
Noname manuscript No.
(will be inserted by the editor)

The Cloud Application Modelling and Execution
Language

Achilleas P. Achilleos1,4, · Kyriakos
Kritikos2, · Alessandro Rossini3, Georgia
M. Kapitsaki4, · Jörg Domaschka5, ·
Michal Orzechowski6, · Daniel
Seybold5, Frank Griesinger5, · Nikolay
Nikolov7, · Daniel Romero8, · George
A. Papadopoulos4

Received: date / Accepted: date

Abstract Cloud computing offers a flexible pay-as-you-go model for provi-
sioning application resources, which enables applications to scale on-demand
based on the current workload. In many cases, though, users face the single ven-
dor lock-in effect, missing opportunities for optimal and adaptive application
deployment across multiple clouds. Several cloud modelling languages have
been developed to support multi-cloud resource management, but still they
lack holistic cloud management of all aspects and phases. This work defines
the Cloud Application Modelling and Execution Language (CAMEL), which
(i) allows users to specify the full set of design time aspects for multi-cloud
applications, and (ii) supports the models@runtime paradigm that enables
capturing an application’s current state facilitating its adaptive provisioning.
CAMEL has been already used in many projects, domains and use cases due
to its wide coverage of cloud management features. Finally, CAMEL has been
positively evaluated in this work in terms of its usability and applicability in
several domains (e.g., data farming, flight scheduling, financial services) based
on the technology acceptance model (TAM).

Keywords cloud computing · domain-specific language · model-driven
engineering · models@run-time

1E-mail: com.aa@frederick.ac.cy, Frederick University, Nicosia, Cyprus
2E-mail: kritikos@ics.forth.gr, ICS-FORTH, Heraklion, Crete, Greece
3E-mail: alessandro.rossini@pwc.com, PwC Consulting, Oslo, Norway
4E-mail: [achilleas, gkapi, george]@cs.ucy.ac.cy, University of Cyprus, Nicosia, Cyprus
5E-mail: [joerg.domaschka, daniel.seybold, frank.griesinger]@uni-ulm.de, Ulm University,
Germany
6E-mail: orzechowski.michal@agh.edu.pl, AGH, Warsaw, Poland
7E-mail: nikolay.nikolov@sintef.no, SINTEF, Oslo, Norway
8E-mail: daniel.romero@inria.fr, LIFL, Inria Lille, France

2 A. Achilleos et. al.

1 Introduction

Cloud computing enables organisations to use (virtualised) resources in a pay-
as-you-go model. By adopting this computing paradigm, organisations can
reduce costs and outsource infrastructure management for their applications.
Also, they can support flexible application provisioning by acquiring additional
resources on-demand based on the current workload. Based on these benefits,
many organisations have decided to move their applications in the Cloud.

1.1 Motivation

To support this migration, various frameworks have been developed enabling
automated user application deployment and scaling. In some cases, the abil-
ity to use vendor specific tools (e.g., AWS CodeDeploy, Azure Kubernetes
Service (AKS), Amazon Elastic Container Service for Kubernetes (Amazon
EKS)) to manually deploy application components, observe the deployment
progress and monitor the application performance is offered. Also, there are
languages that support the definition of platform specific models (i.e., they are
directly bound to a cloud environment such as Amazon’s CloudFormation and
OpenStack’s HOT). However, such frameworks do not enable users to move
to another Cloud provider (lock-in effect) when a respective need arises (e.g.,
better offerings, bad application performance, costs).

To address the vendor lock-in effects [34], multi-cloud resource management
(MCRM) has been proposed [31], which offers organisations several capabilities
including [2]: (a) optimal use of best possible cloud services from a variety of
offerings supplied by a multitude of cloud providers; (b) ability to sustain an
optimal quality level via the application dynamic reconfiguration; (c) ability
to achieve a better security level by exploiting suitable security services; (d)
ability to move applications near the client location to improve application
performance; (e) ability to conform to national and international regulations.

To support MCRM and exhibit a suitable automation level, different Cloud
Modelling Languages (CMLs) have been defined in many research projects
and prototypes [8]. These CMLs ”focus mainly on design-time aspects, come
from disjoint research activities and lack convergence with proposed standards.
They also lack the right expressiveness level, while commonly cover one service
type (IaaS) in the cloud stack” [8]. On the other hand, widely used and pow-
erful container orchestrators such as Kubernetes 1 and Docker Swarm2 suffer
from limitations, such as multi-cloud support and support for basic scalability
rules. For instance, for multi-cloud deployment, a Kubernetes cluster needs
to be deployed manually in each cloud provider or Pipeline3 can be used to
deploy Kubernetes clusters on major cloud providers via a unified interface
prior to deploying the application.

1 Kubernetes - https://kubernetes.io/
2 Docker Swarm - https://docs.docker.com/engine/swarm/
3 Pipeline - https://github.com/banzaicloud/pipeline

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://github.com/banzaicloud/pipeline

The Cloud Application Modelling and Execution Language 3

1.2 Contributions

To address the aforementioned challenges, the Cloud Application Modelling
and Execution Language (CAMEL) has been devised. CAMEL is a multi-
domain-specific language (multi-DSL) covering all aspects necessary for cloud
application management at both design time and runtime. CAMEL has been
developed mainly by appropriately integrating existing cloud-specific DSLs,
such as CloudML [15] and by also defining additional ones like the Scalability
Rule Language (SRL) [22]. In addition, CAMEL comes with a textual syntax,
which enables the rapid specification of multi-cloud models by DevOps users.

In relevance to previous approaches, the contribution of this work lies in
the innovative aspects of CAMEL that are not present in the existing liter-
ature: First, by developing a single, unified and integrated megaDSL, as rec-
ommended in [4], the user avoids having to use a set of heterogeneous DSLs
and editors. This can reduce the learning curve, while it caters for better
maintainability as it is easier to control the development of a unified, sin-
gle DSL. Second, CAMEL supports the type-instance pattern, well suited to
support the models@runtime approach [9], to enable users to provide models
that abstract away from technical details, in contrast to other CMLs. In the
models@runtime approach (see Fig. 1), the application state is monitored and
reflected on a certain model that abstracts from quite technical details, while
any changes on this model are reflected directly on the application and its
provisioning.

Reasoning engine

Models
@run-time

(1) (2)

Target	
model

Diff (3)

Adaptation
engine

(4)
(4)

Current	
model

Running	system

Fig. 1: Models@run-time architecture

Third, the identification of all MCRM needed information, based on the
experience of CAMEL developers in implementing other CMLs, enables au-
tomated, adaptive cross-cloud application provisioning. As CAMEL targets
DevOps, a user study was conducted in this work, in terms of adaptive pro-
visioning of applications in the Cloud for various domains (e.g., data farming,
flight scheduling). It shows the unique CAMEL benefits, i.e., a good level of
usability, comprehensiveness and suitability. Fourth, to address heterogeneity
and interoperability, CAMEL has been also aligned with TOSCA. As expressed
in [8]: ”Having the TOSCA standard, it is desirable to align existing and po-

4 A. Achilleos et. al.

tential new CMLs for providing continuous modeling support, for example, by
achieving interoperability among the languages”.

1.3 Background

CAMEL has been developed in the framework of the PaaSage EU project4 [38].
PaaSage’s goal is to provide an aPaaS-like abstraction to its users enabling
a vendor-neutral application specification mappable to different IaaS cloud
providers. Hence, PaaSage offers an environment, where application develop-
ers and operators can easily develop and deploy applications on multiple cloud
infrastructures, taking advantage of flexibility, adaptivity and scalability, with-
out having to consider the specifics of different infrastructure requirements and
APIs. In that context, CAMEL is an important part of the PaaSage develop-
ment and deployment platform. Its eco-system supports a dedicated social
network, where the users can share their CAMEL models [30]. Based on the
above, the aim of the current paper is to present the CAMEL language and
how it addresses the issues required for successful multi-cloud application de-
sign, whereas the actual model execution, management and adaptation is per-
formed by other components of the PaaSage platform. Their presentation is
outside the scope of the current paper. High-level information on how CAMEL
is integrated in the PaaSage platform and its workflow are provided in Sec-
tion 3.2, whereas dedicated papers cover specific aspects of the platform, such
as security enforcement [23].

CAMEL has already been adopted, extended and used in several EU re-
search projects (PaaSage, CloudSocket5, CACTOS6) to support the modeling
and execution of applications distributed over multiple cloud environments.
Within these projects, CAMEL has also been extended to support PaaS and
SaaS cloud services [27] and has been established as a baseline for the provi-
sioning of Business Process as a Service [18]. It currently continues to evolve
in the H2020 Melodic project7, to address the challenges of multi-cloud man-
agement of large-scale optimised data-intensive computing applications [20].

1.4 Structure of this Document

The rest of the article is structured as follows. The next section presents the key
step of the requirements analysis and the subsequent steps that demonstrate
the rationale behind how CAMEL has been defined, designed and developed.
Section 3 provides an overview of CAMEL, presents the key role of CAMEL in
the workflow of the PaaSage platform and defines the CAMEL metamodels.
Section 4 explicates how a certain use case from PaaSage can benefit from

4 PaaSage EU FP7 Project - http://www.paasage.eu
5 CloudSocket EU H2020 Project - https://site.cloudsocket.eu/
6 CACTOS EU FP7 Project - http://cactos-cloud.eu/
7 Melodic EU H2020 Project - http://melodic.cloud

http://www.paasage.eu
https://site.cloudsocket.eu/
http://cactos-cloud.eu/
http://melodic.cloud

The Cloud Application Modelling and Execution Language 5

its modelling via CAMEL and its subsequent evolution via the application
of PaaSage’s model-based MCRM framework. Section 5 introduces the user
study performed in this work and discusses its main results. The related work
is reviewed in Section 6 and a criteria-based comparative study of the CAMEL
language with other CMLs is also presented in this section. Finally, 7 concludes
the article and draws directions for further research.

2 CAMEL Specification and Implementation

This section presents the steps for the specification and implementation of the
CAMEL. Initially the analysis and extraction of the CAMEL requirements is
presented. These form the basis for subsequent steps defined and presented
as follows: (i) the definition of a suitable design and development approach,
(ii) the identification of the complete set of MCRM aspects to be covered by
the CAMEL language, (iii) the selection, adaptation and extension of existing
CMLs and DSLs to cover the MCRM aspects, (iv) defining the method for inte-
grating these diverse languages and (v) finally the use of suitable technologies
to drive the integration method for the implementation of CAMEL.

2.1 Requirements

To create CAMEL, the following requirements were derived based on the chal-
lenges presented in Section 1, summarised as: 1) support design-time and mod-
els@runtime approaches, 2) unify CMLs (aspects) created in disjoint activities
and prototypes and 3) achieve convergence with relevant standards.

– models@runtime (R1): CAMEL must support both type and instance level,
enabling to specify both provider-independent and provider-specific mod-
els. The first will drive the deployment reasoning phase, thus enabling users
to define non-functional and deployment requirements in a cloud-provider-
agnostic way. The second will enable to maintain a cloud-provider-specific
model of both the application and monitoring topology.

– multiple aspects coverage (R2): CAMEL should enable the coverage of mul-
tiple aspects, to support all phases of the MCRM lifecycle.

– high expressiveness level (R3): A suitable expressiveness level should be
employed to capture accordingly required aspects of the respective domain.
This enables both the users to specify the needed application information
and the system to maintain and derive such information at a detailed level,
so as to support all application lifecycle management phases.

– Separation of concerns (R4): CAMEL should support loosely-coupled pack-
ages, each covering an aspect of MCRM. This will facilitate a faster and
more focused specification of models at each phase.

– Reusability (R5): CAMEL should support reusable types for multiple as-
pects of cross-cloud applications. This will ease the evolution of models.

6 A. Achilleos et. al.

– Suitable integration level (R6): All CAMEL sub-DSLs should be mapped
to an appropriate integration level that can support the consistency of the
information provided and minimise overlap across sub-DSLs.

– Textual syntax support (R7): CAMEL targets DevOps that deal with cloud
management and are akin to textual/code editing. Thus, the need to sup-
port CAMEL textual syntax arises for editing textual models.

– Re-use of DSLs (R8): Existing DSLs from disjoint research activities should
be reused and integrated (R6), as attested also in [8]. This is because they
provide valuable experience and information on MCRM aspects. This also
enables involving different DSLs communities in CAMEL evolution, while
it reduces the learning curve for DevOps already familiar with them.

2.2 Design and Development

CAMEL design is inspired by component-based approaches, which support
the requirements of separation of concerns (R4) and reusability (R5). As such,
deployment models can be regarded as assemblies of components exposing
ports, and bindings between these ports. Furthermore, CAMEL developers
have defined a design and development approach that satisfies the rest of
the requirements and its composed by the following steps: (a) Aspect/Domain
Identification [R2]; (b) Selection of Languages [R2, R3 and R8]; (c) Integration
[mainly R6 but also R1, R4 and R5]; (d) Implementation [R7].

More to the point, this approach is based on the rationale of heteroge-
neous CMLs convergence, extension and optimization to produce one complete
CML that takes benefit on the knowledge already captured in these languages
[8]. Also, such an approach makes CML maintainability, evolution and align-
ment with the standards (i.e., TOSCA) more feasible, as attested also in the
CMLs survey in [8]. Finally, organisations, apart from involving these experts
in CAMEL development, have their own communities, which could enable
CAMEL to keep up with changes made to those individual CMLs.

2.2.1 Aspect Identification

Based on the knowledge and expertise of modelling experts in PaaSage, each
action involved in MCRM was mapped to specific information requirements
to address a certain domain/aspect. Table 1 presents the identified aspects for
fully supporting the multi-cloud application lifecycle management actions.

