform. In: Mobile Computing, Applications, and Services, pp. 307–325.
Springer, Heidelberg (2010)

http://www.w3.org/TR/html5/
http://www.gajotres.net/hybrid-vs-native-apps/
http://www.khronos.org/registry/webgl/specs/latest/

	Enabling Cross-Platform Mobile Application
Development: A Context-Aware Middleware

	1 Introduction
	2 Context-Awareness in Mobile Platforms
	3 HTML: Features and Browser Support
	4 HTML5 Context Middleware
	5 Context-Aware Sensor and Reasoner Modules
	6 Use Case Evaluation
	7 Conclusions
	References

