
CrODA-gator: An Open Access
CrowdSourcing Platform as a Service

Michalis Massalas∗, Andreas Konstantinidis∗, Achilleas Achilleos∗, Christos Markides∗ and George Papadopoulos†
∗Department of Computer Science and Engineering, Frederick University, Nicosia, Cyprus

Email: {st009194,com.ca,com.aa,com.mc}@frederick.ac.cy
†Department of Computer Science, University of Cyprus, Nicosia, Cyprus

Email: george@cs.ucy.ac.cy

Abstract—The huge increase of mobile devices and the ad-
vancements of their sensing and computing capabilities have
made the mobile crowd a real-time opportunistic data generator.
Leveraging crowdsourced data creates new opportunities and
challenges in many computing domains. As a result extensible,
scalable and inter-operable cloud-based platforms have been
implemented to simplify management and visual mapping of the
large volume of data to meaningful representations, which can
be then used for the development of novel applications. Still,
to the authors best knowledge, these platforms do not offer
direct open access to cloud-based crowdsourcing service(s). In this
paper, “CrODA-gator”, an Open Access Crowdsourcing Platform
as a Service, is introduced that follows a scalable and extensible
architecture, which offers public open access to the platform’s
features for direct use by data contributors and application
developers. This is a key attribute for the uptake of such a
platform. Finally, an experimental evaluation is conducted to
support the design choices, providing qualitative evidence on the
expected performance of the platform’s mechanisms.

I. INTRODUCTION

According to global statistics the number of smartphone
users currently reaches an estimate of over two billion world-
wide1. Given that people spend most of their day with their
personal mobile devices in their close vicinity and considering
that most devices contain more than 20 sensors2 (wireless
signals, temperature, gravity, light, magnetic field, humidity,
proximity and sound, just to name few), it is easy to imagine
the large volume of data that can be potentially collected every
day and used in numerous applications [3].

Therefore, the implementation of a scalable and extensi-
ble cloud-based Platform as a Service (PaaS) for collecting
and leveraging crowdsourced data may provide tremendous
opportunities with respect to new application development.
For example, health organizations and insurance companies
use temperature, humidity, air pressure and sound data com-
bined with a person’s common route to diagnose, prevent or
calculate the risk of illnesses [1]. Retailers and advertisement
companies use data derived from the accelerometer, gyroscope
and microphone to analyse shopping behavioural patterns, or
offer advertisements more effectively [4]. Moreover, the inter-
active entertainment industry has already started developing

1“Smartphone Users Worldwide”, Source: https://www.statista.com/.
2“Sensors Overview”, Source: https://goo.gl/z8s8GK.

augmented reality games that utilize real data such as location,
acceleration, orientation, light, humidity and temperature from
the players actual environment to produce a more realistic
game play [5].

The development of a platform, however, that will collect
and aggregate opportunistic data generated from sensors and
computations performed by the crowd’s mobile devices au-
tomatically [6], give rise to several challenges that can be
roughly classified into: (i) crowdsourcing related challenges
that include outliers filtering without using intrinsic metrics
and providing proper incentives to the crowd for contributing
their data, (ii) data management and aggregation challenges
that include the manipulation of a large volume of crowd-
sensed data and the avoidance of dataset distortion (through
loss of data, due to the different number and variety of sensors
in smart devices), and (iii) data mapping challenges that
include designing an easy and efficient process for expressing
data in a summarized, but still meaningful, form for individual
or corporate use (e.g., for statistical purposes); and mapping
data to geographic information systems (GIS), also known as
Neogeography [7], in order to shape a context and conveying
understanding through knowledge of places.