2.2.2 Language Selection

The aspects identification for MCRM, was then followed by a careful exam-
ination of existing CMLs and DSLs covering additional aspects (e.g., organi-
sational). PaaSage experts knowledge and involvement in implementation of
existing CMLs, supported greatly and assisted in selecting the following CMLs:

The Cloud Application Modelling and Execution Language 7

Aspect Phase Rationale
Deployment All The PITMs and PSTMs models drive both application reasoning and deployment,

while execution-related activities should be reflected in PSTM models
Requirement Reasoning The user requirements drive application deployment reasoning,

Execution while they are also used to restrain the way local scalability can be performed at runtime
Provider Reasoning, Provider models enable to matchmake and select suitable cloud offerings
Security Reasoning High- and low-level security requirements can drive the offering space

filtering, as well as the application deployment optimisation
according to security criteria apart from the quality ones and cost

Metric Reasoning, Metrics are used as optimisation criteria for deployment reasoning, while they
Execution also explicate how application monitoring can be performed during the execution phase

Scalability Execution Scalability rules drive the local application reconfiguration during execution
Organisation Reasoning, An organisation can have accounts on certain providers which reduces the offering space

Deployment only to them. The credentials to these providers enable the platform to act on user
behalf for deploying application components to suitable VMs

Location Reasoning Location requirements can be used to filter the offering space during deployment reasoning
Execution Reasoning, Previous execution history knowledge can be used to improve application deployment

Unit All Auxiliary aspect enabling to associate units of measurement to metrics and thus,
indirectly, to the conditions (i.e., SLOs) posed on them

Type All Auxiliary aspect enabling to provide types to language elements like metrics, as well as
to define different kinds of values that can be assigned to element properties

Table 1: The relevant aspects for multi-cloud application management

– Cloud Modelling Language (CloudML) [17,15,16] enabling to specify de-
ployment topology models

– Saloon [36,35,37] covering the modelling of cloud providers and value types
– CERIF’s [21] organisation part enabling to model organisations and their

access control policies
– OWL-Q [25] covering the modelling of: (a) non-functional terms (met-

rics and attributes), (b) respective requirements or capabilities imposed on
them in the form of constraints, and (c) units.

These CMLs and relevant DSLs served as the starting point covering many
aspects for MCRM. Nevertheless, additional information was necessary and
thus the focus was reverted on the coverage of missing aspects. In specific,
the information coverage for the location aspect was minimal and thus a rel-
evant metamodel was incorporated in CAMEL. Furthermore, for the aspects
of requirement, scalability, execution and security, none of the existing DSLs
had sufficient information coverage. Hence, additional aspect-specific DSLs
were developed in CAMEL. In the end, six aspects were covered by existing
partner-owned DSLs, while five were developed from scratch by considering
the requirements posed on the domain by the MCRM process.

2.2.3 Integration

In addition to the DSLs selection, some well-known challenges in DSL integra-
tion and evolution [32] had to be addressed, involving the following: (a) each
DSL comes with its own abstract and concrete syntax, which makes it then
difficult to join two or more DSLs, especially if they adopt different formalisms
to define their syntax, (b) the DSLs to be integrated can have equivalent or
overlapping concepts, which can lead to information repetition and miscon-
ceptions at the modeller side, (c) different modelling styles can be adopted
leading to completely heterogeneous DSLs resulting in lack of uniformity, and

8 A. Achilleos et. al.

(d) different DSLs might exhibit a different description granularity level, which
makes it difficult to find the most appropriate detail level for integration.

To resolve these challenges, a detailed integration approach was followed
that combines all DSLs to the same modelling (technical) space, description
level and style by also addressing the equivalence and overlapping concepts is-
sue. This was done by adopting the Eclipse Modeling Framework (EMF) that
provides: (i) tranformation tools from various syntaxes (e.g., XML Schema)
to the Ecore meta-language, (ii) semantic intra- and inter- domain validation
of models using tools that enable the definition of Object Constraint Lan-
guage (OCL) [33] constraints, and (iii) the production of a uniform, homoge-
neous concrete syntax of the CAMEL multi-DSL, using the Ecore metamodel,
which follows the same modelling patterns and style. This enables modellers
to rapidly specify in a similar and logical manner elements of heterogeneous
DSLs. This reduces the learning curve and promotes the CAMEL usage.

The above description provides a high-level overview of the integration
approach. Interested readers can find further details on the integration proce-
dures for accomplishing a unified CAMEL language, as defined and explained
in [38] and also documented in the CAMEL Technical Documentation 8.

2.2.4 Implementation

In addition to the rich expressiveness in defining a DSL’s abstract syntax
using EMF, as well as both the syntactic and semantic model validation using
OCL, Eclipse offers also programmatic tools enabling the DSL developer to:
(a) produce domain code out of an Ecore model, (b) produce a graphical
editor for this DSL, (c) programmatically validate the DSL’s models and (d)
produce the DSL concrete syntax. Although the Eclipse tools allow generating
a graphical tree-based editor, the feedback received from the use cases partners
in PaaSage while using this editor, resulted in the conclusion that DevOps
(i.e., CAMEL’s main target group) are more accustomed to code-based textual
editors. Hence, the Eclipse’s XText language framework was used to define the
CAMEL textual syntax. XText supports the automatic generation of textual
editors out of the textual syntax definitions with user-friendly features, such
as error highlighting, auto-completion and validation. CAMEL and its textual
editor are available in PaaSage’s repository 9 under the Mozilla Public License
version 2.0.

Apart from the modelling adjustments in CAMEL’s textual syntax, the
CAMEL model importing feature was implemented. This feature enables users
to exchange and re-use CAMEL models to have a better support in their
modelling tasks. For example, suppose that a user needs to specify location
requirements for the VM nodes of an application topology model. If no location
model is re-used, the user will need to manually develop a location hierarchy to
model the desired locations of such VMs. However, by relying on a standardised

8 CAMEL Technical Documentation—http://camel-dsl.org/documentation/
9 PaaSage’s Git Repository - https://gitlab.ow2.org/paasage/

http://camel-dsl.org/documentation/
https://gitlab.ow2.org/paasage/

The Cloud Application Modelling and Execution Language 9

location model that can be imported in a currently edited CAMEL model, the
user can reduce the modelling effort by just selecting from the imported model
the desired locations. In fact, this location model is already available and can
be generated by exploiting the model importer tool available in PaaSage’s
repository. The model is constructed by transforming the United Nation’s FAO
geopolitical ontology10 to a model conforming to the CAMEL’s location sub-
DSL. This model covers a location hierarchy involving the levels of continents,
sub-continents and countries. Thus, it is quite sufficient to support specifying
physical location requirements.

2.3 Requirements Fulfillment

The design, integration and implementation steps were performed by following
a process that guarantees that the eight requirements described in Section 2.1
are satisfied. First, the CAMEL language follows the type-instance pattern [3],
facilitating reusability (R3) and the models@runtime approach (R1). This pat-
tern exploits two flavours of typing, namely ontological and linguistic [29], as
depicted in Fig. 2. In this figure, SL (short for Small GNU/Linux) represents
a reusable type of VM. It is linguistically typed by the class VM (short for
virtual machine). SL1 represents an instance of the virtual machine SL. It is
ontologically typed by SL and linguistically typed by VMInstance.

VM	 VMInstance	

SL	 SL1	

linguistic
typing

ontological
typing

Metamodel

Model

Fig. 2: Linguistic and ontological typing

Second, CAMEL follows the models@runtime approach, mapping to the
R1 requirement, as it has been designed to utilise the abstraction of provider-
independent models, which are then transformed into provider-specific ones
based on matching cloud capabilities with the respective requirements posed.
The provider-specific models can then be evolved by the system through the
adaptive provisioning of the user application by still satisfying the require-
ments given at the provider-independent level.

The coverage of multiple aspects, i.e., requirement R2, is one of the corner-
stones of the DSL design approach. The determination of relevant aspects en-
abled to produce an all-inclusive but focused DSL, which attempts to address
the MCRM problem by covering only the most suitable information pieces.
This enabled to discover suitable DSLs that were integrated into a coherent
super-DSL, i.e., the CAMEL, to reduce its development effort and time.

10 UN FAO geopolitical ontology -http://www.fao.org/countryprofiles/geoinfo/en/

 http://www.fao.org/countryprofiles/geoinfo/en/

10 A. Achilleos et. al.

Requirement R3 is guaranteed at two levels: (a) by selecting and extending
(when needed) a suitable DSL to ascertain the optimal coverage of each aspect;
(b) by adopting a formalism (EMF Ecore + OCL), which enables to also cover,
in an expressive manner, the semantics of the respective domain.

Separation of concerns (requirement R4) is achieved by separating the in-
formation aspects to be covered in different CAMEL packages enabling their
individual evolution. The approach to integration between DSLs enabled us to
move generic or domain-specific concepts to suitable packages in the CAMEL
metamodel. This allows each DSL to focus on a specific domain, thus avoiding
semantic overlaps across domains.

Requirement R5 is satisfied via the design of CAMEL and the aforemen-
tioned DSL integration process. In particular, CAMEL is designed for re-
usability by separating between generic and aspect-specific concepts that can
be re-used across different CAMEL sub-DSLs. For instance, a Metric (part of
metric DSL) is associated with a respective Measurement (part of execution DSL)
incorporated in an application execution context (i.e., deployment episode). In
fact, the latter is a form of cross-referencing, also enabling the inter-domain
CAMEL model validation. Apart from this, the CAMEL tools allow import-
ing other CAMEL models. For example, standardised location models can be
re-used for specifying location requirements in multiple CAMEL models.

A suitable integration level (requirement R6) is achieved by using the right
modelling technologies and employing the aforementioned DSL integration
process. The followed procedure enabled to bring all DSLs into the same mod-
elling space and integrate them into a unified DSL. The DSL exhibits the same
modelling styles/patterns, while also caters for providing the same detail level,
which is sufficient enough for capturing a specific domain by also keeping the
respective modelling effort at an appropriate level.

The support for a textual syntax (requirement R7) is provided by the
CAMEL textual editor, which was implemented using XText and enables users
to operate with CAMEL. A good effort has been spent in homogenising this
syntax across different DSLs, by adopting the same modelling patterns and
differentiating with respect to the default patterns automatically generated
via XText. By providing user-friendly features, such as syntax highlighting
and auto-completion, combined with the capability to import existing CAMEL
models, the CAMEL editor enhances the user experience, exhibits a suitable
usability level, and enables rapid development of CAMEL models. This has
been validated in Section 5.

Finally, the re-use of DSLs (requirement R8) was one of the design cor-
nerstones of CAMEL. It enabled to reduce CAMEL’s development effort, to
cover well the respective domains in many cases, while also guaranteed the
participation in this development of language engineers that have a special
interest in maintaining the up-to-date versions of their DSLs within CAMEL.

The Cloud Application Modelling and Execution Language 11

3 The CAMEL Language

In this section, an overview of CAMEL is presented first, with respect to its
constituent sub-DSLs. Next, the analysis will focus, also for brevity reasons,
on some core sub-DSLs, i.e., those involved in the modelling of application
topologies, requirements and scalability rules, thus targeting the DevOps users.

In this respect, the CAMEL sub-DSLs covered in the following sub-sections
include: the deployment, requirement, metric, and scalability ones. More de-
tails on other CAMEL sub-DSLs can be found in CAMEL’s documentation.
Also, an analysis over CAMEL’s security sub-DSL can be inspected in [24].

3.1 CAMEL Overview

Based on its previously analysed design method, CAMEL was realised as a
super-DSL integrating multiple sub-DSLs/metamodels. Table 2 provides an
overview of CAMEL’s content. It explicates which are the DSLs included,
supplies a list of the core domain concepts covered by these DSLs, as well
as the newly added concepts, and indicates the roles of users that can be
responsible to provide information for these domains.

The following user roles are expected to be involved in CAMEL model
specification: (a) DevOps: represent users responsible for defining the applica-
tion non-functional and deployment requirements along with scalability rules;
(b) Admin: responsible for specifying: (1) the organisation model covering in-
formation about the organisation running the platform and the access control
policies pertaining to that platform’s usage; (2) provider models covering the
offerings from both public and private cloud providers. Thus, there is a separa-
tion of concerns as DevOps users work at a higher abstraction level (provider-
independent level), while Admins at a lower, more cloud provider-dependent
level; (c) System: it maps to the platform supporting the multi-cloud applica-
tion deployment, responsible for specifying and evolving provider-dependent
models, as well as enriching the execution history of the application(s).

The separation of concerns between roles also defines when certain CAMEL
model parts should be modelled or modified. In particular, DevOps and Ad-
mins are usually involved in the modelling phase as they provide information
used mainly for supporting the subsequent phases. One exception concerns the
provider models that can be updated by the Admin whenever changes in the
offerings of respective cloud provider(s) are detected. As this change can occur
at any time, this modification can span all application management phases.
On the other hand, the System role takes care of updating the initial CAMEL
model provided by the other roles during the subsequent phases of application
reasoning, deployment and execution.

Some patterns can be derived from Table 2. First, the DevOps role is re-
sponsible to provide most of the domain-specific models in CAMEL. This is
obvious as CAMEL targets mainly this role. However, while it can be argued
that a lot of modelling effort will be contributed by this role, this is not neces-

12 A. Achilleos et. al.

DSL Core Concepts Covered Role
Core (Top-Level) Top model, Container of other Models, Applications DevOps, System

Deployment Application topology (Internal Components, VMs, Hostings, Communications) DevOps, System
Requirement Hardware, Security, Location, OS, Provider, QoS and Optimisation Requirements DevOps

Provider Provider offerings (in form of a feature-attribute model) Admin
Security Security controls, Attributes and mMtrics DevOps
Metric Metrics, Sensors, Attributes, Schedules, (measurement) Windows, Conditions DevOps, System

Scalability Scalability Rules, Event (Patterns), Horizontal and Vertical Scaling Actions DevOps
Location Physical and Cloud-specific Locations DevOps

Organisation Organisations, Users, Roles, Policies, Cloud/platform credentials Admin
Execution Execution contexts, measurements, SLO assessments, adaptation history System

Unit Units of measurement DevOps
Type Value types and Values DevOps

Table 2: The DSLs comprising CAMEL, the core concepts they cover and the
roles responsible for providing these DSLs’ models

sarily the case. In particular, only two core models need always to be specified,
i.e., the deployment and requirement ones. The specification of the rest of the
models depends on the application requirements. For instance, scalability rules
are not needed for an application facing constant load, while security require-
ments do not need to be modelled when the application does not access critical
organisational assets. Further, template models are already offered for basic
cloud providers, metrics, units and locations which could be re-used.

