Model Matching for Web Services on Context
Dependencies

Georgia M. Kapitsaki
University of Cyprus
P.O. Box 20537
1678, Nicosia,Cyprus

gkapi@cs.ucy.ac.cy

ABSTRACT

Model matching has been applied to different fields of Model
Driven Engineering research and usually concerns models
depicting the same information in order to detect their evo-
lution process or elements on which model migration is needed.
In the current paper a different approach is followed by com-
paring models that depend on each other on a more specific
basis: matching for Web Service models using dependencies
on context information is addressed. The models follow the
notation of an appropriate Web Service metamodel that cap-
tures Web Service properties. The models are represented as
typed attributed graphs and their comparison is performed
on an introduced variant of the Similarity Flooding algo-
rithm, which is usually applied on schema matching. The
application of the matching process is demonstrated through
a number of constructed and existing Web Service descrip-
tion graphs extracted from online service registries.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.13 [Software Engineering]: Reusable Soft-
ware— Reuse models

General Terms
Design

Keywords

model matching, model comparison, web services, context,
context-awareness

1. INTRODUCTION

Model transformation and model matching constitute two
important fields in the Model Driven Engineering (MDE)
research that has emerged from OMG’s Model Driven Ar-
chitecture (MDA) [10], but with a much wider sense. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

iiWAS2012 3-5 December, 2012, Bali, Indonesi

Copyright 2012 ACM 978-1-4503-1306-3/12/12 ...$15.00.

45

Achilleas P. Achilleos
University of Cyprus
P.O. Box 20537
1678, Nicosia,Cyprus
achilleas@cs.ucy.ac.cy

many cases model transformation is related to model match-
ing used in diverse domains in order to discover correspon-
dences between model elements. In the existing literature
the common use case is to apply model matching on models
depicting the same kind of information, expressed usually in
different versions of the same model. These models may be
based on the same metamodel notation or conform to dif-
ferent metamodels. In the latter case, model matching on
the metamodel level also needs to be addressed [23]. When
versions of the same model are considered model matching is
performed for purposes of model or system evolution, which
is a useful activity in the software engineering industry for
expressing the evolution of software systems. Model match-
ing can also be used for identifying elements on which model
merging can be performed. This case is used for purposes of
model migration to new systems.

Model matching or model comparison has been addressed
from the above perspective in many previous works by pro-
viding generic or specialized solutions (e.g., SiDiff [21]). In
this paper we address the issue of model matching for the
case of Web Services (WSs) and more specifically for context-
aware Web Services capturing context adaptation, i.e., adapt-
ing Web Services to context information. Context-awareness
refers to applications and services with the capability of
adapting themselves proactively to the information on user,
environment and application context. Context can be used
to characterize any information relevant to an entity and its
surroundings [1]. Examples can be found in the user loca-
tion, current activity, health condition and weather condi-
tions [12]. This meaning of context is assumed in the current
work.

Various context-aware Web Service systems exists in the
literature [22], whereas context-aware Web Services are usu-
ally given in modeling notation. Although context-awareness
in Web Service systems has spread, handling development
at the modeling level, especially when existing services are
employed in order to build new, larger applications, is miss-
ing. Existing Web Service models can be combined in order
to result in context-aware applications consisting of reusable
models. The existing work tackles this gap by presenting a
solution in model matching for Web Services for context-
awareness purposes. In order to make the need for this
matching on Web Services more explicit the categories of
Business Web Services (BWSs) and Context Web Services
(CWSs) are considered as introduced in previous works [6,
7]. In short, BWSs require context information for their
functionality (e.g., tourist services retrieved based on the
user location), whereas CWSs offer context information (e.g.,

providing information on weather conditions based on sen-
sor data). Note that there are cases, where a WS can have
both roles, i.e., BWS and CWS, depending on the scenario
of use. Both categories can be encountered in software sys-
tems developed either internally or as reusable services from
individual providers indexed in service registries, such as
seekda' and webservicex?.