This paper presents an Open Access Crowdsourcing Data
Aggregation platform, coined CrODA-gator. The platform
provides the necessary mechanisms for collecting sensor data
from heterogeneous smartphone devices, as well as aggre-
gating and enabling those data for public use, respecting
anonymity and data privacy by collecting non-sensitive data.
In addition, it provides a web viewer that allows users to
navigate through Google maps using numerous different filters.
All data are available through well-documented open APIs
that enable to use them for developing novel solutions and
applications in a disperse area of domains, ranging from
corporate to education and research. For instance, CrODA-
gator may be utilized in the domain of education by allowing
institutions to analyze crowdsensed spatiotemporal data (such
as temperature, humidity, noise) and provide visual represen-
tations to their students for understanding concepts related
to climate changes and global warming effect. Furthermore,
the CrODA-gator follows a modular architecture that can
easily extend and/or enhance its existing functionalities, and
offers an effortless procedure for adding new modules (e.g.,

adding new sensor types). For dealing with the potentially
huge amount of data simultaneously, CrODA-gator uses a
simple implementation of the Map-Reduce mechanism that
allows easy data aggregation and mapping in GIS as well
a mechanism for filtering out the outliers. In this way, the
users are not overwhelmed with a huge number of raw sensor
records but rather with a smoother layer of indicative data.

CroDA-gator’s key contribution is the public crowd-
sourcing Platform as a Service, which provides open access
to data contributors via the following features:
• An open access cloud-based platform that collects sensors

data available from heterogeneous smart mobile devices,
filtering out outliers and aggregating useful data.

• A number of well-documented APIs with public ac-
cess and data formatting guidelines for (a continuously
growing number of) supported sensors, to be used for
contributing real-time and offline bulk data, as well as
using these datasets for developing novel applications.

• A web viewer that optimally aggregates and maps spatio-
temporal data in GIS and visually depicts the dataset
representations along with a number of filtering options
for developing new maps.

The rest of the paper is organized as follows: Section 2
overviews the related work, Section 3 presents the CrODA-
gator architecture including its individual modules and mech-
anisms. Section 4 presents the experimental study and finally
Section 5 concludes the paper.

II. RELATED WORK

The smartphones’ unique characteristics and features, such
as their pervasiveness, ubiquitous availability and multi-
sensing capabilities, have provided a new variety of efficient
means for data collection enabling the so-called mobile crowd-
sourcing applications [6], [11]. Mobile crowdsourcing can be
classified by whether the crowd’s contribution is participatory,
meaning that the input is computations performed by users and
user generated data similar to how crowdsourcing services
are used in the web, or opportunistically that includes data
generated from sensors and computations performed by the
crowd devices automatically [2]. The latter is also known
as Crowdsensing [12] due to the procedural importance and
extended use of the device’s sensors.

Providing crowdsourcing as a service, which is making the
collected dataset available to the public through the use of
well-structured and implemented web APIs, is an incentive
and reward for the community to support such services.
Crowdsourcing platforms are already becoming popular in the
computing community. Some platforms provide crowdsensing
as a service [13], [14], but do not provide public open access
to the service, to the best knowledge of the authors.

For example, Device Analyzer [8] is a data collection
Android tool that collects various device information ranging
from the operating system and the list of applications installed
to periodic sensor readings (e.g., acceleration, air pressure,
brightness) depending on the sensors availability on the device.
OpenStreetMap (OSM) [10] is a knowledge collective that

TABLE I
TAXONOMY OF CROWDSOURCING PLATFORMS AND APPLICATIONS

Platform MPS Open Dedicated MSS Bulk Data
APIs Application Import

Device Analyzer [8] × × X X ×
OpenStreetMaps [10] X X × × ×

CrowdSignals.io 3 X × × X ×
Anyplace [9] X X X . × ×
CrODA-gator X X X X X

MPS: Multi-Platform Support; MSS: Multi-Sensors Support

provides user-generated street maps. OSM is much more than
a simple crowdsensing application since it provides a complete
service with advanced functionality. For example, it offers a
Google Maps style online mapping interface that maps and
represents the collected data in a so-called OSM map as well
as exporting possibilities in different vector formats for further
use or processing. It also provides to contributors APIs for
uploading newly collected data and correcting spotted errors.
CrowdSignals.io3 aims to create the largest set of rich, lon-
gitudinal mobile and sensor data recorded from smartphones
and smartwatches. Finally, Anyplace [9] developed at the
University of Cyprus is an open architecture that collects
indoor information using crowdsourcing for providing users
fine-grain indoor navigation services.