Second, it is evident that there are two aspects, which concern two roles,
mapping to the deployment and metric DSLs. This implements CAMEL’s
support for the models@runtime approach. Hence, the DevOps role provides
the provider-independent topology and metric models, while the System role
transforms them into provider-specific models that evolve at user application
provisioning.

3.2 CAMEL in the PaaSage Workflow

CAMEL per se is a modelling language and framework for cloud applications
and their execution status. This modelling itself can be generic and on a level
that is independent from cloud providers, e.g., describing requirements for an
application to be run; on the other hand, the modelling can also be specific
and describe very concretely which application components shall be run on
which virtual machines on what cloud provider. Being a modelling language,
CAMEL provides the means to express these scenarios, but itself does not come
with any tools for manipulating the models or moving from provider-agnostic
models to provider-specific models. Initially, such tools have been developed
and evaluated in the PaaSage project and been enhanced in work since then.
Even though this paper is about CAMEL as a language, this section describes
PaaSage’s MCRM framework with CAMEL at its core. We hope that this
illustrates the usage of CAMEL in a larger context and helps the reader to
better understand.

In the following, we focus on the application deployment and reconfigura-
tion flow supported by the PaaSage framework. It is important to note that
PaaSage has not been designed to be a cloud broker. Instead, its operation is

The Cloud Application Modelling and Execution Language 13

similar to configuration management tools such as ansible and chef and its view
is application-centric. In consequence, the storage of cloud credentials required
for accessing cloud services is not overly critical, as the entire toolchain runs
locally. Despite that, PaaSage uses encryption to store password and creden-
tials. The use of CAMEL in cloud-broker scenarios has been investigated by
the CloudSocket project [18,26,13], but it is out of the scope of this document.

Fig. 3 illustrates the use of CAMEL in the PaaSage workflow. In this figure,
white trapezes represent activities performed by the user, while white rectangles
represent processes executed by the PaaSage framework. The coloured shapes
represent modelling artifacts: the blue shapes pertain to the modelling phase,
the red ones to the deployment and the green ones to the execution phase.

Fig. 3: CAMEL models in the self-adaptation workflow

3.2.1 Modelling Phase

During the modelling phase, the users develop a CAMEL application model
that includes three pieces of information: (a) the provider-independent topol-
ogy model (PITM) specifying the types of virtual machine (VM) nodes on
which the application components should be hosted; (b) the application re-
quirements that include Service Level Objectives (SLOs) and optimization
goals over quality, cost and security terms; (c) scalability rules that drive
the local adaptation behaviour of the application. Apart from the CAMEL
application model, users develop (i.e., organization’s private cloud) or reuse
CAMEL cloud provider models (e.g., Amazon, Azure, Organization’s private
cloud), which specify the offerings supplied by these Clouds. The provider
models also cover the pricing information of the Cloud provider as well as the
relative performance of its offerings.

14 A. Achilleos et. al.

3.2.2 Deployment Phase

The design-time CAMEL application and provider models are then used by a
reasoner to produce an application deployment plan solving a constraint prob-
lem. Application requirements are exploited to filter out cloud providers per
application component, thus relying on component-specific requirements (e.g.,
of cores - hardware requirements), as well as on constraints imposed at the
application level (e.g., deployment cost ≤ e 20). The filtering dynamically
generates a constraint optimization model that aims at the best VM offering
per application component, by considering global optimization goals defined
for the whole application (e.g., minimize application cost and maximize avail-
ability).

This optimisation model is in the CAMEL model leading to a provider-
specific topology model (PSTM), covering the instance level. It defines how
many instances of an application component are deployed to respective VM
instances, which map to a certain VM offering in the solution. The PSTM
is then exploited by the Adapter to create a deployment plan, which defines
the acquisition of resources across different Clouds, e.g. virtual machines, and
the application deployment flow, i.e., deployment of application components
on these virtual machines. It is the Executionware that orchestrates these
actions and invokes provider-specific deployment actions and creates an exe-
cution model.

3.2.3 Execution Phase

Once the application deployment finishes, the execution phase starts. Initially,
an execution sub-model is injected at runtime in the CAMEL model, which
maintains execution-related information about the current deployment. It in-
cludes the measurements produced by the Executionware for the running ap-
plication, plus SLO violations occurred that occurred at runtime. This model
not only allows to keep track of the running application, but also to exploit its
execution history to improve its deployment using the Profiler and Reasoner.

The Executionware itself is realised by the Cloudiator toolkit [6], a cross-
cloud orchestration toolkit that handles the acquisition of virtual resources,
deployment of application artifacts, wiring of application component instances,
and monitoring of both applications and virtual resources. Cloudiator makes
use of a multitude of technologies to fulfill its functionality. Yet, for the sake
of acquiring virtual resources, i.e., virtual machines, it relies on the jclouds11

library where possible [12,5]. Other cloud platforms, e.g., Microsoft Azure, are
supported through dedicated drivers.

3.2.4 Reconfiguration and Adaptations

Both Executionware as well as Reasoner and Profiler may trigger actions that
lead to changes: The Executionware monitors the quality of the application

11 http://jclouds.apache.org/

The Cloud Application Modelling and Execution Language 15

execution and compares live monitoring data against SLO thresholds set in
the CAMEL model. Violations of these may lead to the executing local scal-
ing rules whose execution leads to scale out/in of application components and
hence to a change of the CAMEL execution model. On the other hand, Rea-
soner and Profiler continuously observe the application’s execution history and
current state and continuously produces new PSTMs, which are better than
the currently applied one. If such a new configuration is found, the adapter
generates a new deployment plan containing the difference between the cur-
rent and the desired deployment that is passed on to the Executionware and
enacted there. As such, a global reconfiguration loop is supported enabling to
converge to an optimal application deployment, adaptable according to the
current situation. Similarly, the entire process shown in Fig. 3 is triggered
when the user changes the cloud provider model. This may be due to a new
cloud provider being added to the model or changes in existing cloud provider
models, for instance when the pricing of a provider changes, new virtual ma-
chine flavours are introduced, or the relative performance changes due to new
hardware at provider side.

Both local and global reconfiguration actions are reflected in the currently
applied PSTM runtime model, which enables to support the models@runtime
approach, as opposed to other CMLs. In fact, the dynamic modification of
the CAMEL models is performed by the system at runtime. This enables self-
adaptation, i.e., the CAMEL model is ”live”, in contrast to other systems
where such modification is manually performed at design time by the user.
This is an aspect that is missing from current proprietary cloud application
management systems and CMLs, that manage even single Clouds.

3.3 CAMEL Metamodel

The CAMEL core metamodel is technically represented as an Ecore model and
organised into eleven metamodels/packages. Each metamodel/package reflects
a certain domain. The core package includes generic concepts, re-used across
different domains, as well as the CamelModel acting as a top-level container.
For brevity and to limit the technical details, only the deployment, require-
ment, metric and scalability metamodels are introduced fully. The rest of the
metamodels are briefly introduced. Readers can refer to the CAMEL Technical
Documentation and CAMEL Semantics 12 for more details on the individual
metamodels.

3.4 Deployment Metamodel

The deployment metamodel follows the type-instance pattern where the type
part specifies a PITM while the instance part a PSTM. Fig. 4 depicts the type
part. The instance part is not shown as it is identical to the type part with the

12 CAMEL Semantics - http://camel-dsl.org/documentation/

http://camel-dsl.org/documentation/

16 A. Achilleos et. al.

exception that instances (e.g., VMInstance) of type-based concepts (e.g., VM) are
modelled, always pointing to their type.

DeploymentElement

name : EString

Component HostingPort

CommunicationPort

portNumber : EInt = 0

Configuration

downloadCommand : EString

uploadCommand : EString

installCommand : EString

configureCommand : EString

startCommand : EString

stopCommand : EString

VM InternalComponent
ProvidedCommunication

VMRequirementSet

name : EString

RequiredCommunication

isMandatory : EBoolean
= false

Communication

ProvidedHost RequiredHost

Hosting

[0..*] configurations

[0..*] compositeInternalComponents

[0..*] providedCommunications

[0..1] vmRequirementSet

[0..*] requiredCommunications

[1..1] providedCommunication[1..1] requiredCommunication

[0..1] providedPortConfiguration

[0..1] requiredPortConfiguration

[0..*] providedHosts

[0..1] requiredHost

[1..1] providedHost [1..1] requiredHost

[0..1] providedHostConfiguration

[0..1] requiredHostConfiguration

Fig. 4: The type part of the deployment metamodel

The top-level entity in the deployment metamodel is DeploymentModel, i.e.,
a container of provider-independent deployment elements. At the type level,
the basic but abstract entity is Component. Following a component-based mod-
elling approach, this entity has a set of provided communication and required
communication ports. The former enable it to communicate with other com-
ponents, while the latter to host other components. It includes also a set of
Configuration elements, in the form of OS-specific commands, for lifecycle man-
agement, i.e., to download, install, configure, run and stop this component.

A Component entity subsumes two component types: (1) the InternalComponent

represents a software component to be deployed in the Cloud, requiring to be
hosted by another Component (either InternalComponent or VM) via a HostingPort

(for instance, a servlet container can host a servlet, where both are InternalCom-

ponents) and (2) the VM which acts as a host for internal components.
A Communication is established by connecting the provided and required com-

munication ports of two components. This communication’s lifecycle can also
be managed via two Configuration elements. The first focuses on managing the
provided, while the second the required communication port. Furthermore, a
Communication has a type that draws the following values from the Communication-

Type enumeration: (a) LOCAL: denoting that the internal components connected
need to be hosted on the same VM node; (b) REMOTE: signifying that the two
components should be hosted on different VM nodes; (c) ANY: denotes that
the management platform is allowed to decide about the related placement of
these two components, i.e., whether to co-locate them or not.

The Cloud Application Modelling and Execution Language 17

The second connector type maps to the Hosting concept, representing a
hosting relation between two components: the hosted internal component and
a hosting internal component or VM. Similarly to a Communication, a Hosting

connects the provided and required hosting ports of the two components, while
it includes two Configuration elements, each devoted to the management of one
of the two hosting ports.

The VMRequirementSet includes a set of references to specific kinds of re-
quirements that can be modelled in a requirement model, such as quantitative
hardware, location or OS requirements (see Listing 2). A VMRequirementSet can
be associated to a VM or to the whole DeploymentModel. In the latter case, it
represents global VM requirements that must hold for the whole application
topology. In the former case, it represents local VM requirements that must
hold for a certain VM only, which take priority over global requirements.

3.5 Requirement Metamodel

CAMEL’s requirement metamodel, depicted in Fig. 5, can capture the user
non-functional requirements, including hardware, quality, cost, location and
security ones. It has been inspired by the WS-Agreement [1] and OWL-Q [25]
languages. This metamodel includes the top-level RequirementModel concept,
which can contain zero or more Requirements. Any Requirement can be either
hard (see HardRequirement concept) or soft (see SoftRequirement concept). Hard
requirements should be satisfied at all costs by the respective platform, while
soft requirements should be satisfied on a best-fit basis.

Requirements can be grouped by using the RequirementGroup sub-concept of
Requirement. A certain logical operator (AND, OR or XOR) is applied over the
requirements grouped to formulate goal models, inspired by goal modelling
approaches like i-star [41]. The requirement grouping enables to specify alter-
native service levels (SLs), defined as requirement conjunctions. This caters
for a more flexible filtering of the provider space, increasing the possibility
that a solution to the deployment reasoning problem can be reached.

3.6 Metric Metamodel

CAMEL’s scalability and metric packages rely on the SRL DSL [22,14], enabling
to specify rules supporting complex adaptation scenarios of cross-cloud appli-
cations. The metric package captures the way application monitoring can be
performed and the main monitoring conditions to be evaluated. The former is
specified via the Metric abstraction, while the latter by the Condition concept.

The metric metamodel (see Fig. 6) follows the type-instance pattern, an
essential feature that distinguishes it from the state-of-the-art. This feature
enables the respective (multi-cloud) application management framework to
maintain and evolve the application monitoring infrastructure by following the
models@runtime approach. This infrastructure should be synchronised with
the changes performed on the application’s PSTM model.