In this paper an adapted version of the Similarity Flood-
ing algorithm [14] for handling the problem of Web Service
model matching for context adaptation purposes is being
proposed. The matching is performed with the following
steps: 1) Input model representation as typed attributed
graphs, 2) Construction of the similarity propagation graphs
for context-related elements of the models, and 3) Applica-
tion of the variant of the similarity flooding algorithm. The
main part of the matching procedure is found in step 3,
where techniques related with label matching and similarity
detection employing different matching algorithms are used.
The similarity functions considered are widely employed in
the field of bioinformatics (e.g., Levenstein distance or the
Smith Waterman algorithm for string matching).

The rest of the paper is structured as follows: Section 2
presents the adapted similarity flooding algorithm by an-
alyzing the different steps of the procedure. Section 3 is
dedicated to the employed similarity functions ranging from
string matching to semantic concepts. A demonstration of
the application of the algorithm on Web Service models is
discussed in Section 4. The related work of the field is pre-
sented in Section 5. Finally, Section 6 concludes the paper.

2. ADAPTED SIMILARITY FLOODING

A variant of the similarity flooding algorithm [14] is pro-
posed for performing the model matching between Business
Web Service and Context Web Service models. Both input
models to be matched are represented using the WS meta-
model present in the modified version of the ContextUML
metamodel [16] introduced in [8]. The ContextUML meta-
model is divided into two parts: one part is dedicated to the
description of Web Service-relevant information that can be
exported from the WS specification description in Web Ser-
vice Definition Language (WSDL) and the other is used for
describing context information. As aforemementioned in the
current work only the first part is employed containing el-
ements present in WSDL documents as presented also for
WS composition purposes in a Unified Modeling Language
(UML) metamodel in [17].

2.1 Model Representation

The aforementioned Web Service metamodel has been trans-

formed to the typed attributed graph of Fig. 1. Typed at-
tributed graphs ATG = (G; D) are used extensively in graph
transformations [4]. In theory they consist of an E-graph G
together with a DSIG-algebra D (data signature algebra).
In practice they constitute an abstract syntax graph of a
model. In the current work the WS metamodel has been
used as input for the construction of the corresponding typed
attribyted graph. The graph consists of:

e square graph nodes (e.g., BusinessService, WSOpera-
tion)

Thttp:/ /webservices.seekda.com/
www.webservicex.net/

46

e data nodes (only the Stringdata node is present in the
metamodel)

Nodes are connected with edges depicting either: the re-
lations between graph nodes with a similar functionality as
the relationships in UML modelling, or the type of attributes
linked with a graph node (e.g., graph node Message has an
attribute name of type String). The reader can refer to
previous work of the authors for more information on the
metamodel [7].

In order to introduce the elements that participate in the
metamodel, two sample Web Service models are depicted in
Figs. 2 and 3. The first model refers to a BWS, namely
Temperature WS, that provides temperature information for
specific locations through its get Temperature operation. The
input of this operation is the current city, where the re-
quester is located, as expressed in the input message Part
element named cityName. This input information refers to
contextual information and expresses the dependency of the
BWS to context. This type of dependency is called param-
eter injection [9]. In parameter injection one or more input
parameters of the input message of the Web Service corre-
spond to context data. For the proper WS execution this
context data needs to be available.

The second WS model is an example of the CWS Loca-
tion WS that provides information on the current location
of the requester. Specifically, through the two offered oper-
ations, i.e., getCountryByIP and getCityBylP, the current
country and the current city can be retrieved respectively.
Both operations require the IP address of the requester’s
machine as input and return the information in a String rep-
resentation as in the ValueObject type of the output message
Part.

From the model representation it can be deducted that
the Location WS CWS may be used to retrieve the city name
context information needed by the Temperature WS BWS for
the proper invocation of its get Temperature operation as re-
quired by parameter injection. Apart from this adaptation
type, a second adaptation addressed is found in operation
selection also introduced in [9]. Operation selection corre-
sponds to the case, where the selection of the BWS operation
to be invoked depends on context information. Consider for
instance the OurProducts WS (Fig. 4), which exposes a num-
ber of operations for retrieving prices for the products of the
company OurProducts. Since the produtcs are distributed
in various countries, the applicable prices in each country
are captured in separate operations: getGermanyPrice and
getltalyPrice retrieve prices in Germany and Italy respec-
tively. Depending on the location of the requester a choice
is made on the operation to be called. This is an operation
selection case for the two operations depending on context.
Generally, operation selection is used when a WS exposes
more than one operations that provide the same functional-
ity in different ways or with different parameters (in number
and meaning). The decision, on which operation to invoke,
depends on the current context data.