Table I summarizes key high level features of the various
platforms and compares them with the proposed CrODA-gator
PaaS. Device Analyzer is only an Android application that
allows the collection of multiple device data. Anyplace and
OSM, on the other hand, offer multi-platform compatibility,
provide open and well-documented APIs and offer an online
viewer that efficiently map and present the data, similarly
to CrODA-gator. Both however, do not offer a dedicated
application to allow contributors to enrich the existing datasets
and manage the data. Instead, it requires the development of a
native application to utilize the data via API calls. Moreover,
Anyplace and OSM, rely only on particular device readings,
such WiFi RSSI for Anyplace and GPS coordinates for OSM.
Crowdsignals.io provides multi-sensors support, but it does
not offer open APIs for data access and management. It rather
merely offers a single sample free dataset along with code
in Java and Python to aid developers, while requests for
additional datasets access can be send. Finally, none of those
platforms offer a bulk data import functionality.

Other well-known repositories with general datasets, includ-
ing KDnuggets, DRYAD, Datahub and re3data are not primar-
ily focused on hosting ubiquitous or small-device datasets, but
some of their datasets may include small devices as well.

III. OVERVIEW OF CRODA-GATOR

In this section, the platform architecture is presented. As
illustrated also in Figure 1, this section starts with an overview
of the user interface, then the data layer and finally the APIs
and their documentation. This is followed by a more detailed

3“CrowdSignals DataSet and Platform”, Source: http://crowdsignals.io.

Fig. 1. The CrODA-gator Architecture.

description of the most important modules and algorithms as
well as the CrODA-gator’s dedicated smartphone application.

Web Server and Data Store: The CrODA-gator platform
is currently deployed on Microsoft’s Azure Cloud that offers
scalability, security and extensibility. In particular, a Windows
Server 2008 R2 is used with an AMD Opteron(tm) Processor
4171 HE 2.10 GHz, 1.75 GB RAM and a 64-bit Operating
System. All web-based modules were developed using the
Adobe’s Coldfusion programming language that is built on
top of Java and uses Apache Tomcat J2EE container, allowing
for raw Java invocations and class reuse. The web server also
hosts a conventional MySQL 5.5 database utilized for storing
devices related data and all mobile crowdsensed data.

Web User Interface: The CrODA-gator’s web interface that
visually maps and represents the crowdsourced data in real-
time adopts the asynchronous non server-side technologies
jQuery and AJAX to handle the events, the documentation and
map manipulation, as well as any other client-side activities
offered by CrODA-gator’s website. For the more complex and
time-consuming tasks, several community tested and widely
used plugins were used along with jQuery that include: (i)
Simple upload (v1.0) that is an extremely simple yet pow-
erful jQuery file upload plugin designed to be non-intrusive,
backwards-compatible, flexible, and very easy to understand,
(2) jqBootstrapValidation (v1.3.6) that is a JQuery validation
plugin for validating bootstrap form fields, (iii) Bootstrap
(v3.3.7) web framework for developing responsive, mobile
first projects on the web and (iv) Font Awesome (v4.6.3)
that provides scalable vector icons, which can instantly be
customized via CSS. Moreover, the CrODA-gator follows the
Model-Viewer-Controller (MVC) design pattern that offers
code reusability, modularity and allows parallel development.

The web interface is mainly composed of three components,
namely the Bulk Data Import, the Upload Logging and the
Web Viewer:
• Bulk Data Import: allows users to upload files in json or

csv format in the database, offline.
• Upload Logging System: keeps track of the Bulk Upload

scheduled tasks operated and if any issues come up, it
stores a message describing the issues in detail, for the
administrators to handle them at their convenience.

• Web Viewer: provides access to all crowdsourced data
stored in the database sorted by sensor/measurement type
and view them in two different map layouts, as well as
averages scaled from country level to small areas level.