18 A. Achilleos et. al.

H
ar

dR
eq

ui
re

m
en

t

H
ar

dw
ar

eR
e

qu
ire

m
en

t

H
or

iz
o

nt
al

S
ca

le
R

eq
ui

re
m

e
nt

m
in

In
st

an
ce

sl
:l

E
In

tl
=

l0

m
ax

In
st

an
ce

sl
:l

E
In

tl
=

l0

Im
ag

eR
e

qu
ire

m
en

t
im

ag
eI

d
l:

lE
S

tr
in

g

Lo
ca

tio
nR

eq
ui

re
m

en
t

O
pt

im
is

at
io

n
F

un
ct

io
n

T
yp

e
M

IN
IM

IS
E

M
A

X
IM

IS
E

O
pt

im
is

at
io

n
R

eq
ui

re
m

en
t

o
p

ti
m

is
at

io
n

F
u

n
ct

io
n

l:
l

O
p

ti
m

is
at

io
n

F
u

n
ct

io
n

T
yp

el
=

lM
IN

IM
IS

E

O
S

O
rI

m
ag

e
R

eq
ui

re
m

en
t

O
S

R
eq

ui
re

m
e

nt
o

sl
:l

E
S

tr
in

g

is
64

o
sl

:l
E

B
o

o
le

an
l=

lt
ru

e

P
ro

vi
de

rR
e

qu
ire

m
en

t

Q
ua

lit
at

iv
eH

a
rd

w
ar

eR
eq

u
ire

m
en

t
m

in
B

en
ch

m
a

rk
X:X

E
D

ou
bl

eX
=

XU
xU

m
ax

B
e

nc
hm

ar
kX

:XE
D

ou
bl

e
X=

XU
xU

Q
ua

nt
ita

tiv
eH

ar
dw

ar
eR

eq
ui

re
m

e
nt

m
in

C
P

U
X:X

E
D

ou
bl

eX
=

XU
xU

m
ax

C
P

U
X:X

E
D

ou
bl

e
X=

XU
xU

m
in

C
o

re
sX

:XE
In

tX=
XU

m
ax

C
or

es
X:X

E
In

tX=
XU

m
in

R
A

M
X:X

E
In

tX=
XU

m
ax

R
A

M
X:X

E
In

tX=
XU

m
in

S
to

ra
ge

X:X
E

In
tX=

XU

m
ax

S
to

ra
ge

X:X
E

In
tX=

XU

R
eq

ui
re

m
en

t
n

am
el

:l
E

S
tr

in
g

R
eq

ui
re

m
en

tG
ro

up
re

q
u

ir
em

en
tO

p
er

at
o

rl
:l

R
eq

u
ir

em
en

tO
p

er
at

o
rT

yp
el

=
lA

N
D

R
eq

ui
re

m
en

tM
od

el

R
eq

ui
re

m
en

tO
pe

ra
to

r
T

yp
e

A
N

D

O
R

X
O

R

S
ca

le
R

eq
ui

re
m

en
t

S
ec

ur
ity

R
eq

ui
re

m
en

t

S
er

vi
ce

Le
ve

lO
bj

ec
tiv

e

S
of

tR
eq

ui
re

m
e

nt
pr

io
rit

yX
:XE

D
ou

bl
e

X=
XU

xU

V
er

tic
a

lS
ca

le
R

eq
ui

re
m

en
t

m
in

C
P

U
X:X

E
D

ou
bl

eX
=

XU
xU

m
ax

C
P

U
X:X

E
D

ou
bl

e
X=

XU
xU

m
in

C
o

re
sX

:XE
In

tX=
XU

m
ax

C
or

es
X:X

E
In

tX=
XU

m
in

R
A

M
X:X

E
In

tX=
XU

m
ax

R
A

M
X:X

E
In

tX=
XU

m
in

S
to

ra
ge

X:X
E

In
tX=

XU

m
ax

S
to

ra
ge

X:X
E

In
tX=

XU

C
on

di
tio

n
n

am
el

:l
E

S
tr

in
g

co
m

p
ar

is
o

n
O

p
er

at
o

rl
:l

C
o

m
p

ar
is

o
n

O
p

er
at

o
rT

yp
el

=
l

G
R

E
A

T
E

R
_T

H
A

N
th

re
sh

o
ld

l:
lE

D
o

u
b

le
l=

l0
.0

va
lid

ity
X:X

E
D

at
e

C
lo

ud
P

ro
vi

d
er

pu
bl

ic
X:X

E
B

oo
le

an
X=

Xfa
ls

e

S
aa

S
X:X

E
B

oo
le

a
nX

=
Xfa

ls
e

P
aa

S
X:X

E
B

oo
le

a
nX

=
Xfa

ls
e

Ia
aS

X:X
E

B
oo

le
an

X=
Xfa

ls
e

Lo
ca

tio
n

id
l:

lE
S

tr
in

g

S
ec

ur
ity

C
on

tr
ol

n
am

el
:l

E
S

tr
in

g

sp
ec

if
ic

a
ti

o
n

l:
lE

S
tr

in
g

M
et

ric
de

sc
rip

tio
nX

:XE
S

tr
in

g

va
lu

eD
ir

ec
tio

nX
:XE

S
ho

rt
X=

XU

la
ye

rX
:XL

ay
er

T
yp

eX
=

XS
aa

S

is
V

ar
ia

bl
eX

:XE
B

oo
le

an
X=

Xfa
ls

e

In
te

rn
al

C
om

po
n

en
t

V
M

[G
xxb

]Xr
eq

ui
re

m
en

ts

[U
xxb

]Xr
eq

ui
re

m
en

ts

[G
xxG

]Xc
us

to
m

S
er

vi
ce

Le
ve

l

[G
xxb

]Xp
ro

vi
de

rs

[G
xxb

]Xl
oc

at
io

ns

[G
xxb

]Xs
ec

ur
ity

C
on

tr
ol

s

[U
xxG

]Xm
et

ric

[G
xxG

]Xc
om

po
ne

nt

[U
xxG

]Xc
om

po
ne

nt

[G
xxG

]Xv
m

F
ig

.
5
:

T
h

e
re

q
u

ir
em

en
t

m
et

a
m

o
d

el

The Cloud Application Modelling and Execution Language 19

CompositeMetric
Metric

descriptionB:BEString

valueDirectionB:BEShortB=B0

layerB:BLayerTypeB=BSaaS

isVariableB:BEBooleanB=Bfalse

MetricFormula
function : MetricFunctionType = PLUS
functionArity :
MetricFunctionArityType = UNARY
functionPatternB:BFunctionPatternTypeB=B
MAP

MetricFormulaParameter
name : EString

Property
name : EString

descriptionB:BEString
type : PropertyType =
ABSTRACT

RawMetric

Sensor
name : EString

configurationB:BEString
isPushB:BEBooleanB=B
false

SingleValue

[1..1]Bproperty

[1..1]Bformula

[1..]]Bparameters

[0..]]BsubProperties

[0..]]Bsensors

[0..1]Bvalue

Fig. 6: The Metric concept and its hierarchy

3.7 Scalability metamodel

SRL, apart from measurement constructs, also enables the modelling of scal-
ability rules by including a scalability metamodel (Fig. 7). SRL is inspired by
the Esper Processing Language (EPL)13 with respect to the specification of
event patterns with formulas including logic and timing operators. SRL offers
mechanisms to (a) specify event patterns and associate them with monitoring
data, (b) specify scaling actions, and (c) associate these scaling actions with
event patterns. In the following, the main concepts defined in the scalability

package are presented and analysed.
ScalabilityModel acts as a container for other scalability concepts, from which

the most central is ScalabilityRule. This rule is mainly a mapping from an event
to one or more scaling actions. It also specifies additional details, such as which
is its developer (an Entity) and which scaling requirements (see ScaleRequirement

in Section 3.5) should limit its triggering. Any ScalingAction is associated with
a certain VM and it can be either horizontal or vertical.

3.8 Other Metamodels

Provider Metamodel: The provider package of the CAMEL metamodel is based
on Saloon [35,36,37]. Saloon is a tool-supported DSL for specifying the features
of cloud providers and matching them with requirements by leveraging feature
models [7] and ontologies [19]. It provides the capability to define the attributes
and sub-features characterising a private or public cloud provider, e.g., the
attributes characterising the virtual machine flavours provided by a private or
public cloud. It also covers the costs and relative performance of individual
offerings of a provider. The provider models enable matchmaking and selecting
suitable cloud provider offerings, while they also unveil details specific to the
application deployment.

13 http://esper.codehaus.org/

http://esper.codehaus.org/

20 A. Achilleos et. al.

B
in

ar
yE

ve
nt

P
at

te
rn

lo
w

er
O

cc
ur

re
n

ce
B

ou
n

dS
:SE

In
tS=

SY

up
pe

rO
cc

ur
re

n
ce

B
ou

n
dS

:SE
In

tS=
SY

o
p

er
at

o
rl

:l
B

in
ar

yP
at

te
rn

O
p

er
at

o
rT

yp
el

=
l

A
N

D

B
in

ar
yP

at
te

rn
O

pe
ra

to
rT

yp
e

A
N

D

O
R

X
O

R

P
R

E
C

E
D

E
S

R
E

P
E

A
T

_U
N

T
IL

E
ve

nt
n

am
el

:l
E

S
tr

in
g

E
ve

nt
In

st
an

ce
n

am
el

:l
E

S
tr

in
g

st
at

u
sl

:l
S

ta
tu

sT
yp

el
=

lC
R

IT
IC

A
L

la
ye

rS
:SL

ay
er

T
yp

eS
=

SS
aa

S

E
ve

nt
P

a
tte

rn

F
un

ct
io

na
lE

ve
nt

fu
n

ct
io

n
al

T
yp

e
l:

lE
S

tr
in

g

H
or

iz
o

nt
al

S
ca

lin
gA

ct
io

n
co

un
tS:

SE
In

tS=
SY

N
on

F
un

ct
io

na
lE

ve
nt

is
V

io
la

ti
o

n
l:

lE
B

o
o

le
an

l=
lf

al
se

S
ca

la
b

ili
ty

R
ul

e
n

am
el

:l
E

S
tr

in
g

S
ca

lin
gA

ct
io

n

S
im

p
le

E
ve

n
t

S
ta

tu
sT

yp
e

C
R

IT
IC

A
L

W
A

R
N

IN
G

S
U

C
C

E
S

S

F
A

T
A

L

T
im

er
na

m
eS

:SE
S

tr
in

g

ty
p

el
:l

T
im

er
T

yp
el

=
lW

IT
H

IN

ti
m

eV
al

u
el

:l
E

In
tl

=
l0

m
ax

O
cc

ur
re

nc
eN

u
m

S:S
E

In
tS=

SY

T
im

er
T

yp
e

W
IT

H
IN

W
IT

H
IN

_M
A

X

IN
T

E
R

V
A

L

U
na

ry
E

ve
nt

P
at

te
rn

oc
cu

rr
en

ce
N

um
S:S

E
In

tS=
SY

o
p

er
at

o
rl

:l
U

n
ar

yP
a

tt
er

n
O

p
e

ra
to

rT
yp

e
l=

l
E

V
E

R
Y

U
na

ry
P

at
te

rn
O

pe
ra

to
rT

yp
e

E
V

E
R

Y

N
O

T

R
E

P
E

A
T

W
H

E
N

V
er

tic
a

lS
ca

lin
gA

ct
io

n
m

em
o

ry
U

pd
a

te
S:S

E
In

tS=
SY

C
P

U
U

p
da

te
S:S

E
D

ou
bl

eS
=

SY
MY

co
re

U
p

da
te

S:S
E

In
tS=

SY

st
or

ag
eU

pd
at

eS
:SE

In
tS=

SY

io
U

pd
a

te
S:S

E
In

tS=
SY

ne
tw

or
kU

pd
at

eS
:SE

In
tS=

SY

A
ct

io
n

n
am

el
:l

E
S

tr
in

g
ty

p
el

:l
A

ct
io

n
T

y
p

el
=

l
E

V
E

N
T

_C
R

E
A

T
IO

N

In
te

rn
al

C
om

po
n

en
t

V
M

M
et

ric
C

on
di

tio
n

S
ca

le
R

eq
ui

re
m

en
t

E
nt

ity

[Y
MM.

]St
im

er

[Y
MM.

]Sl
ef

tE
ve

nt

[Y
MM.

]Sr
ig

ht
E

ve
nt

[.
MM.

]Se
ve

nt

[.
MM.

]Se
ve

nt

[.
MM.

]Se
ve

nt

[.
MMm

]Sa
ct

io
ns

[.
MM.

]Sv
m

[.
MM.

]Si
nt

er
na

lC
o

m
po

ne
nt

[Y
MMm

]Sc
om

po
si

te
In

te
rn

al
C

om
po

ne
nt

s

[.
MM.

]Sm
et

ric
C

on
d

iti
on

[Y
MMm

]Ss
ca

le
R

eq
ui

re
m

en
ts

[Y
MMm

]Se
nt

ity

F
ig

.
7
:

T
h

e
sc

a
la

b
il
it

y
m

et
a
m

o
d

el

The Cloud Application Modelling and Execution Language 21

Execution Metamodel: The execution metamodel in CAMEL has been devel-
oped from scratch with the main goal to cover the modelling of whole execution
histories of multi-cloud applications. Such information can then be exploited
by the management platform in order to optimise the deployment of a multi-
cloud application, whether it is a new or an existing one. In this respect, an
execution model is a container of different deployment episodes and enables
the analysis on them to derive the added-value deployment-reasoning-targeting
knowledge. Such a model not only allows to keep track of the running appli-
cation but also to exploit its execution history to improve its deployment.

Security Metamodel: The security package of the CAMEL metamodel is not
based on existing DSLs and has been developed to enable the specification
of security aspects of cross-cloud applications. It enables the specification of
high-level and low-level security requirements and capabilities that can be
exploited for filtering providers, as well as adapting cross-cloud applications.
Furthermore, an analysis over CAMEL’s security DSL can be inspected in [24].

Location Metamodel: The location metamodel captures the modelling of hier-
archical physical and cloud-based locations. This modelling enables specifying
location requirements that can drive the filtering of the VM offering space
in deployment reasoning, while also ensuring the compliance to regional or
continental regulatory requirements. For example, as part of the Location an
identifier is defined (e.g., ISO code for physical locations) and can be further
distinguished into a GeographicalRegion and a CloudLocation.

Organisation Metamodel: The organisation package of the CAMEL meta-
model is based on the organisation subset of CERIF [21]. CERIF is an EU stan-
dard for research information. In particular, the organisation package of CAMEL
reuses the concepts from CERIF for specifying organisations, users, and roles.
As a central part of the organisation model, the specific organisation details are
defined, such as its name, contact email address, web URL.

Type Metamodel: The type metamodel is also based on Saloon [35,36,37].
It provides the concepts to specify value types and values used across the rest
of the CAMEL models (e.g., integer, string, or enumeration).

4 CAMEL Application: The Data Farming Use Case

The Scalarm platform’s14 [28] data farming use case allows illustrating how
to specify CAMEL models conforming to CAMEL’s textual syntax. We limit
the presentation to those specific CAMEL sub-models presented in Section
3 to illustrate the definition of essential properties for the use case. Readers
interested in the complete concrete syntax of CAMEL should refer to [39].
The complete Scalarm CAMEL model can be downloaded from PaaSage’s Git
repository at OW2 15.