2.2 Compatibility Graph

In order to express the compatibility between elements of
the two models, the Pairwise Connectivity Graph (PCG) in-
troduced in the similarity flooding algorithm [14] has been
employed. The PCG contains nodes from models B and
C to be matched, where ((x,y),p, (z',y")) € PCG(B,C),
when (z,p,z’) € B and (y,p,y’) € C with z,2’,y,y" cor-

Figure 1: Typed attributed graph for the modified ContextUML metamodel.

-
-

: BusinessService

[, ’businessendpoint

A
cityMame \ name
S
Y

e
- WSO jr -

realization

T TemperaturePT
- etTemperature
i

provision

request - —X_getTempRes
, name \ 4 response /name
- Pal"l % &
~ ~ u part
| cPat f——{ iinMessage | [:OutMessage |———f :Par
lype =7 name lype name |
name
’mmpemture !
: ValueObject L - * ValueQbject

Figure 2: Typed attributed graph of Temperature WS Business Web Service.

responding to nodes and p to an edge in the input model
graphs.

In the original similarity flooding algorithm a unique PCG
is sufficient to express the compatibility between two models.
However, in the current problem addressed the matching is
not only applied on similar graph elements on an exhaustive
basis for all graph nodes. When targeting the context adap-
tation cases, specific matching rules need to be defined and
expressed as part of the PCG. Therefore, the PCG concept
is extended by multiple PCGs with each one expressing a
different matching rule. Each PCG contains only the neces-
sary elements participating in the rule; the rest of the model
elements do not affect the matching outcome. For instance,
in the parameter injection adaptation case, it is meaning-
ful to match the input parameters of the BWS operation
against the output parameters of the CWS. This indicates
that the participating elements are limited to: Part, InMes-
sage, OutMessage and ValueObject. The rest of the mod-
eling elements (e.g., BusinessService or ContextService) are

47

irrelevant to the matching and are, therefore, not present in
the PCG.

The set of PCG graphs for the parameter injection adapta-
tion are depicted in Fig. 5. The names in the nodes are pre-
sented in the form <model name>! <model element> with
model name B referring to the BWS model and model name
C referring to the CWS model. The first graph captures the
similarity that should exist between the input parameter of
the BWS operation (B!Part) and the output parameter of
the CWS operation (C!Part). The remaining nodes capture
the relation of this node to the other model elements. The
second graph captures the similarity between the input pa-
rameter of the BWS operation (B/Part) and the name of
the WSOperation of the CWS. It is desirable to perform the
matching also on this level, since it is usual for Web Service
operations to have an expressive name depicting the kind of
information they provide (e.g., getCountryByIP). The edge
names have been created by concatenating the respective
names in the BWS and the CWS model. This is a neces-

businessendpoint _ —— iContextService —————
name

/

getCountryByIP

rovision

/
: PortType F

~ Y LocationPT

realization

name

provision

e getCityByIP
s name

name
ﬁ WSOperation ‘ : WSOperation F/
getCountryRes
request

response
\name

\ﬁ : OutMessage
name
part ‘
DalauTW getBylPCReq
/

name /

response

: OutMessage

: ValueObject

request
o
: InMessage pa \\ name
: Part \
part type \
vP name /

S
name

Figure 3: Typed attributed graph of Location WS Context Web Service.

name

- { : BusinessService k - OurProductsWS
7
7

(businessendpoint

provision

: WSOperation

\
name \

/
getltalyPrice

/
 PortType F name

provision

/
: WSOperation }/

realization

—-——

e

> OurProductsPT
,~ > getGermanyPrice

name

naTQ-— getPriceRes
response _ -~
7

Figure 4: Typed attributed graph of OurProducts WS Business Web Service.

sary preprocessing step for applying the similarity flooding
algorithm that constructs the PCG based on identical edge
names in the input graphs.