API & Documentation: Open APIs are the most important
component of the CrODA-gator framework, since they consist
of a number of clearly defined methods used to communicate
with any multi-platform application for either contributing or
retrieving data from the CrODA-gator’s database. All APIs
were developed with a built-in verification process that checks
the validity of a request before proceeding to execution. This
avoids redundant processing on the server side and faulty data
insertion in the database. The open APIs offered by CrODA-
gator along with a well-defined documentation can be found
in CrODA-gator’s web site4.

A. Android Application

The CrODA-gator application is currently developed on top
of the ubiquitous Android OS and allows a user to select
one or more data recordings to be either stored locally at the
mobile device and then uploaded to the database using the
Bulk Data Import component, or forwarded to the CrODA-
gator’s data store directly through the open APIs, in real-time.
The application currently tracks various types of sensor data
including noise, WiFi RSSi, pressure, mobile data, location
data (GPS) accelerometer, compass and gyroscope data, but
it can be easily expanded to include more sensor types. The
user can start/stop the recordings at any time and can visually
follow the recordings in real-time. Figure 2 shows some of the
activities of the dedicated CrODA-gator Android application.

B. Plotting and Data Mapping Algorithm

The CrODA-gator’s online viewer provides a visual rep-
resentation of all data in two view-forms depending on the
zoom level, as shown in Figure 3. For low zoom levels, the
grid-view is adopted, which projects geographic coordinates to
screen coordinates, draw grids representing few square meters
area each and matches the geo-located crowdsourced data to
each grid. For high zoom levels, the per country pin-view is
adopted that shows a pin at the center of each country and
shows the average of each data type for the whole country.

In particular, when the map is zoomed out to a zoom
value greater than ten (10) in Google maps API, the per
country pin-view appears showing the averages for the whole
country only, as depicted in Figure 3 (a). If a country does not

4CrODA-gator: http://mdl.frederick.ac.cy, https://goo.gl/GVeUSX

Fig. 2. The CrODA-gator Android application.

contain any data, then a different pin appears to indicate the
absence of data. To keep track of the averages of each country
for each data type, an algorithm is used that calculates the
average values each time a new measurement is contributed
to the dataset. If, for instance, a mobile device contributes a
new recording through the API (e.g. a Wi-Fi signal strength,
temperature), then CrODA-gator initially checks and finds,
using the Google reverse geo-coding API, to which country
this recording belongs to and then recalculates the average for
the whole country for that particular data type. Note that bad
recordings are automatically discarded by the outlier filtering
algorithm described below in Subsection III-C and they are
not included in the calculations.

Fig. 3. The CrODA-gator Viewer.

For zoom levels below ten (10) in Google maps API, the
grid-view appears that shows averages for small areas of few
square meters, for each data type. This is achieved by initially
retrieving the latitude and longitude of both the North-East
and the South-West Google map corners through the Google
maps Javascript API. These values are then forwarded to
CrODA-gator’s API along with the selected data type. Then
the CrODA-gator retrieves all data sensed by the mobile
crowd for that particular area. The data are then passed to
the plotting function, which associates each data recording to
the correct grid and finally finds the averages of all grids.
The opacity value of each grid indicates the average value
level of the selected data type as shown in Figure 3 (b).
The higher the opacity the lower the average value and vice-

versa. Algorithm 1 summarizes the Recursive Indexing with
Elimination (RIE) plotting function just described.

Algorithm 1 Recursive Indexing with Elimination (RIE):
Plotting and Data Mapping
Input: Current viewport bounds (North-East/South-West
latitude and longitude)
Output: Grid layer with data averages on top of Google
maps

1: hr → d(NE,NW)/zoomLevel(m) . # of horizontal rectangles
2: vr → d(NE,SE)/zoomLevel(m) . # of vertical rectangles
3: while hri > 0 || vri > 0 do
4: for all rz ∈ R do . loop Recordings
5: if rz ∈ b(hri, vrj) then . if recording in bounds
6: opacity → (mav −mmin)/(mmax −mmin)
7: drawR(i, j) . draw rectangle
8: rm(rz, R) . remove recording
9: end if

10: end for
11: end while

C. Outlier Filtering Algorithm
CrODA-gator depends heavily on data contributed by the

crowd and the crowd’s understanding and decisions depend
heavily from the data integrity of the proposed service.
Therefore, a simple, yet powerful, outlier filtering algorithm,
named Relative Threshold Divergence Purge (RTDP), was
implemented that prevents users from distorting the dataset
either accidentally or intentionally.