14 Scalarm - http://www.scalarm.com/
15 Scalarm Model - https://gitlab.ow2.org/paasage/camel/blob/master/examples/

http://www.scalarm.com/
https://gitlab.ow2.org/paasage/camel/blob/master/examples/

22 A. Achilleos et. al.

4.1 Scalarm Overview

Scalarm is a complete platform for conducting data farming experiments across
heterogeneous computing infrastructures. It has been developed by the Akademia
Grniczo-Hutnicza (AGH) University of Science and Technology. Data farming
represents a methodology via which a simulation model is repeatedly exe-
cuted according to an extensive parameter space such that sufficient data can
be collected with the goal to provide an insight over the correlation between
the model properties and behaviour, as well as the simulation’s input parame-
ters. Thus, Scalarm supplies to the user a set of well-known experiment design
methods to generate the experiment parameter space.

Via Scalarm, each data farming experiment can be monitored, while the
initial parameter space can be extended at runtime. Further, the amount of
computational resources dedicated to the experiment execution can be in-
creased such that Scalarm can scale itself based on the experiment size.

4.2 Scalarm Architecture

The Scalarm architecture follows the master-worker design pattern and is de-
picted in Fig. 8. In this architecture, the worker part executes the simulation,
while the master part coordinates the execution of the data farming experi-
ments. Each part from the two is realized by using loosely coupled services.

Fig. 8: Scalarm as-is architecture

In terms of the worker, the main component is the Simulation Manager,
an intelligent wrapper for simulations capable to be deployed on different in-
frastructures. It implements the Pilot job concept [10] by being a specialized
application that acquires computations resources to run actual simulations.

In terms of the master, (3) components are relevant: the Experiment Man-
ager, Information Service and Storage Manager. The Experiment Manager
supplies an overview about both running and completed data farming exper-

The Cloud Application Modelling and Execution Language 23

iments, while it enables analysts to create new experiments or conduct sta-
tistical analysis on existing experiments. It is also responsible for scheduling
simulations to Simulation Managers. The Storage Manager constitutes a per-
sistence layer in the form of a service enabling other components or services
to store different types of information, which include structural information
about executed simulations and experiments, as well as actual simulation re-
sults, either in the form of binary or text data. Finally, the Information Service
realizes the service locator pattern, constituting a registry of other services and
components in the Scalarm system enabling the retrieval of their location.

Due to the master-worker architecture there is no immediate communica-
tion between the workers. Due to the fact that workers pull their upcoming
experiments from the master, but the compute time per experiment is signif-
icantly longer than this communication (order of hours compared to orders
of seconds), the application is particularly well suited for multi-cloud deploy-
ments, as there is no dependency on bandwidth and latency.

4.3 As-is and To-Be Situation

Before employing the PaaSage platform, the user needs to manage the worker’s
resources by manually scheduling extra workers to different infrastructures.
Moreover, the administrator needs to manually define scaling rules to specify
scaling conditions and actions for each internal service for the master. On
another note, the multi-cloud aspect and the complex scaling requirements
of Scalarm disallow the use of widely used container orchestrators, such as
Kubernetes and Docker Swarm, since they only support the definition of basic
scalability rules and do not support multi-cloud deployment. As mentioned
in Section 1, a Kubernetes cluster needs to be deployed manually in each
cloud provider or Pipeline can be used to deploy Kubernetes clusters on major
cloud providers through a unified interface before an actual application and
its workload can be deployed.

By using the PaaSage platform and CAMEL, Scalarm became a fully au-
tonomous data farming platform. This was achieved by using suitable scala-
bility rules that enabled the automatic scaling of Scalarm components when
certain conditions are met. These rules are derived by the Reasoner compo-
nent in the PaaSage platform by considering the user’s non-functional require-
ments. Furthermore, Scalarm initial deployment is handled by PaaSage itself
so that there is no need to involve a system administrator or a user to perform
scaling/deployment actions, as the PaaSage platform automatically handles
all Scalarm services. Moreover, via PaaSage and CAMEL, Scalarm managed
to be executed in multi-cloud environments. Multi-Cloud deployments free
Scalarm from vendor lock-in and allows for fine-grained optimization of com-
putation cost by selecting the cheapest possible cloud providers for executing
large scale data experiments. The master-worker architecture of Scalarm makes
it mostly insusceptible to network latency problems (which may result from
highly geographically distributed deployments), and data farming does usually

24 A. Achilleos et. al.

only requires to distribute the simulation binary - the input and output data
remain reasonably small to avoid high of data transfers. Finally, by exploit-
ing the Scalarm CAMEL model, which is publicly available, and modifying it
according to specific deployments, PaaSage users can conduct data farming
experiments without any prior investment in software infrastructure or the
development of the right coordination software.

4.4 The Scalarm CAMEL Model

The key requirements for the Scalarm use case are the ability to define and
modify the deployment model, as well as to specify both appropriate require-
ments and rules for autonomously conducting different data farming experi-
ments. For these reasons and the need to showcase the Scalarm model defini-
tion in a clear and neat way, we present the deployment, requirement, metric
and scalability models. All other models are accessible through the PaaSage
repository16.

4.4.1 The Scalarm Deployment Model.

The main concepts in the deployment DSL are now exemplified via the Scalarm
use case. As such, part of the deployment model is defined in Listing 1 to reduce
the model length and complexity. ... denotes additional CAMEL elements
omitted from readability.

Listing 1: Scalarm Deployment model (excerpt)

1 deployment model ScalarmDeployment {
2 requirement set CoreIntensiveUbuntuGermanyRS {
3 os: ScalarmRequirement.Ubuntu
4 quantitative hardware: ScalarmRequirement.CoreIntensive
5 location: ScalarmRequirement.GermanyReq
6 }
7 vm CoreIntensiveUbuntuGermany {
8 requirement set CoreIntensiveUbuntuGermanyRS
9 provided host CoreIntensiveUbuntuGermanyHost

10 }
11 requirement set CPUIntensiveUbuntuGermanyRS {
12 os: ScalarmRequirement.Ubuntu
13 quantitative hardware: ScalarmRequirement.CPUIntensive
14 location: ScalarmRequirement.GermanyReq
15 }
16 vm CPUIntensiveUbuntuGermany {
17 requirement set CPUIntensiveUbuntuGermanyRS
18 provided host CPUIntensiveUbuntuGermanyHost
19 }
20 ...
21 internal component ExperimentManager {
22 provided communication ExpManPort {port: 443}
23 required communication StoManPortReq {port: 20001 mandatory}
24 required communication InfSerPortReq {port: 11300}
25 required host CoreIntensiveUbuntuGermanyHostReq
26 ...
27 }
28 internal component SimulationManager {

16 Scalarm Model - https://gitlab.ow2.org/paasage/camel/blob/master/examples/

https://gitlab.ow2.org/paasage/camel/blob/master/examples/

The Cloud Application Modelling and Execution Language 25

29 required communication InfSerPortReq {port: 11300}
30 required communication StoManPortReq {port: 20001}
31 required communication ExpManPortReq {port: 443}
32 required host CPUIntensiveUbuntuGermanyHostReq
33
34 }
35 ...
36 communication SimulationManagerToExperimentManager {
37 from SimulationManager.ExpManPortReq to ExperimentManager.ExpManPort
38 }
39 ...
40 hosting ExperimentManagerToCoreIntensiveUbuntuGermany {
41 from ExperimentManager.CoreIntensiveUbuntuGermanyHostReq to

CoreIntensiveUbuntuGermany.CoreIntensiveUbuntuGermanyHost
42 }
43 hosting SimulationManagerToCPUIntensiveUbuntuGermany {
44 from SimulationManager.CPUIntensiveUbuntuGermanyHostReq to

CPUIntensiveUbuntuGermany.CPUIntensiveUbuntuGermanyHost
45 }
46 ...

As dictated by its architecture (see Fig. 8), Scalarm comprises four inter-
nal components, from which two are presented here along with their respective
deployment requirements. The ExperimentManager has one provided communi-
cation port (443) and two required communication ports (20001 & 11300).
It also requires to be hosted on a core intensive VM (i.e., hosting port).
SimulationManager has three required communication ports (11300 & 20001 &
443) and requires to be hosted on a CPU intensive VM (i.e., hosting port).
The two internal components define required hosting ports that need different
VM nodes. In particular, VM nodes must be associated with a 64bit Ubuntu
OS and be located in Germany, i.e., the nearest place to Poland where major
cloud providers have data centres (see requirement model in Listing 2).

4.4.2 The Scalarm Requirement Model.

In the above deployment model definition, the quantitative hardware require-
ments that must be respected by the corresponding VMs are referenced. The
core intensive VM, defined in the model as CoreIntensiveUbuntuGermany, is asso-
ciated with a quantitative requirement to incorporate 8 to 32 cores and have
a memory size from 4096 to 8192 MB, while the CPU intensive VM, named
as CPUIntensiveUbuntuGermany, must support a memory size between 8192 and
16384 MB. These requirements are actually specified (along with others) in
the requirement model presented in Listing 2.

Listing 2: Scalarm Requirement model (excerpt)

1 requirement model ScalarmRequirement {
2 quantitative hardware CoreIntensive {
3 core: 8..32
4 ram: 4096..8192
5 }
6

7 quantitative hardware CPUIntensive {
8 core: 1..
9 ram: 4096..8192

10 cpu: 1.0..
11 }

26 A. Achilleos et. al.

12 ...
13 os Ubuntu {os: ’Ubuntu ’ 64os}
14

15 location requirement GermanyReq {
16 locations [ScalarmLocation.DE]
17 }
18 ...
19 horizontal scale requirement HorizontalScaleSimulationManager {
20 component: ScalarmModel.ScalarmDeployment.SimulationManager
21 instances: 1 .. 5
22 }
23 ...
24 slo CPUMetricSLO {
25 service level: ScalarmModel.ScalarmMetric.CPUMetricCondition
26 }
27 ...

4.4.3 The Scalarm Scalability Model.

Listing 3 showcases the sole scalability rule of the Scalarm application, which
attempts to increase the number of instances of the SimulationManager com-
ponent by one when the mean CPU utilisation in its corresponding VM is equal
or goes above 80%.

Listing 3: Scalarm Scalability model (excerpt)

1 scalability model ScalarmScalability {
2 horizontal scaling action HorizScaleSimulationManager {
3 type: SCALE OUT
4 vm: ScalarmModel.ScalarmDeployment.CPUIntensiveUbuntuGermany
5 internal component: ScalarmModel.ScalarmDeployment.SimulationManager
6 }
7

8 non -functional event CPUAvgMetricNFEAny {
9 metric condition: ScalarmModel.ScalarmMetric.CPUAvgMetricConditionAny

10 violation
11 }
12 ...
13 scalability rule CPUScalabilityRule {
14 event: ScalarmModel.ScalarmScalability.CPUAvgMetricNFEAny
15 actions [ScalarmModel.ScalarmScalability.HorizScaleSimulationManager]
16 scale requirements [ScalarmRequirement.HorizontalScaleSimulationManager

]
17 }
18 }

This scalability rule, named as CPUScalabilityRule, maps the CPU specific
event CPUAvgMetricNFEAny to the HorizontalScalingSimulationManager scaling ac-
tion. It is also associated to the HorizontalScaleSimulationManager scale require-
ment (see Listing 2) denoting that the number of instances of SimulationMan-
ager should be at most 5, thus representing the actual upper scalability limit
to hold for the scalability rule. The HorizontalScalingSimulationManager action
indicates that the SimulationManager component should scale out, as hosted
by the CPUIntensiveUbuntuGermany VM node, with an additional instance. On the
other hand, the CPUAvgMetricNFEAny is a single non-functional event directly
mapping to the violation of the CPUMetricCondition condition, as indicated in
Listing 4.

The Cloud Application Modelling and Execution Language 27

4.4.4 The Scalarm Metric Model

For brevity, the analysis focuses only on how the CPUAverage composite met-
ric and its condition can be specified in CAMEL (see Listing 4. This metric
condition participates in the CPUMetricSLO as indicated in Listing 2 and the
CPUAvgMetricNFEAny non-functional event in Listing 3.

Listing 4: Scalarm Metric model (excerpt)

1

2 metric model ScalarmMetric {
3 ...
4 property CPUProperty {
5 type: MEASURABLE
6 sensors [ScalarmMetric.CPUSensor]
7 }
8 ...
9 sensor CPUSensor {

10 configuration: ’de.uniulm.omi.cloudiator.visor.sensors.
SystemCpuUsageSensor ’

11 push
12 }
13 ...
14 raw metric CPUMetric {
15 value direction: 0
16 layer: IaaS
17 property: ScalarmModel.ScalarmMetric.CPUProperty
18 unit: ScalarmModel.ScalarmUnit.CPUUnit
19 value type: ScalarmModel.ScalarmType.Range_0_100
20 }
21 ...
22 composite metric CPUAverage {
23 description: "Average of the CPU"
24 value direction: 1
25 layer: PaaS
26 property: ScalarmModel.ScalarmMetric.CPUProperty
27 unit: ScalarmModel.ScalarmUnit.CPUUnit
28

29 metric formula Formula_Average {
30 function arity: UNARY
31 function pattern: REDUCE
32 MEAN(ScalarmModel.ScalarmMetric.CPUMetric)
33 }
34 }
35 ...
36 raw metric context CPURawMetricContext {
37 metric: ScalarmModel.ScalarmMetric.CPUMetric
38 sensor: ScalarmMetric.CPUSensor
39 component: ScalarmModel.ScalarmDeployment.SimulationManager
40 schedule: ScalarmModel.ScalarmMetric.Schedule1Sec
41 quantifier: ANY
42 }
43 ...
44 composite metric context CPUAvgMetricContextAny {
45 metric: ScalarmModel.ScalarmMetric.CPUAverage
46 component: ScalarmModel.ScalarmDeployment.SimulationManager
47 window: ScalarmModel.ScalarmMetric.Win1Min
48 schedule: ScalarmModel.ScalarmMetric.Schedule1Min
49 composing metric contexts [ScalarmModel.ScalarmMetric.