The graphs for operation selection are presented in Fig. 6.
The matching of this category is applicable on BWSs that
expose operations with a high degree of similarity, i.e., op-
erations that perform similar processing offering the same
functionality on different parameters or in a different way.
Therefore, the PCG is constructed only for model graphs
that adhere to this prerequisite. The graph elements present
in the PCGs are the name of the BWS operation (B!WSOpe-
ration) that needs to match the output parameter of the
CWS operations (C!Part). As in the parameter injection
case the name of the BWS operation participates in the
matching. This is expressed in the second graph of the set,
where the operation names are matched (B!/WSOperation
and C!WSOperation). More details on the necessity of the
matching rules can be found in a previous publication of the
authors [6].

48

2.3 Flooding on Graphs

The element similarity (on the graph nodes) is calculated
based on a similarity function that can employ different
matching algorithms or tools for syntactic or semantic match-
ing (e.g., Levenshtein distance, custom matching algorithms).
The structural similarity is addressed by the subsequent cal-
culations of the similarity function in the similarity flooding

algorithm:

me&edges(n)

i+1

On (nz7ny):axo—;+ﬂx w(m7n)xo—zn(m17my)

The similarity between the nodes is computed based on
the similarity of the nodes in the previous iteration of the
algorithm and the similarity degree of the adjacent nodes
in the PCG. The constants o and § depict the importance
of the initial similarity value, which is based purely on the
matching on the labels of the nodes, and the importance
of the node neighbors respectively. This follows the same
concept for weighting the linguistic or semantic versus the

provision, response

@mtion, ClPart)<

\
\ hame, name

AN -y B!String,
C!String

B!PortType,
C!OutMessage

\\name, name
< _ BlString,
C!String

B!PortType,

provision, provision
B!WSOperation, P
C!WSOperation -
\

\ name, name
AN

>~ _/ BlString,
C!String

name, name’' < \

C!PortType

businessendpoint,
businessendpoint

N
B!String, ™\ ™~ _,/ B!String,
C!String C!String

\

Figure 5: Pairwise connectivity graphs for context matching for parameter injection.

-
\ hame, name
AN —
N <y BlString, ™\
Clstring _/

part, provision

~ BWPart,
T GERpa eI
\ name, name

AN ~y BIString,
C!String

type,type

‘//gigaluebjgax‘__’(gwan C!Pa;
\._ClValuebject \, ’)

/4

——
(__hame, name

request, response — =

_ ClOutMessage

_—
—
-

7/ name, name

N\ S e
\/ BiString, ™ BIString,
C!String/ C!String

B!I;Messiaige,
C!PortType

T name, name

\
AN ﬁtring,
\QString

Figure 6: Pairwise connectivity graphs for context matching for operation selection.

structural similarity of two elements as in [23]. The impor-
tance of structural similarity is not the same as in generic
model matching or comparison approaches that capture the
structure of the whole model. In the current problem the
relation with other model nodes is known in advance and is
limited to a subset of the model graph as expressed in the
respective compatibility graphs. As in the original similarity
flooding algorithm in each iteration the similarity values for
each node are normalized in order to result in o, € (0,1)
by dividing each value with the maximum value obtained in
that iteration.

In the original similarity flooding algorithm the iterations
are performed until the similarity values in each iteration
differ slightly from the previous ones, i.e., the delta becomes
less than a threshold e. This is not applicable in the ad-
dressed case due to the small size of the PCGs; the algorithm
with the consecutive calculations of the similarity function
is terminated when all graph nodes have been reached.

3. SIMILARITY FUNCTIONS

The similarity outcome is dependent on the initial algo-
rithm employed for the computation of ¢3. Various algo-
rithms for calculating the similarity distance can be con-
sidered [2] with all providing values of o5 € (0,1).Three
different metrics are used in this work: 1) Levenstein dis-
tance, 2) WordNet lexical database [19], and 3) Trigrams.
As aforementioned in contrast to conventional approaches
two elements to be matched may not correspond to the same
metamodel element: for instance, a parameter name may be
compared with a class name. This is necessary in the current

49

problem in order to capture the context adaptation cases.
Nevertheless, in the typed attributed graph representation
of the previous Sections all model elements are treated in a
uniform manner.