For each new data entry mj
i retrieved by device i at a

specific location (xi, yi) for sensor type j, the RTDP works as
described in Algorithm 2. The mj

i is initially compared with a
pre-specified mj

min and mj
max values for sensor type j, as well

as an average value mj
av of all data falling within r KMs from

(xi, yi). If the new data entry mj
i is greater than mj

max or less
than mj

min or diverges more than ε from mj
av (e.g, ε = 33%)

then mj
i is treated as an outlier and is not inserted in the data

store. Each time a new data entry contributed by device i is
considered as an outlier then a counter oi associated with i is
increased. Finally, a device i is added in the banned devices list
when oi ≥ b, where b is the maximum banned entries allowed
for each device using the CrODA-gator PaaS. Since CrODA-
gator promotes user anonymity and does not include any user

Algorithm 2 Relative Threshold Divergence Purge (RTDP):
Outlier Filtering

Input: Data Entry mj
i of device i for sensor type j at

location (xi, yi); oi: outlier counter of i; r: radius of circle
with (xi, yi) centroid; ε: divergence threshold; b: banned
devices threshold;
Output: Acknowledges Data Entry

1: for all mj
i do . for all new entries

2: mj
av → avInRadius(j, (xi, yi), r) . average within r KMs radius

3: if (mj
min < mj

i < mj
max)&&|mj

i −m
j
av < ε| then

4: accept recording
5: else
6: reject recording
7: oi + +
8: end if
9: if oi > b then

10: add i in banned devices list
11: end if
12: end for

registration phase, in order to uniquely identify the devices
(and not the users), the Unique Device Identifier (UDID) of
each device is retrieved each time an API is called. This allows
the platform to keep track of contributed data validity and
guarantee that users are sending (anonymously) genuine data.

IV. EXPERIMENTAL EVALUATION

This section presents an evaluation in terms of the execution
time of the platform’s modules.

A. Methodology

In this study realistic datasets of different sizes and sensors
were constructed, in order to evaluate the scalability and
efficiency of the platform offline. In particular, the small data
set includes 3000 data entries and its size is around 500KB and
the large data set includes 50000 entries and its size is around
1.2 MB. Small and large data sets were generated for both
WiFi RSSi and pressure data. The proposed outlier filtering
and data mapping algorithms were compared with benchmark
approaches in terms of their execution time, i.e., the individual
time that an algorithm requires to accomplish its task.

The experimental study compares the proposed approaches
with benchmark approaches for the following components:
(i) Outlier Filtering: the proposed Relative Threshold Diver-
gence Purge (RTDP) described in Subsection III-C is com-
pared with the Borderline Outreach Purge (BOP) approach
that adopts only the first step of RTDP. Hence, BOP compares
the new entries with pre-specified boundaries (i.e., minimum
and maximum values for each sensor type) and if their value
outreaches the boundaries then they are treated as outliers.
(ii) Plotting and Data Mapping: the proposed Recursive
Indexing with Elimination (RIE) approach described in Sub-
section III-B is compared with the Basic Recursive Indexing
(BRI) algorithm that starts from a predetermined grid (i.e., top
leftmost corner as in RIE for consistency) and for each grid
the measurement values contained in the result set are checked
to determine if they belong to this grid or not. Then this grid
is drawn on the map as an overlay depending on the average

calculated value. The main difference between BRI and RIE
algorithms is that BRI is not purging each value from the
result set once its location is determined, thus keeping its size
the same as the initial size and forcing each iteration to use
abundant values during the scanning process.

All experimental results below show the averages of 100
consecutive runs, for fairness. The test instances used in the
experimental study are summarized in Table II.