CPURawMetricContext]
50 quantifier: ANY
51 }
52 ...
53 metric condition CPUMetricCondition {
54 context: ScalarmModel.ScalarmMetric.CPUAvgMetricContextAny
55 threshold: 80.0

28 A. Achilleos et. al.

56 comparison operator: >
57 }
58 ...
59 schedule Schedule1Min {
60 type: FIXED_RATE
61 interval: 1
62 unit: ScalarmModel.ScalarmUnit.minutes
63 }
64 schedule Schedule1Sec {
65 type: FIXED_RATE
66 interval: 1
67 unit: ScalarmModel.ScalarmUnit.seconds
68 }
69 window Win1Min {
70 window type: SLIDING
71 size type: TIME_ONLY
72 time size: 1
73 unit: ScalarmModel.ScalarmUnit.minutes
74 }
75 ...
76

The CPUAverage composite metric is calculated by the Formula Average for-
mula, which applies the MEAN function over the CPUMetric, a raw metric com-
puted by the push-based CPUSensor sensor, part of the PaaSage platform and
especially the Executionware module.

CPUMetricCondition is a composite metric condition imposing that the metric
refer to as CPUAverage should be less than 80%. This condition refers to the
CPUAvgMetricContextAny composite metric context. This context explicates the
CPUAverage metric’s schedule and window, as well as that it is applied over
the SimulationManager component. It also refers to the composing metric’s
raw metric context named as CPURawMetricContext. The CPUAverage’s Schedule1Min

schedule specifies that the metric’s measurements will be computed repeatedly
every 1 minute, according to the metric’s Win1Min sliding window.

CPURawMetricContext is the raw metric context for the CPUMetric. It explicates
that the CPUSensor will be used to measure this metric and it is associated with
the Schedule1Sec schedule, which means that CPUMetric’s measurements will be
calculated every 1 second.

5 Evaluation

5.1 Population

For evaluation purposes, CAMEL was exposed to different practitioners in the
context of the PaaSage project use cases. Practitioners were recruited from
the personnel of the organisations participating in the project that were re-
sponsible for specific use cases. 23 individuals participated in the study. In
order to drive analysis of the results, using the two way ANOVA test, the
participants were separated to four groups based on their MDE and cloud
knowledge. MDE and cloud knowledge were selected as the two independent
variables due to the need for evaluation of CAMEL against the dependent
variable: i.e., usefulness or ease of use. In fact, the groups are: (i) 35% of

The Cloud Application Modelling and Execution Language 29

the participants are under Group 1 with less to average knowledge of MDE
and cloud (MDE ≤ 3, Cloud ≤ 3), (ii) 22% of the participants are under
Group 2 with less to average knowledge of MDE and excellent knowledge of
Cloud (MDE ≤ 3, Cloud > 3), (iii) 13% of the participants are under Group
3 with excellent knowledge of MDE and less to average knowledge of Cloud
(MDE > 3, Cloud ≤ 3) and (iv) 30% of the participants are under Group
4 with excellent knowledge of MDE and with excellent knowledge of Cloud
(MDE > 3, Cloud > 3). Hence, the research questions were defined by tak-
ing into consideration the competences of the groups. Finally, all participants
completed the evaluation questionnaire, which indicates that all results are
valid for analysis.

5.2 Methodology

The main aim of the evaluation was to collect practitioners’ feedback regard-
ing the use and capabilities of CAMEL, and this feedback was considered in
the first evaluation steps for updating CAMEL and its modelling environ-
ment, in order to make sure that the language covers well different needs. The
research study evaluation methodology is based on two factors. In specific, the
evaluation results were extracted on the basis of the Technology Acceptance
Model (TAM) [11,4], where the following TAM factors were considered:

– Perceived Ease of Use (PEU): the degree to which a user believes that
CAMEL reduces the effort in modelling tasks.

– Perceived Usefulness (PU): the degree to which a user believes that using
CAMEL enhances the modelling tasks’ performance.

The participants used CAMEL language and editor in the context of differ-
ent business and research domains, i.e., Data Farming, Automotive Simulation,
Flight scheduling, ERP, Financial Services and Human Milk Bank, and com-
pleted a questionnaire for evaluating the above TAM factors. The studied use
cases are summarised in Table 3. For more information on the use cases the
interested reader may refer to the PaaSage website17. In specific, the following
steps were used for the evaluation:

1. The participants were familiarised with different CAMEL versions, re-
ported bugs, requested features, and supplied feedback to developers.

2. The participants modelled their use cases scenarios with the final version
of CAMEL language and editor.

3. The participants assessed CAMEL features via an online questionnaire18.

Based on the above, the final questionnaire was divided into different sec-
tion, covering : usability of the CAMEL Textual Editor, CAMEL documen-
tation, CAMEL Requirements, CAMEL Metric Model, CAMEL Deployment
Model, CAMEL Scalability Rules and CAMEL Organisation Model, whereas

17 PaaSage use cases - http://www.paasage.eu/use-cases
18 Evaluation Questionnaire - https://goo.gl/forms/Fwr3Lc33SGqTJj832

http://www.paasage.eu/use-cases
https://goo.gl/forms/Fwr3Lc33SGqTJj832

30 A. Achilleos et. al.

Name Sector Use case provider Organisation type Relevant application
Data farming eScience AGH University of Science research Scalarm

and Technology
Automotive eScience High Performance Computing research HPC systems, e.g.
simulation Centre, Automotive Simulation Computer Aided

Centre Stuttgart Engineering
Flight scheduling industrial Lufthansa Systems consulting, IT services NetLine/Sched

ERP industrial BeWan IT services Multi Tenant
Financial service industrial University of Cyprus, IBSCY research, IT services Quorum

Human milk bank public EVRY Solutions IT services Human Milk
Bank Project

Table 3: The PaaSage use cases

demographic data and prior user knowledge were also collected. The most im-
portant results are assessed in 5.4 to examine the opinion of the participants
as to the usefulness and the ease of use of the CAMEL language and editor,
which indicates their willingness to accept and use the new technology. The
evaluation of the whole PaaSage platform, e.g., in terms of performance, is not
covered in this work.

Moreover, a statistical analysis is applied on the evaluation results for
reliability purposes and for detecting useful conclusions (e.g., does the MDE
experience of the participants affects their opinion in terms of PU and PEU for
CAMEL). Initially, the Cronback’s Alpha coefficient was used for testing the
reliability of the scale items. Following, a two factor ANOVA with replication
was performed to examine the effect of the two independent variables (MDE
and Cloud experience) on a dependent variable – PU or PEU (i.e., the test
was executed twice). This test also examines whether the interaction of the
two independent variables affect each other to influence either the PU or PEU
dependent variable. Finally, a paired sample t-test was performed to determine
whether the mean difference between two sets of observations (i.e., PU and
PEU) is significant for the same population.

5.3 Reliability Analysis

Cronbach’s alpha was used in this work as a measure of internal consistency
(i.e., reliability) for the designed instrument. This coefficient is used since it
provides the capability to determine if a scale that is composed of multiple
Likert questions in a survey is reliable. In specific, the reliability of each mea-
surement is analogous to the extent that is a consistent measure of a concept,
and the alpha coefficient is one way of measuring the strength of that consis-
tency. It is calculated by correlating the score of each scale item (i.e., question)
with the total score of a participant’s observation and by comparing it to the
variance of individual scale item scores. Based on the survey results the alpha
coefficient was computed for PU (α = 0.93) and for PEU (α = 0.70). The
results indicate high reliability of the scale items (i.e., questions) for PU and
PEU. In fact, the literature accepts that a value of α ≥ 0.70 indicates high in-
ternal consistency (i.e., reliability) for the designed instrument. It also defines
that as the number of questions increases then the reliability also increases.

The Cloud Application Modelling and Execution Language 31

This actually showcases the difference between the PU and PEU alpha values,
since for the model completeness attribute of PU more questions were defined
for evaluating the completeness of each model (e.g., deployment, requirement).

5.4 Technology Acceptance

The evaluation results are first examined in terms of the two factors of PU
and PEU. In specific, based on the participants responses it can be securely
attested that the usefulness of CAMEL is high but the ease of use is rather low.
This is evident in Fig. 9a, which shows that both the mean and median values
for perceived usefulness are higher than that of perceived ease of use. Further
examination of each TAM factor reveals more details as to the influence of
individual attributes on perceived usefulness and perceived ease of use. In
fact, for PU the two attributes examined are the models completeness and
the models quality. Fig. 9b presents the results from the analysis of these
attributes. This indicates that both the model completeness and model quality
are valued by the participants, which shows that CAMEL language covers a
large and diverse set of requirements for defining complete and quality cloud
management models. Moreover, the participants high scores for model quality
indicates that they are satisfied also with the features provided by the CAMEL
editor, e.g., code completion, syntax highlighting, error reporting.

Because of the importance of CAMEL model completeness, which is one
of the main contributions of this work, the analysis was performed also at the
level of individual models as presented in Fig. 9c. In fact, from the analysis of
the results it is evident that the participants rate higher the deployment, scal-
ability and requirements models, while the metric model is evaluated lower.
This can be attributed to the fact that in most use cases simple metric mod-
els were defined using single metrics, such as CPU utilisation. Nevertheless,
more complex models and composite metrics can be defined, but the platform
limitation is that it only supports CPU and RAM sensors. This means that
for complex monitoring of VM resources the appropriate sensors should be
manually implemented and deployed in the platform as Java classes.

Moreover, the PEU of the CAMEL language and editor was evaluated
based on the attributes of effectiveness and learning curve. The mean score
for effectiveness (see Fig. 9d) is the lowest one recorded from the entire set
of attributes. This can be attributed, by examining the context and results of
the individual questions for effectiveness. In specific, the installation and use
of the CAMEL editor and language is rated higher than the user-friendliness
and model creation related questions. These outcomes are further supported
by the learning curve’s higher score. In fact, the participants gave a low score
to the easiness of learning how to use the CAMEL language and textual edi-
tor, but the extensive documentation provided for CAMEL is highly valuable
to the users as indicated by the high scores on user-support provided by the
documentation. This strongly suggests that the users find the detailed docu-
mentation as a key aspect that can minimise the learning curve.

32 A. Achilleos et. al.

(a) Technology Acceptance Factors

(b) PU - Completeness and Quality

(c) Completeness of CAMEL models

(d) PEU - Effectiveness and Learning

Fig. 9: Evaluation Results

The Cloud Application Modelling and Execution Language 33

Finally, a paired samples t-test was performed to confirm the results dis-
played in Fig. 9. This type of test is a statistical procedure used to determine
the mean difference between two sets of observations for the same sample size.
In this work it is used to confirm that there is a significant mean difference
between the participants observations for PU and PEU. Like many statistical
procedures, the paired sample t-test has a null hypothesis that assumes that
the true mean difference between the paired samples is zero. Statistical signif-
icance is determined by looking at the p−value, which defines the probability
of testing the survey results under the null hypothesis. Executing the t-test
on the scores of the same set of participants on PU and PEU resulted to a
p − value = .005. Hence, the computed p-value is less than or equal to the
commonly accepted significance level (p− value ≤ .05), which means that the
null hypothesis (PU and PEU mean difference is zero) can be rejected. This
indicates a statistically significant difference between the users opinions. This
practically means that users find CAMEL highly useful, but believe that it
can be improved in terms of ease of use.

5.5 Group-Based Analysis

On the basis of the technology acceptance model the perceived usefulness and
perceived ease of use factors are evaluated in this survey study. An important
aspect that requires further analysis is what are the opinions of participants in
accordance to the groups defined in this study. In specific, it maybe expected
that participants under Group 1 that have low to average knowledge of MDE
and Cloud (i.e., MDE ≤ 3, Cloud ≤ 3) would provide a lower score to per-
ceived of use of the CAMEL language and editor. Therefore, in order to detect
if there are differences in the observations of participants across groups a two-
way ANOVA statistical test was performed. This kind of test compares the
mean differences between groups that have been split based on two indepen-
dent variables (i.e., MDE and Cloud experience of participants). The primary
purpose of this test is to understand if there is an interaction between the two
independent variables on the dependent variable (i.e., PU or PEU - test was
executed twice). In this work, the two-way ANOVA was performed to under-
stand whether there is an interaction between MDE and Cloud knowledge,
which has an effect on the PU or PEU evaluation scores.

PU - MEANS PEU - MEANS
Cloud ≤ 3 Cloud > 3 Cloud ≤ 3 Cloud > 3

MDE ≤ 3 3.99 3.76 3.88 MDE ≤ 3 3.7 3.23 3.46
MDE > 3 4.23 3.82 4.03 MDE > 3 4.10 3.43 3.76

4.11 3.79 3.90 3.33

Table 4: Two-way ANOVA analysis results

Table 4 presents the results of the two-way ANOVA test, i.e., for PU and
PEU. The ANOVA was used to test the following null hypotheses:

34 A. Achilleos et. al.

(i) H1 - The means of observations grouped by one factor (i.e.,
MDE knowledge level) are the same. On the basis of the tests executed,
H1 cannot be rejected for PU since the p − value = .53 and also it cannot
be rejected for PEU since the p − value = .20. The values are way higher
than the critical p − value = .005, which indicates that the means for the
group MDE ≤ 3 and the group MDE > 3 can be practically considered the
same. This is because no statistical difference is observed from the sample, in
terms of the participants opinions for the two groups. A possible explanation
is that the participants are highly knowledgeable of the model-driven CAMEL
language and editor due to their involvement in the research project.

(ii) H2 - The means of observations grouped by the other factor
(i.e., Cloud knowledge level) are the same. H2 cannot be rejected for PU
since the p−value = .19, but it can be rejected for PEU since the p−value =
.002. The calculated value for PEU is lower than the critical p − value =
.005, which indicates that the means for the group Cloud ≤ 3 and the group
Cloud > 3 are different. This is because a statistical difference is observed
from the sample, in terms of the participants opinions for the two groups. An
assumption that can be made in terms of this result is that cloud experts are
able to think ahead and consider the complexity involved in defining a model
for a complex cloud deployment and adaptation scenario.