3.1 Levenshtein distance

The Levenshtein distance normalized to the length of the
element names being compared is used as described in [5]:

ov(nz,ny) = 1 — lev(ng, ny) /maz(length(ny), length(ny))

For instance, if the Levenshtein distance is applied for
the first graph of the parameter injection adaptation case
on elements B!/Part with name cityName and C!Part with
name city, the computation will be as following:

o0 (cityName, city) = 1—0.5/maxz(8,4) = 1—0, 0625 = 0, 938

This example is displayed in Fig. 7. where the propaga-
tion coefficient range has been assigned to 1.0 for all edges
in PCG. Generally, other computations can be assumed giv-
ing a result with value from 0.0 to 1.0. By applying the
similarity flooding algorithm considering the initial simi-
larities of the neighbors: o0, (String, String) = 0,833 and
oY (getTempReq, getCityRes) = 0,95 the outcome of the
next iteration, with constants o and 8 both set to 1.0, be-
comes:

a,ll(cityName, city) = 0,938+1.0x0,833+1.0x0, 95 = 2,721

, which is normalized to 1.0 as the highest value of the first
iteration.

B!Valuebject, 1.0 | 1 10
C!Valuebject 7 G

\ hame, name
N

\ name, name

)
~
~

BlInMessage,
C!OutMessage

name, name

getTempReq,
getCityRes

Figure 7: Propagation graph for context matching for operation selection.

3.2 Wordnet lexical database

Wordnet is a lexical database that retrieves similar con-
cepts to the input word given [19]. The introduced Word-
net distance considers same words (same), synonyms (syn),
meronyms (mer), hypernyms (hyper) and related terms (rel):

0
Un(n:u ny) = lXUsame+p>< Usyn+qXUmer+r><Uhype'r‘"'txo'rel

, where the constants [, p, ¢, » and t express the importance
of each similarity level retrieved through Wordnet. At most
one of the operands in the similarity calculation will evalu-
ate to 1. Some justified values to give priority to synonym
matching would be: { = 1.0, p=0.9, ¢ =r = 0.6, t = 0.05.

Composite names consisting of more than one words may
appear in WS models (e.g., getTemperature). These compos-
ite terms need to be taken into account in the similarity cal-
culation in the semantic comparison using Wordnet. Thus,
the similarity value is calculated as the average avg(on) con-
sidering the similarity calculation of the meaningful tokens
(substrings).

3.3 Similarity based on n-grams

N-grams refer to a contiguous sequence of n items from
a given sequence of text or speech [20]. For the similarity
algorithm trigrams have been considered: the count of equal
character sequences of size three is compared to the total
number of sequences of three characters (including spaces
added during the tokenization):

oo (e, ny) = trigram(ng, ny)

4. EVALUATION DEMONSTRATION

In order to demonstrate the proposed approach the ex-
ample BWS models (i.e., TemperatureWS and OurProd-
uctsWS) along with HotelsService® are being compared with
Location WS along with additional models retrieved from the
seekda Web Service search engine:

e [P2Geo*
o Geolizer®

o SIGeoLocation®

Ip2Location WebService”
e IpToLocation WS®

e UKLocation®

3http://demo.touricoholidays.com/WS /HotelsService.asmx
“http://ws.cdyne.com/ip2geo/ip2geo.asmx
®http://dns02.de/geolizer /server.php
Shttp://ws.strikeiron.com/TPligenceGeolPLocation?WSDL
"http://ws.fraudlabs.com/ip2locationwebservice.asmx

Shttp://www.buysellbusiness.org/ws,/IpToLocation WS.asmx

“http://www.webservicex.net /uklocation.asmx

50

o GeolPService'®
o IP2CountrySe-rvice!

o Ip2countryws'? and

e LocationByZipService'?

The above services provide an evaluation set of 33 compar-
isons. By looking at the WSDL specifications, it is observed
that Location WS, IP2Geo, IPSIGeoLocation and Ip2Location-
WebService match Temperature WS, whereas those and addi-
tionally GeolPService, IpToLocation WS, IP2CountryService
and IP2CountryWS match OurProductsWS and HotelsSer-
vice, since they provide location information as required by
the BWSs.

The compatibility graphs for the WS comparisons were
constructed based on the WSDL descriptions available in
seekda. These were then used as input for the modified
version of the similarity flooding algorithms that employed
the existing implementation of the similarity flooding algo-
rithm!®. The elements participating in the compatibility
graphs are matched on the basis of the similarity functions
presented in the previous Section. For convenience and al-
gorithm application purposes the label of each node corre-
sponds to the value of the name type node. The employed
Web Service descriptions contained in many cases complex
type elements defined in the XML Schema at the beginning
of the WSDL specification. These complex types were bro-
ken down to their ingredient elements and were added in the
corresponding model graphs as such in order to be used as
input.