TABLE II
TEST INSTANCES (TI)

Test Inst. Dataset Size (Data entries/bytes) Sensor Type
T1 Small (3000/500K) WiFi RSSi
T2 Large (50000/1.2M) WiFi RSSi
T3 Small (3000/500K) Pressure
T4 Large (50000/1.2M) Pressure

B. Experimental Evaluation

This subsection compares the proposed plotting and data
mapping algorithm RIE and the proposed outlier filtering
algorithm RTDP with the BRI and BOP (described in Sec-
tion IV-A), respectively, in all test instances of Table II in
terms of their individual execution time.

The statistical results of Table III as well as their visual
representation in Figure 4 show that regarding the plotting and
data mapping approaches, the performance of RIE is better
than BRI, in all test instances. In particular, RIE executes
around 30 msec faster than BRI for the small datasets of test
instances T1 and T3, and around 650 msec faster for the large
datasets of test instances T2 and T4, on average. In terms
of standard deviation, the results show that both algorithms
are relatively independent of the data size since the standard
deviation is small in all test instances. Even in this case,
however, the proposed RIE provides a similar performance
than BRI for small datasets and slightly better performance
for large datasets. Both algorithm behave similarly for both
sensor types, however, it is important to notice the scalability
of the proposed RIE approach since its efficiency is not
proportionally influenced by the increase of the data size. The
increase from the small (3000 entries) to the large (50000)
data set was around 16.7 times, but the increase of the RIE’s
execution time is about only 1.6 times for both sensor types.

Regarding the outlier filtering approaches, the results show a
similar performance by RTDP and BOP in small datasets, but
a better performance of around 300 msec for BOP with respect
to the proposed RTDP in large datasets, as expected. This is
due to the fact that BOP compares every new entry with just
the pre-specified min-max values of each sensor type. RTDP,
on the other hand, makes a more detailed check in order to
identify the outliers, since it compares each new entry with the
pres-specified min-max values as well as with the average of
all values falling within a fixed distance from the contributor’s
current location. Even though this can be considered a costly
process, the difference between the two approaches is still
small. Moreover, both algorithm behave similarly in terms of

(a) Test Instances: T1 & T2 (b) Test Instances: T1 & T2 (c) Test Instances: T3 & T4 (d) Test Instances: T3 & T4

Fig. 4. Comparison of all algorithms in all test instances in terms of execution time (in msec)

TABLE III
COMPARISON OF ALL ALGORITHMS IN ALL TEST INSTANCES IN TERMS OF

EXECUTION TIME (IN MSEC)

Plotting/Data Mapping Outlier Filtering
Test Inst. Statistics BRI RIE RTDP BOP

T1 min 140 117 50 19
max 208 219 311 175

average 155.909 134.131 76.909 43.898
std 13.480 14.926 36.471 22.178

T2 min 956 255 531 465
max 1060 381 5491 5127

average 981.808 284.565 2156.252 1835.626
std 28.168 20.545 768.549 752.548

T3 min 145 117 32 29
max 215 222 193 173

average 159.878 138.161 57.898 55.262
std 13.888 26.707 23.644 18.9

T4 min 801 166 870 335
max 947 280 4646 5159

average 824.888 186.464 2004.01 1786.838
std 28.394 21.359 676.162 696.634

standard deviation for both sensor types and they both scale
well and efficiently with respect to the dataset size increase.
In particular, BOP performs slightly more steadily for test
instances T1 to T3, but offers around 20 msec less std for
test instance T4. The 16.7 times increase of the dataset size,
however, looks to have influenced more the BOP approach
than the proposed RTDP, since the execution time of BOP
increased by 38 times and that of RTDP increased by 31 times.