(iii) H3 - There is no interaction between the factors (i.e., MDE
and Cloud knowledge level). Finally, H3 cannot be rejected for PU since
the p − value = .71 and also it cannot be rejected for PEU since the p −
value = .66. The values are way higher than the critical p − value = .005,
which indicates that the means for the intersection groups (e.g., MDE ≤
3, Cloud ≤ 3) can be practically considered the same since no statistical
difference is observed from the sample. Hence, the participants opinions for
the four intersection groups have a strong similarity.

Based on the above group-based statistical analysis it is strongly suggested
that MDE knowledge level does not influence the observations of participants
in terms of the factors of PU and PEU, while the Cloud knowledge level has an
effect on the participants observations for the PEU. Finally, the claim can be
made that the interaction between MDE and Cloud knowledge has no effect
on the participants observations for both PU and PEU.

5.6 Threats to Validity

In terms of external validity —i.e., the extent to which the conclusions can be
generalised, the selected use cases cover a wide spectrum of identified aspects
of self-adaptive cross-cloud applications. However, extending the evaluation of
CAMEL to other scenarios, environments, or even demographics may alter the
findings. Internal validity, i.e., the extent to which the conclusions based on a
study are warranted is not affected, since the data are unambiguous. In terms
of construct validity, i.e. the degree to which a test measures what it claims, is
not affected, since all questions were carefully prepared to cover all capabilities

The Cloud Application Modelling and Execution Language 35

of CAMEL and its textual editor. Finally, the small sample size (N = 23) and
the fact that the participants were part of the PaaSage project are perhaps the
greatest threat to the validity of the results. For this reason different statistical
analysis test were performed for checking the reliability of the survey results
(i.e., Cronbach’s Alpha) and for cross-checking the validity of the conclusions
(i.e., paired t-test), e.g., participants find CAMEL more useful and not that
easy to use. Finally, ANOVA tests were performed to conclude if MDE and
Cloud knowledge level affects the results.

6 Related Work

In the following, the CAMEL language is compared with related work. The
focus is mainly on CMLs that specialize on cloud computing and not generic
languages that might cover one or more aspects relevant to MCRM. Such
languages should also have the right abstraction level, this being able to cover
multiple and not just one cloud. In this respect, cloud-specific languages, such
as CloudFormation, which are tight to a certain cloud, as well as too detailed
and technical ones are excluded from the analysis.

6.1 Comparison Criteria

In the following, six comparison criteria are defined to evaluate the CMLs fo-
cusing on their usefulness, usability, and self-adaptation. The abstract syntax
and aspect coverage, delivery model support, and models@run-time support re-
flect the usefulness of the language; concrete syntax and integration level reflect
the usability; and models@run-time support also reflects the self-adaptation.

Abstract syntax. A DSL’s abstract syntax describes the set of concepts,
their attributes and relations, plus the rules for combining them to specify valid
statements conforming to this syntax. The abstract syntax can be defined using
formalisms with different capabilities. For instance, XML Schema is suitable
for tree-based structures, while MOF-based formalisms are more suited for
graph-based structures, offer better tool support and are better integrated with
constraint languages like OCL. This criterion identifies the formalism used by
a CML. Its evaluation spans the values of “XML Schema” and “MOF”.

Concrete syntax. A concrete syntax describes the textual/graphical nota-
tion rendering the abstract syntax concepts, their attributes and relations. The
concrete syntax can be defined using notations that have a trade-off between
the syntax intuitiveness and effectiveness. For instance, a textual syntax may
be less intuitive but more effective than a graphical syntax. This criterion is
used to identify the notations supported by a DSL. Its evaluation spans the
values of “XML”, “txt” (textual), and “gra” (graphical).

Aspect coverage. A language may cover multiple aspects within the same or
across multiple domains. For instance, in CAMEL the life cycle of cross-cloud
applications is specified using 11 aspects. This criterion reflects how many of

36 A. Achilleos et. al.

these aspects are covered by a language. Its evaluation spans the values of
“low” if the DSL covers at most three aspects, “medium” if it covers at most
six aspects, and “high” otherwise.

Integration level. A DSL that covers multiple aspects may provide different
integration levels, especially when these aspects include similar or equivalent
concepts. The integration solution must: (a) join equivalent concepts and sep-
arate similar ones into respective sub-concepts; (b) homogenise the remaining
concepts at the same granularity level; (c) enforce a uniform formalism and
notation for the abstract and concrete syntaxes; (d) enforce model consistency,
correctness, and integrity. Each of these steps is a precondition to the follow-
ing one and requires an increasing amount of effort. This criterion reflects how
many steps have been adopted to integrate the sub-DSLs. Its evaluation spans
the values of “low” if the sub-DSLs were integrated following only step (a),
“medium” if they were integrated following steps (a) and (b), “high” if they
were integrated following all steps, and “N/A” if they were not integrated.
The last evaluation value maps to sub-DSL independence that leads to the
following disadvantages: (a) it raises the DSL complexity, since each sub-DSL
has its own abstract and concrete syntax; (b) it steepens the learning curve
and increases the modelling effort for the same reason; (c) it leads to the mod-
elling duplication for similar or equivalent concepts; (d) it leads to the manual
validation of cross-aspect dependencies.

Delivery model support. A cross-cloud application may exploit any of the
cloud delivery models (e.g., IaaS and PaaS). Thus, a language for specifying the
life-cycle of such application should support concepts for every cloud delivery
model. As such, this criterion attempts to examine this. Its evaluation spans
the values of “IaaS”, “PaaS” and “SaaS”.

Models@run-time support. As indicated in Section 1, models@run-time [9]
can enable the automatic provisioning of multi-cloud applications and can
be implemented using the type-instance pattern [3]. In CAMEL, the type-
instance pattern was implemented in the deployment and metric aspects. In the
deployment aspect, it allows to automatically adapt the component- and VM
instances in the deployment model based on scalability rules (e.g., scale out a
Scalarm service and its underlying VM). In the metric aspect, the deployment
adaptation is reflected also on the monitoring infrastructure. This criterion
reflects how many of these aspects within a CML implement the type-instance
pattern. Its evaluation spans the values of “deployment” and “metric”.

6.2 Analysis

Table 5 shows the comparison results for the DSLs based on the aforemen-
tioned criteria. As it can be seen below, CAMEL scores best in all criteria.
Its superiority is highlighted in terms of the aspect coverage and integration
level criteria, plus its better support to different kinds of cloud services and
to the specification of different type-instance models focusing both on the de-
ployment and monitoring aspects. Thus, the claim that CAMEL does advance

The Cloud Application Modelling and Execution Language 37

the state-of-the-art in cloud application modelling and MCRM can be vali-
dated. The coverage of PaaS and SaaS services has been recently introduced
in CAMEL via its extension in the CloudSocket project.

Language Abstract Concrete Aspect Integration Delivery Model Models@run-time
Syntax Syntax Coverage Level Support Support

Reservoir OVF Extension (2009) XML Schema XML low N/A IaaS N/A
Optimis OVF Extension (2010) XML Schema XML medium N/A IaaS N/A

Vamp (2011) XML Schema XML low N/A IaaS N/A
4CaaSt Blueprint Template (2011) XML Schema XML low N/A IaaS, PaaS N/A

TOSCA (2013) XML Schema XML, txt medium medium IaaS, PaaS N/A
Provider DSL [40] (2014) MOF XML, gra low medium IaaS N/A

GENTL (2014) MOF gra, XML low N/A IaaS N/A
ModaCloudML (2014) MOF XML, gra, txt medium low IaaS, PaaS deployment

CAML (2014) MOF gra medium medium IaaS N/A
CAMEL (2014) MOF XML, gra, txt high high IaaS, PaaS, SaaS deployment, metric

ARCADIA Context Model (2015) XML Schema XML high medium IaaS deployment
StratusML (2015) MOF XML, gra medium high IaaS deployment
CloudMF (2018) MOF XML, gra medium low IaaS, PaaS deployment, metric

Table 5: Cloud Languages Comparative Analysis

The key CAMEL competitors are the Arcadia Context Model, StratusML
and more recently CloudMF. The first has been included, due to its good
aspect coverage which does not, however, go to a sufficient level of detail. The
second, due to its high DSL integration level, which is mainly the outcome
of following a similar integration approach as in CAMEL. However, the main
differentiation is that less integration effort has been put in StratusML, due to
the generation of all DSLs from scratch and the minimalistic size of the overall
language, containing around 60 concepts. StratusML does also support the
modelling of semantic domain validation rules. However, also witnessed by its
small size, this language is not expressive and extensive enough, not going to an
appropriate level of detail in the aspects covered. Furthermore, the coverage of
other aspects is missing. CloudMF is the only CML that supports deployment
and metric in terms of the models@runtime support. In specific, it provides
a domain-specific language for specifying the provisioning and deployment of
multi-cloud applications, as well as an adaptation DSL implemented though as
Java plain objects, offering a models@run-time environment for the continuous
provisioning, deployment and adaptation of applications. Finally, CloudMF
presents a medium aspects coverage with a minimal set of concepts and a low
integration level as a result.

TOSCA and CAML come in the third place. In our view, TOSCA is not a
competitor to CAMEL. It is rather a standard that could benefit from CAMEL
based on the following directions: (a) coverage of additional domains not cap-
tured by TOSCA; (b) support for the type-instance pattern and thus mod-
els@runtime. By following the second direction, there is some integration work
currently being conducted in form of a TOSCA interest group attempting to
bring the PSTM part of CAMEL deployment metamodel into TOSCA.

With the exception of TOSCA, the other three languages (i.e., StratusML,
Arcadia Context Model and CAML) do not have a good community support.
This is evident from the fact that StratusML has been developed from a univer-
sity group, while the other two languages have been developed within certain

38 A. Achilleos et. al.

European projects but their support seems to be discontinued. On the other
hand, CAMEL undergoes constant evolution and some extensions have been
already performed on it, like the aforementioned PaaS/SaaS features, while
others are currently in development or planned. As such, CAMEL will be
further optimised (e.g., Melodic EU H2020 Big-Data Cloud project), by also
attempting to adopt some interesting modelling features from these languages.

As the languages are presented in a chronological order in the comparison
table, some interesting time-based patterns can be inferred from this table:

– With the exception of Arcadia Context Model, most recent languages rely
on MOF for their abstract syntax. Maybe this can be explained partly due
to the use of the language in a model-driven management framework and
due to the various advanced tools available for MOF-based languages that
assist in their rapid development.

– Coupled with the first finding is the fact that the most recent languages do
provide support for the production of graphical/textual models according
to the language’s concrete syntax. This enables then to move from the
cumbersome XML-based to a more human-readable form, which also makes
the models more concise and easier to be edited/manipulated.

– Most recent DSLs do cater for the models@runtime approach, thus pro-
viding better support for the adaptive provisioning of multi-cloud applica-
tions, with CAMEL and CloudMF being the only ones that support both
deployment and metric. This means that they do not only support the
adaptation of the application and VM instances in the deployment model
based on scalability rules, but they cater so that the adaptation is reflected
also on the monitoring infrastructure.

In this respect, based on these findings, both the design requirements and
choices made by the CAMEL developers can be validated, as the exploita-
tion of Eclipse EMF & Ecore enabled CAMEL to be rapidly developed and
have the right modelling tools supporting its continuous evolution, while the
models@runtime support enabled CAMEL to satisfy a quite recent, in its ac-
knowledgement, but critical modelling feature.

7 Conclusions & Future Work

This article has explained the development and implementation of an innova-
tive multi-DSL language called CAMEL, which advances the state-of-the-art
by integrating DSLs covering all suitable aspects required for MCRM. The core
parts of this DSL were analysed by also utilising a running use case drawn from
the PaaSage project, the actual development space of CAMEL. CAMEL is also
accompanied by a textual editor, covering its concrete syntax and targeting
mainly DevOps users, which exhibits some nice features like syntax and error
highlighting as well as auto-completion.

Both CAMEL and its textual editor were evaluated via a user study involv-
ing well-qualified participants from use case partner organisations in PaaSage.

The Cloud Application Modelling and Execution Language 39

The evaluation results show that the editor’s usability is appropriate and that
CAMEL covers well its respective domains. Some interesting suggestions were
also supplied, currently considered in the development of the forthcoming ver-
sion of CAMEL. CAMEL is being continuously evolving due to its active
community that spans at least three organisations: SINTEF, University of
Ulm and ICS-FORTH. This has been evident through corresponding exten-
sions that have been performed on it in the context of European projects that
succeeded PaaSage. Two examples of these projects are defined below.

CloudSocket targeted the development of a platform supporting the design
and adaptive provisioning of business-process-as-a-service (BPaaS) services. In
that project, two main extensions of CAMEL have been achieved: (a) support
for PaaS and SaaS modelling; (b) modelling of advanced adaptation rules [27]
that map event patterns to adaptation workflows incorporating level-specific
adaptation actions (e.g., scaling and service replacement ones). Melodic aims
to support big data application management. CAMEL is at the core of Melodic,
which attempts to build upon the PaaSage platform to provide support to this
application kind. As such, CAMEL is planned to be enhanced to cover the big
data aspect. As Melodic is a formal PaaSage successor, also the improvements
over the user survey suggestions will be included in the forthcoming CAMEL
release. That release is also planned to be enhanced with CAMEL extensions
from other projects, like CloudSocket. This will then map in producing an
even more complete and extensive DSL, also broadening its application scope.
Hence, the CAMEL community will continue its effort in optimising CAMEL
and further extending it, possibly via participating in forthcoming projects
that guarantee the respective funding needed.