From the part of the first BWS, i.e., Temperature WS, one
operation was available, i.e., getTemperature, but this was
not the case for the CWSs that provided more than one op-
erations. In the executions the maximum similarity value
among the CWS operations was considered. For the Our-
ProductsWS the similarity flooding algorithm variant has
been applied on both operations and the average values of
the results have been used for the diagram construction,
whereas from HotelsService the SearchHotels operation was
considered. Note that for conformity purposes in services
offering multiple bindings the SOAP binding was used. For
all cases similarity values higher than the threshold of 0.5
have been treated as successful matches. The results were
calculated in the form of the following three metrics widely
used in the information retrieval field [5, 23]:

F#correctServices Returned
#totalCorrectServices

precision =

Ohttp://www.webservicex.net /geoipservice.asmx

Yhttp:/ /www.flash-db.com/services/ws/ip2Country.wsdl
2http://www.tarya.co.uk/ws/Ip2countryws.asmx
Bhttp://www.flash-db.com /services/ws/locationByZip.wsdl
“http://infolab.stanford.edu/ melnik /mm /sfa/

F#correctServices Returned
Ftotal Services Returned

recall =

2 X precision X recall
f — measure =

precision + recall

The results are presented in Figs. 8 to 10. The results on
the left represent the values, when only the initial similarity
values are considered o0 without the iterations of the sim-
ilarity flooding algorithm, whereas the results on the right
correspond to the final matching results after the algorithm
execution. From the results on parameter injection it is ob-
served that the similarity flooding algorithm does not always
produce better matching results than the sole application of
the initial similarity functions. This is due to the differ-
ent nature of the structural similarity of the input graphs.
Moreover, when a CWS operation response provides a com-
plexType element consisting of various atomic elements, the
result accuracy is lower due to the dependency with the
neighbor nodes. From the diagrams the trigram seems to
provide better results. However, the exploitation of Word-
net should be a better choice for this kind of problem, since
semantics have an important role in identifying the proxim-
ity of the context concepts captured in the WS descriptions.
This is an indication of the need to consider the use of hybrid
approaches in the similarity functions.

The proposed approach can be inefficient for adaptation
cases that are present, but, however, not captured in the
service model (or respectively in the elements of the typed
attributed graph). In such cases, the addition of service
description elements in the model can be regarded in con-
junction with ontologies, as proposed in existing works [18].

S. RELATED WORK

As aforementioned model matching is usually applied for
software evolution purposes. Existing works on model dif-
ferentiation detect points of variation between different ver-
sions of the same system or in various applications areas,
such as behaviors of formal specications and clone instances.
An overview and classification of different model differenti-
ation techniques divided into the steps of Calculation, Rep-
resentation and Visualization can be found in [11].

Some approaches are more generic, whereas others refer
to specific modeling languages. UMLDIfF [25] finds differ-
ences between subsequent versions of Unified Modelling Lan-
guage (UML) models using reverse engineering to compute
the models from the code. It is based on the characteristics
of object-oriented systems in order to present the code el-
ements, i.e., packages, classes, interfaces, fields and blocks,
and their relationships and then identify the changes per-
formed between two versions of the same model. Differences
in UML models are also addressed in [15]. In the indus-
try, where it is usual to model sotware systems in UML,
model differentiation is also supported by tools that function
like the traditional version control system (e.g., concurrent
modeling in Apache Subversion). DSMDIfF [13] concentrates
on comparing domain specific models instead of using UML
notation. It introduces a number of algorithms for detect-
ing model differentiation including signature and structural
matching.

Some works follow a theoretical approach, whereas others
provide matching environments. Plugins of the Eclipse IDE
can be found in EMF Compare and the Epsilon Comparison
Language (ECL) of Epsilon. ECL allows for matching be-

51

tween different types of models, but is usually employed with
EMF models. The language possesses many degrees of ex-
pressiveness allowing the user to define her/his own match-
ing rules using the internal mechanisms provided by the Ep-
silon Object Language (EOL) or employ external matching
defined in an independent programming language. More re-
cent works applied on domain-specific models can be found
in GenericDiff [24].

