
Towards open source software licenses compatibility check
Georgia M. Kapitsaki
University of Cyprus
Aglantzia, Cyprus
gkapi@ucy.ac.cy

Athina Paphitou
University of Cyprus
Aglantzia, Cyprus

athensp22@gmail.com

Achilleas P. Achilleos
Frederick University Cyprus

Limassol, Cyprus
com.aa@frederick.ac.cy

ABSTRACT
The use of free and open source software is increasing and there
is currently a tendency towards more openness in the provision
of open source software. However, libraries that are used in con-
junction with the software may affect the final license selection
of the open source software and special caution is needed by soft-
ware developers. Existing tools provide the means to extract license
information from software projects, but this information has not
been utilized towards recommending licenses that do not cause
license violations. In this paper, we present our work towards the
recommendation of licenses that satisfy the license compatibility
requirement taking into consideration the licenses of third party
libraries used in the software project. We have employed a dataset
of 160 open source software projects to compare license compati-
bility using license extraction techniques implemented in different
tools, i.e. Nomos and Ninka, whereas we have integrated the li-
cense extraction process in the findOSSLicense open source license
recommender system, in order to recommend licenses that do not
cause violations. The evaluation results and a small scale user study
demonstrate the added value of the approach for the software de-
velopers in being better informed about license compatibility.

CCS CONCEPTS
• Software and its engineering→Designing software;Reusabil-
ity; Open source model; Software libraries and repositories;

KEYWORDS
Free/Libre and Open Source Software, licensing, license compatibil-
ity, recommender system

ACM Reference Format:
Georgia M. Kapitsaki, Athina Paphitou, and Achilleas P. Achilleos. 2022.
Towards open source software licenses compatibility check. In 26th Pan-
Hellenic Conference on Informatics (PCI 2022), November 25–27, 2022, Athens,
Greece. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3575879.
3575973

1 INTRODUCTION
Free/Libre Open Source Software (FLOSS) is accompanied by li-
censes that define the conditions under which the software can be
used, modified and distributed [11]. Since open source software

This work is licensed under a Creative Commons Attribution International
4.0 License.

PCI 2022, November 25–27, 2022, Athens, Greece
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9854-1/22/11.
https://doi.org/10.1145/3575879.3575973

relies often on the use of third party libraries for various func-
tionalities, the license of these libraries is very important for the
licensing scheme of the resulting software, as failure to comply
with the terms of the licenses of the libraries may lead to license
violations and have legal consequences [12]. Licenses are divided
into three main categories: permissive licenses, such as MIT, pro-
vide more flexibility, weak-copyleft licenses, such as LGPL (GNU
Lesser General Public License) licenses, place more restrictions, and
strong-copyleft licenses, such as GPL (GNU General Public License)
licenses, are even more restrictive requiring that a derivative work
that modifies or adds to the original work is also made available as
open source under the same or under a compatible license, when
distributed.

Websites and tools that assist users in the license selection have
emerged, such as choosealicense1 used by GitHub informing users
about some open source software licensing options and the open
source license recommender findOSSLicense2, whereas other web
locations are also informative about the content of licenses, e.g. TL-
DRLegal3 provides information about the content of a large number
of open source licenses. However, these information sources do
not consider the existing licenses in the source code used within
a software project (e.g. from the use of third party libraries in the
code). License extraction tools can be a facilitator in this area, as
they scan the software source code and inform users on retrieved
licenses. FOSSology [6, 8], Ninka [4] and Automated Software Li-
cense Analysis (ASLA) [15] are examples of tools that offer this
functionality, whereas some provide also limited support for li-
cense compatibility. Although the above are useful, they provide
scattered solutions - either for informing about licenses and their
content, or for extracting licenses from source code - and there is
no integrated approach to license compatibility that considers both
aspects, recommending to users appropriate licenses that do not
cause violations to the existing licenses from the libraries used.