Acknowledgements CAMEL was defined in the EU PaaSage project that was funded
from the European Union’s FP7 Research and Innovation Programme under the topic ICT-
2011.1.2 - Cloud Computing, Internet of Services and Advanced Software Engineering with
Grant Agreement No 317715.

8 List of Abbreviations

MCRM - Multi-Cloud Resource Management
MDE - Model Driven Engineering
CAMEL - Cloud Application Modelling and Execution Language
CML - Cloud Modelling Language
DSL - Domain Specific Language
PITM - Provider Independent Topology Model
PSTM - Provider Specific Topology Model
SRL - Scalability Rules Language
XML - Extensible Metadata Language
EMF - Eclipse Modelling Framework
OCL - Object Constraint Language
TOSCA - Topology and Orchestration Specification for Cloud Applications
IaaS - Infrastructure as a Service

40 A. Achilleos et. al.

PaaS - Platform as a Service
SaaS - Software as a Service
VM - Virtual Machine
SLO - Service Level Objective
SL - Service Level

9 Declarations

9.1 Availability of Data and Materials

Survey Data and Evaluation results used in this work can be found here:
http://tiny.cc/pmqibz

Relevant documentation for CAMEL can be found here:
http://camel-dsl.org/documentation/

and the code/models repositories can be found here:
https://gitlab.ow2.org/paasage/

under the CAMEL repository. No additional data have been used in this study.

9.2 Competing Interests

No competing interests between authors for this manuscript.

9.3 Funding

CAMEL was defined in the EU PaaSage project that was funded from the
European Union’s FP7 Research and Innovation Programme under the topic
ICT-2011.1.2 - Cloud Computing, Internet of Services and Advanced Software
Engineering with Grant Agreement No 317715.

9.4 Authors Contribution

AA defined the evaluation framework, executed the survey and produced the
evaluation results including the statistical analysis. AA written the evalu-
ation part of the manuscript and coordinated/refined/merged the different
sections/contents of this manuscript. KK and AR contributed to the defi-
nition, design and implementation of CAMEL and contributed most of the
content on the CAMEL DSLs. GK assisted in the formulation of the evalua-
tion framework, the execution of the survey and the results of the evaluation,
and revised the evaluation section content. JD contributed mainly to the im-
plementation of CAMEL (in particular in respect with the interaction with
PaaSage components) and contributed/reviewed the content on the CAMEL

http://tiny.cc/pmqibz
http://camel-dsl.org/documentation/
https://gitlab.ow2.org/paasage/

The Cloud Application Modelling and Execution Language 41

DSLs sections in the manuscript. MO contributed to the definition and re-
alisation of the CAMEL scalarm use case and the writing of the use case
section in the manuscript. DS and FG assisted mainly to the implementation
of CAMEL (in particular in respect with the interaction with PaaSage compo-
nents) and contributed/reviewed the content on the CAMEL DSLs sections in
the manuscript. NN and DR assisted in the definition, design and implemen-
tation of CAMEL. GP assisted in the definition of the evaluation framework
and revised the relevant section in the manuscript. All authors have reviewed
the complete manuscript and provided comments and suggestions that were
taken into consideration by AA to finalise the paper.

9.5 Acknowledgements

No other contributors for this manuscript.

9.6 Authors Information

CAMEL is an innovative multi-DSL language, which advances the state-of-
the-art by integrating and extending DSLs covering all suitable aspects re-
quired for multi-cloud resources management. It addresses both design time
and model@runtime aspects and continues to evolve as a language to address
the many different facets of multi-cloud resources management. In specific,
it continues currently to evolve as part of the MELODIC H2020 project to
enable big data-aware application deployments on geographically distributed
and federated cloud infrastructures.

References

1. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement).
Tech. rep., Open Grid Forum (2007)

2. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to adapt applications for the
cloud environment. Computing 95(6), 493–535 (2013). DOI 10.1007/s00607-012-0248-2.
URL https://doi.org/10.1007/s00607-012-0248-2

3. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Transactions
on Modeling and Computer Simulation 12(4), 290–321 (2002)

4. Bagozzi, R.P., Davis, F.D., Warshaw, P.R.: Development and Test of a Theory of Tech-
nological Learning and Usage. Human Relations 45, 659–686 (1992)

5. Baur, D., Domaschka, J.: Experiences from building a cross-cloud orchestration tool. In:
Proceedings of the 3rd Workshop on CrossCloud Infrastructures & Platforms, Cross-
Cloud ’16, pp. 4:1–4:6. ACM, New York, NY, USA (2016). DOI 10.1145/2904111.
2904116. URL http://doi.acm.org/10.1145/2904111.2904116

6. Baur, D., Seybold, D., Griesinger, F., Masata, H., Domaschka, J.: A provider-agnostic
approach to multi-cloud orchestration using a constraint language. In: Proceedings of
the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid ’18, pp. 173–182. IEEE Press, Piscataway, NJ, USA (2018). DOI 10.1109/
CCGRID.2018.00032. URL https://doi.org/10.1109/CCGRID.2018.00032

https://doi.org/10.1007/s00607-012-0248-2
http://doi.acm.org/10.1145/2904111.2904116
https://doi.org/10.1109/CCGRID.2018.00032

42 A. Achilleos et. al.

7. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20 years
later: A literature review. Inf. Syst. 35(6), 615–636 (2010)

8. Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., ManuelWimmer,
Kappel, G., Leymann, F.: A Systematic Review of Cloud Modeling Languages. ACM
Computing Surveys 51, 1–38 (2018)

9. Blair, G., Bencomo, N., France, R.: Models@run.time. IEEE Computer 42(10), 22–27
(2009)

10. Chiu, P.H., Potekhin, M.: Pilot factory - a Condor-based system for scalable Pilot Job
generation in the Panda WMS framework. Journal of Physics: Conference Series 219(6),
062,041 (2010). URL http://stacks.iop.org/1742-6596/219/i=6/a=062041

11. Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of In-
formation Technology. MIS Quarterly 13(3), 319–340 (1989)

12. Domaschka, J., Baur, D., Seybold, D., Griesinger, F.: Cloudiator: A Cross-Cloud, Multi-
Tenant Deployment and Runtime Engine. In: SummerSOC 2015: 9th Workshop and
Summer School On Service-Oriented Computing 2015 (2015)

13. Domaschka, J., Griesinger, F., Seybold, D., Wesner, S.: A cloud-driven view on business
process as a service. In: CLOSER, pp. 739–746 (2017)

14. Domaschka, J., Kritikos, K., Rossini, A.: Towards a Generic Language for Scalabil-
ity Rules. In: G. Ortiz, C. Tran (eds.) Advances in Service-Oriented and Cloud
Computing—Workshops of ESOCC 2014, Communications in Computer and Infor-
mation Science, vol. 508, pp. 206–220. Springer (2015)

15. Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud sys-
tems with CloudMF. In: A. Solberg, M.A. Babar, M. Dumas, C.E. Cuesta (eds.) Nordi-
Cloud 2013: 2nd Nordic Symposium on Cloud Computing and Internet Technologies,
pp. 38–45. ACM (2013)

16. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven
provisioning, deployment, monitoring, and adaptation of multi-cloud systems. In:
L. O’Conner (ed.) CLOUD 2013: 6th IEEE International Conference on Cloud Com-
puting, pp. 887–894. IEEE Computer Society (2013)

17. Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: CloudMF: Applying MDE to
Tame the Complexity of Managing Multi-Cloud Applications. In: R. Bilof (ed.) UCC
2014: 7th IEEE/ACM International Conference on Utility and Cloud Computing, pp.
269–277. IEEE Computer Society (2014)

18. Griesinger, F., Seybold, D., Wesner, S., Domaschka, J., Woitsch, R., Kritikos, K., Hinkel-
mann, K., Laurenzi, E., Iranzo, J., González, R.S., Tuguran, C.V.: Bpaas in multi-cloud
environments - the cloudsocket approach. In: European Space Projects: Developments,
Implementations and Impacts in a Changing World - Volume 1: EPS Porto 2017,, pp.
50–74. INSTICC, SciTePress (2017). DOI 10.5220/0007901700500074

19. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge
Acquisition 5(2), 199–220 (1993)

20. Horn, G., Skrzypek, P.: Melodic: utility based cross cloud deployment optimisation. In:
2018 32nd International Conference on Advanced Information Networking and Appli-
cations Workshops (WAINA), pp. 360–367. IEEE (2018)

21. Jeffery, K., Houssos, N., Jörg, B., Asserson, A.: Research information management: the
CERIF approach. IJMSO 9(1), 5–14 (2014)

22. Kritikos, K., Domaschka, J., Rossini, A.: SRL: A Scalability Rule Language for Multi-
Cloud Environments. In: J.E. Guerrero (ed.) CloudCom 2014: 6th IEEE International
Conference on Cloud Computing Technology and Science, pp. 1–9. IEEE Computer
Society (2014)

23. Kritikos, K., Kirkham, T., Kryza, B., Massonet, P.: Security Enforcement for Multi-
Cloud Platforms—The Case of PaaSage. Procedia Computer Science 68, 103–115
(2015). Cloud Forward 2015: 1st International Conference on Cloud Forward: From
Distributed to Complete Computing

24. Kritikos, K., Kirkham, T., Kryza, B., Massonet, P.: Towards a security-enhanced paas
platform for multi-cloud applications. Future Generation Comp. Syst. 67, 206–226
(2017)

25. Kritikos, K., Plexousakis, D.: Semantic QoS Metric Matching. In: ECOWS, pp. 265–274.
IEEE Computer Society (2006)

http://stacks.iop.org/1742-6596/219/i=6/a=062041

The Cloud Application Modelling and Execution Language 43

26. Kritikos, K., Plexousakis, D.: Multi-cloud application design through cloud service com-
position. In: 2015 IEEE 8th International Conference on Cloud Computing, pp. 686–693.
IEEE (2015)

27. Kritikos, K., Zeginis, C., Seybold, D., Griesinger, F., Domaschka, J.: A Cross-Layer
BPaaS Adaptation Framework. In: FiCloud. IEEE Computer Society (2017)

28. Król, D., Kitowski, J.: Self-scalable services in service oriented software for cost-effective
data farming. Future Generation Comp. Syst. 54, 1–15 (2016)

29. Kühne, T.: Matters of (meta-)modeling. Software and Systems Modeling 5(4), 369–385
(2006)

30. Magoutis, K., Papoulas, C., Papaioannou, A., Karniavoura, F., Akestoridis, D.G., Parot-
sidis, N., Korozi, M., Leonidis, A., Ntoa, S., Stephanidis, C.: Design and implementation
of a social networking platform for cloud deployment specialists. Journal of Internet
Services and Applications 6(1), 19 (2015)

31. Munteanu, V.I., Şandru, C., Petcu, D.: Multi-cloud resource management: cloud service
interfacing. Journal of Cloud Computing 3(1), 3 (2014). DOI 10.1186/2192-113X-3-3.
URL https://doi.org/10.1186/2192-113X-3-3

32. Nikolov, N., Rossini, A., Kritikos, K.: Integration of DSLs and Migration of Models: A
Case Study in the Cloud Computing Domain. Procedia Computer Science 68, 53–66
(2015)

33. Object Management Group: Object Constraint Language (2014). http://www.omg.org/
spec/OCL/2.4/

34. Opara-Martins, J., Sahandi, R., Tian, F.: Critical analysis of vendor lock-in and its
impact on cloud computing migration: a business perspective. Journal of Cloud Com-
puting 5(1), 4 (2016). DOI 10.1186/s13677-016-0054-z. URL https://doi.org/10.

1186/s13677-016-0054-z

35. Quinton, C., Haderer, N., Rouvoy, R., Duchien, L.: Towards multi-cloud configurations
using feature models and ontologies. In: MultiCloud 2013: International Workshop on
Multi-cloud Applications and Federated Clouds, pp. 21–26. ACM (2013)

36. Quinton, C., Romero, D., Duchien, L.: Cardinality-based feature models with con-
straints: a pragmatic approach. In: T. Kishi, S. Jarzabek, S. Gnesi (eds.) SPLC 2013:
17th International Software Product Line Conference, pp. 162–166. ACM (2013)

37. Quinton, C., Rouvoy, R., Duchien, L.: Leveraging Feature Models to Configure Vir-
tual Appliances. In: CloudCP 2012: 2nd International Workshop on Cloud Computing
Platforms, pp. 21–26. ACM (2012)

38. Rossini, A.: Cloud application modelling and execution language (CAMEL) and the
PaaSage workflow. In: L.F. Dustdar Schahram, V. Massimoè (eds.) ESOCC 2015: Work-
shops of the 4th European Conference on Service-Oriented and Cloud Computing, pp.
437–439. Springer (2015)

39. Rossini, A., Kritikos, K., Nikolov, N., Domaschka, J., Griesinger, F., Seybold, D.,
Romero, D.: D2.1.3—CAMEL Documentation. PaaSage project deliverable (2015)

40. Silva, G.C., Rose, L.M., Calinescu, R.: Cloud DSL: A language for supporting cloud
portability by describing cloud entities. In: CloudMDE@MoDELS, CEUR Workshop
Proceedings, vol. 1242, pp. 36–45. CEUR-WS.org (2014)

41. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements
Engineering. The MIT Press (2011)

Fig. 1: Models@run-time architecture
Fig. 2: Linguistic and ontological typing
Fig. 3: CAMEL models in the self-adaptation workflow
Fig. 4: The type part of the deployment metamodel
Fig. 5: The requirement metamodel
Fig. 6: The Metric concept and its hierarchy
Fig. 7: The scalability metamodel
Fig. 8: Scalarm as-is architecture
Fig. 9: Evaluation Results

https://doi.org/10.1186/2192-113X-3-3
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
https://doi.org/10.1186/s13677-016-0054-z
https://doi.org/10.1186/s13677-016-0054-z

	Introduction
	CAMEL Specification and Implementation
	The CAMEL Language
	CAMEL Application: The Data Farming Use Case
	Evaluation
	Related Work
	Conclusions & Future Work
	List of Abbreviations
	Declarations