In many of the above approaches, when models are matched
they are represented as typed attributed graphs [3], with
each node in the graph representing model elements. When
graphs are considered the model matching takes into account
the relations that exist among its elements as expressed in
the graph edges. This is addressed in the similarity flood-
ing algorithm [14], which is employed in the current work.
The algorithm can be applied on models of different types;
not only graphical models conforming to a metamodel, but
also XML schemas, data instances etc. represented as typed
attributed graphs. The models are matched on the basis
of the similarity flooding algorithm constructed on the fact
that the elements of the two models are similar when their
adjacent elements are similar. The similarity flooding al-
gorithm has been applied for the matching of metamodels
represented as graphs using five configurations with differ-
ent levels of detail in [5]. The area of schema matching is
also addressed in [23], where models are transformed using
planar notation and are then matched using an enhanced
version of the planar graph edit distance algorithm.

The above works concentrate on general matching and
comparison solutions, but cannot be applied on the context
dependencies matching problem. The current work has been
influenced by the existing literature, such as the similarity
flooding algorithm and its different uses, but the matching
rules are defined on a different level and applied on a graph
forest instead of a sole graph representing the whole model
structure.

6. CONCLUSIONS

This work has focused on providing matching actions for
Web Service models that follow the notation of the WS
metamodel presented as a typed attributed graph. A variant
of the similarity flooding algorithm was applied on Business
Web Service and Context Web Service models, in order to
examine whether the matching of input models on context
dependencies is feasible. All models have been represented
as typed attributed graphs and have been matched using
similarity functions for string matching. The results of the
evaluation through a number of constructed and existing
Web Services from online service registries demonstrates the
matching outcome that can be achieved. This technique can
be useful for software engineers that wish to exploit existing
WS descriptions in order to build wider applications with
context-aware characteristics.

As future work the use of WS models that do not include
any information on whether they require or offer context
information will be considered. This approach will allow
the exploitation of the plethora of WS descriptions avail-
able on online service registries. We intend to implement
the matching rules analyzed using the Epsilon Comparison
Language'®. An initial evaluation of its use has already been
conducted. The use of ECL can be complemented with the

Bhttp://www.eclipse.org/epsilon/doc/ecl/

Figure 8: Initial (left) and (right) results of similarity flooding matching Temperature WS with CWSs.

Figure 9: Initial (left) and final (right) results of similarity flooding matching OurProducts WS with CWSs.

Figure 10: Initial (left) and final (right) results of similarity flooding matching HotelsService with CWSs.

EMF Compare tool to add visualization to the results of
the matching. Another area of special interest lies in WS
composition in the form of workflows as described in ex-
isting specifications, such as the Business Process Execution
Language (BPEL). The presented work constitutes a special
case of service composition. The study of WS composition
possibility through model matching presents an area that
can be exploited by software engineers in combination with
online service registries.

7. REFERENCES
[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,
M. Smith, and P. Steggles. Towards a better
understanding of context and context-awareness. In

52

2]

3]

[4]

Proceedings of the 1st international symposium on
Handheld and Ubiquitous Computing, HUC 99, pages
304-307, London, UK, UK, 1999. Springer-Verlag.
W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg.
A comparison of string distance metrics for
name-matching tasks. In ITWeb, pages 73-78, 2003.
J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange,
and G. Taentzer. Attributed graph transformation
with node type inheritance. Theor. Comput. Sci.,
376(3):139-163, May 2007.

H. Ehrig, U. Prange, and G. Taentzer. Fundamental
theory for typed attributed graph transformation. In
H. Ehrig, G. Engels, F. Parisi-Presicce, and

G. Rozenberg, editors, Graph Transformations,

[10]

[11]

[15]

[17]

volume 3256 of Lecture Notes in Computer Science,
pages 161-177. Springer Berlin Heidelberg, 2004.
J.-R. Falleri, M. Huchard, M. Lafourcade, and

C. Nebut. Metamodel matching for automatic model
transformation generation. In Proceedings of the 11th
international conference on Model Driven Engineering
Languages and Systems, MoDELS ’08, pages 326—340,
Berlin, Heidelberg, 2008. Springer-Verlag.