V. CONCLUSIONS

This paper presents an innovative Crowdsourcing Platform
as a Service, coined CrODA-gator, which follows a scalable
and extensible architecture, offering data access to various
devices, supporting both real-time and offline data aggregation
and enabling open access to the collected data. CrODA-gator
also incorporates a set of mechanisms for outlier filtering and
a web viewer with an optimal GIS mapping of the spatial data
for real-time visualization as well as a dedicated smartphone
application and well-documented APIs. The most important
modules of the proposed platform were evaluated over datasets
of various sizes, for different sensor types in terms of their exe-
cution time. The experimental study, using realistic sensor data

(offline), reveals that CrODA-gator provides an efficient and
scalable PaaS that is open to the public for contributing and
using crowdsourced data. Future work aims at an experimental
study with crowdsensed data in real-time.

ACKNOWLEDGMENT

The authors would like to thank Ms. Jovanna Zonia for
implementing and providing the Android application code.

REFERENCES

[1] J. Schwartz, J. M. Samet and J. A. Patz, “Hospital admissions for heart
disease: the effects of temperature and humidity,” Epidemiology, vol. 15,
no. 6, pp. 755-761, 2004.

[2] B. Guo, Z. Yu, X. Zhou and D. Zhang, “From participatory sensing to
Mobile Crowd Sensing,” IEEE International Conference on Pervasive
Computing and Communication Workshops (PERCOM WORKSHOPS),
Budapest, 2014, pp. 593-598.

[3] T. Li et al., “Scalable privacy-preserving participant selection in mobile
crowd sensing,” IEEE International Conference on Pervasive Computing
and Communications (PerCom), Kona, HI, 2017, pp. 59-68.

[4] D. Guedj and A. Weinberger, “An exploratory look at supermarket
shopping paths,” International Journal of research in Marketing, vol.
22, no. 4, pp. 395-414, 2005.

[5] C. Kronis, A. Konstantinidis and H. Papadopoulos, “Human-Like Agents
for a Smartphone First Person Shooter Game using Crowdsourced
Data,” IFIP Artificial Intelligence Applications & Innovations (AIAI’13),
Springer, Paphos, Cyprus 2013.

[6] G. Chatzimiloudis, A. Konstantinidis, C. Laoudias, D. Zeinalipour-
Yazti, “Crowdsourcing with Smartphones,” Special Issue: Crowdsourc-
ing, IEEE Internet Computing, vol. 16, no. 5, pp. 36–44, 2012.

[7] T. Imielinski and B. R. Badrinath,“Querying in highly mobile distributed
environments,” VLDB, vol. 92, pp. 41-52, 1992.

[8] D. T. Wagner, A. Rice and A. R. Beresford, “Device analyzer: Under-
standing smartphone usage,” International Conference on Mobile and
Ubiquitous Systems: Computing, Networking, and Services,, 2013.

[9] K. Georgiou, T. Constambeys, C. Laoudias, L. Petrou, G. Chatzim-
ilioudis and D. Zeinalipour-Yazti, “Anyplace: A crowdsourced indoor
information service,” 16th IEEE International Conference on Mobile
Data Management, 2015.

[10] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
IEEE Pervasive Computing, vol. 7, no. 4, pp. 12-18, 2008.

[11] M.-C. Yuen, I. King and K.-S. Leung, “A survey of crowdsourcing
systems,” 3rd IEEE Conference on Social Computing, 2011.

[12] D. Govindaraj, K. Naidu, A. Nandi, G. Narlikar and V. Poosala, “Mon-
eyBee: Towards enabling a ubiquitous, efficient, and easy-to-use mobile
crowdsourcing service in the emerging market,” Bell Labs Technical
Journal, vol. 15, no. 4, pp. 79-92, 2011.

[13] G. Merlino, S. Arkoulis, S. Distefano, C. Papagianni, A. Puliafito,
S. Papavassiliou, “Mobile crowdsensing as a service: A platform for
applications on top of sensing Clouds,” In Future Generation Computer
Systems, Volume 56, 2016, pp. 623-639.

[14] S. Distefano, A. Puliafito, G. Merlino, F. Longo and D. Bruneo, “A
Stack4Things-based platform for mobile crowdsensing services,” ITU
Kaleidoscope: ICTs for a Sustainable World (ITU WT), 2016, pp. 1-8.