G. M. Kapitsaki. Identifying context sources towards
context-aware adapted web services. In WEBIST,
pages 135-140, 2011.

G. M. Kapitsaki and A. Achilleos. Applying
model-driven engineering for linking web service and
context models: position paper. In it WAS, pages
511-514, 2011.

G. M. Kapitsaki, D. A. Kateros, G. N. Prezerakos, and
I. S. Venieris. Model-driven development of composite
context-aware web applications. Information €
Software Technology, 51(8):1244-1260, 20009.

G. M. Kapitsaki, D. A. Kateros, and I. S. Venieris.
Architecture for provision of context-aware web
applications based on web services. In PIMRC, pages
1-5, 2008.

A. G. Kleppe, J. Warmer, and W. Bast. MDA
Ezxplained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F.
Paige. Different models for model matching: An
analysis of approaches to support model differencing.
In Proceedings of the 2009 ICSE Workshop on
Comparison and Versioning of Software Models,
CVSM 09, pages 1-6, Washington, DC, USA, 2009.
IEEE Computer Society.

Y. Lee, S. S. Iyengar, C. Min, Y. Ju, S. Kang,

T. Park, J. Lee, Y. Rhee, and J. Song. Mobicon: a
mobile context-monitoring platform. Commun. ACM,
55(3):54-65, Mar. 2012.

Y. Lin, J. Gray, and F. Jouault. DSMDiff: A
differentiation tool for domain-specific models, 2007.
S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. In Proceedings of the
18th International Conference on Data Engineering,
ICDE ’02, pages 117—, Washington, DC, USA, 2002.
IEEE Computer Society.

D. Ohst, M. Welle, and U. Kelter. Differences between
versions of uml diagrams. In Proceedings of the 9th
FEuropean software engineering conference held jointly
with 11th ACM SIGSOF'T international symposium on
Foundations of software engineering, ESEC/FSE-11,
pages 227-236, New York, NY, USA, 2003. ACM.

Q. Z. Sheng and B. Benatallah. Contextuml: A
uml-based modeling language for model-driven
development of context-aware web services
development. In Proceedings of the International
Conference on Mobile Business, ICMB ’05, pages
206—212, Washington, DC, USA, 2005. IEEE
Computer Society.

D. Skogan, R. Gronmo, and I. Solheim. Web service
composition in uml. In Proceedings of the Enterprise
Distributed Object Computing Conference, Eighth

53

(18]

(19]

20]

(21]

IEEE International, EDOC ’04, pages 47-57,
Washington, DC, USA, 2004. IEEE Computer Society.
S. Staab, T. Walter, G. Groner, and F. S. Parreiras.
Model driven engineering with ontology technologies.
In Reasoning Web, pages 62-98, 2010.

M. M. Stark and R. F. Riesenfeld. Wordnet: An
electronic lexical database. In Proceedings of 11th
FEurographics Workshop on Rendering. MIT Press,
1998.

C. Y. Suen. n-gram statistics for natural language
understanding and text processing. Pattern Analysis
and Machine Intelligence, IEEE Transactions on,
PAMI-1(2):164 —172, april 1979.

C. Treude, S. Berlik, S. Wenzel, and U. Kelter.
Difference computation of large models. In Proceedings
of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT
symposium on The foundations of software
engineering, ESEC-FSE ’07, pages 295-304, New
York, NY, USA, 2007. ACM.

H.-L. Truong and S. Dustdar. A survey on
context-aware web service systems, 2009.

K. Voigt and T. Heinze. Metamodel matching based
on planar graph edit distance. In Proceedings of the
Third international conference on Theory and practice
of model transformations, ICMT’ 10, pages 245-259,
Berlin, Heidelberg, 2010. Springer-Verlag.

7. Xing. Model comparison with genericdiff. In
Proceedings of the IEEE/ACM international
conference on Automated software engineering, ASE
’10, pages 135-138, New York, NY, USA, 2010. ACM.
Z. Xing and E. Stroulia. Umldiff: an algorithm for
object-oriented design differencing. In Proceedings of
the 20th IEEE/ACM international Conference on
Automated software engineering, ASE ’05, pages
54-65, New York, NY, USA, 2005. ACM.