Having as motivation the above, in this work we propose an ap-
proach that utilizes available license extraction mechanisms, while
it considers also information from the software project descrip-
tion in order to discover more third party libraries (found in the
README.md file in GitHub repositories). As the first step in this
approach, we examined the compliance level of 160 open source
projects, comparing available license extraction tools, and we have
then integrated our license compliance approach in the findOSSLi-
cense open source license recommender system [9, 10]. The contri-
bution of our work is two fold: (1) We are offering a comparative
view of a number of license extraction approaches, i.e. Nomos agent
of FOSSology, Ninka, and project description analysis, (2) We are

1https://choosealicense.com/
2http://findosslicense.cs.ucy.ac.cy/
3https://tldrlegal.com/

96

https://orcid.org/0000-0003-3742-7123
https://orcid.org/0000-0002-2216-9910
https://orcid.org/0000-0002-7661-0302
https://doi.org/10.1145/3575879.3575973
https://doi.org/10.1145/3575879.3575973
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3575879.3575973
https://choosealicense.com/
http://findosslicense.cs.ucy.ac.cy/
https://tldrlegal.com/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575879.3575973&domain=pdf&date_stamp=2023-03-29


PCI 2022, November 25–27, 2022, Athens, Greece G. Kapitsaki et al.

proposing a new approach that can be utilized by software devel-
opers for choosing the open source license(s) to apply on their
software project by recommending licenses that are compatible
with used licenses. The approach can be useful for developers that
can utilize it in their activities, acting as a guideline for choosing
appropriate licenses, whereas the comparative view of license ex-
traction tools can provide insight for better understanding their
role and function. We have evaluated our approach using the en-
hanced version of findOSSLicense in a small scale user study with
the participation of 16 users.

The rest of the paper is structured as follows. Section 2 provides
an overview of related work. Section 3 is dedicated to the pre-
sentation of our approach for recommending compatible licenses,
whereas its integration in the findOSSLicense recommender system
is described in section 4. The evaluation of the work and limitations
are presented in section 5. Finally, section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
A variety of tools that assist in identifying project licenses exist.
Many of the tools rely on analyzing the source code and accompa-
nying files of a software project in order to detect references to li-
censes, and on comparing these references against license templates
from a data store. The Automated Software License Analysis [15]
is a reverse engineering tool that extracts licenses from source
code modules. It uses predefined license identification templates,
whereas users can add new templates. FOSSology4 is a widely used
open source license compliance software system and toolkit [6, 8]. It
consists of a number of integrating agents for license identification,
including Nomos and Monk agents.

In order to extract information about open source software li-
censes, Nomos agent uses small phrases (and regular expressions)
and heuristics; for instance, a phrase should be near/far from an-
other phrase or phrases. Monk agent performs text-based search
and requires good text pieces/patterns against which open source
licenses can be searched for. The Ninka tool is the third license scan-
ner that has been integrated in FOSSology [5]. It relies on scanning
the text of the source code and of license files in order to find text
that is consistent with that of an open source software license. The
first lines from the source code files are extracted for this purpose
(approximately 1,000 lines). The Binary Analysis Tool (BAT) cov-
ers different functionalities and can point to reused components
through string comparisons when operating on unpacked files [7].
Analysis of JARs (Java ARchives) in order to detect licenses is feasi-
ble via the Kenen tool that also utilizes Ninka [4]. ScanCode5 scans
the source code files for information about open source licenses,
copyright and other information.

Various online resources that provide license information sug-
gesting which licenses are more appropriate for each case or provid-
ing more information on specific licenses are available. TLDRLegal
is a portal that provides license information indicating for each
license what the user can, cannot and must do. Choosealicense
shows users how to navigate among some license choices, in order
to assist them in selecting an appropriate license for their reposi-
tory, whereas it also lists properties of popular licenses, divided into

4https://www.fossology.org/
5https://github.com/nexB/scancode-toolkit

permissions (e.g. distribution), limitations (e.g. liability) and condi-
tions (e.g. disclose source). FreeMeLegal introduces the possibility
of recommending licenses for open source projects [13]. The user
can choose licenses already used in her project, decide about some
requirements (e.g. disclose source), permissions (e.g. commercial
use) and constraints (e.g. patent use). findOSSLicense is a recom-
mender system that assists developers in selecting an appropriate
license for their software project based on their needs [9, 10]. find-
OSSLicense combines and models features from widespread open
source software licenses, and employs user responses to questions,
such as application type the user wants to develop, permissions that
the user wants to give to other application users (e.g. permission to
use the original software with commercial software), and licenses
already in use to suggest to the user appropriate license(s).

Relation with previous works. In relation to the above works,
we offer a comparative view of open source software license ex-
traction approaches, enhancing them with a new extraction aspect
that concerns the detection of used libraries indicated in the project
description (README.md file). We also integrate this compatibility
approach to recommend appropriate FLOSS licenses to owners of a
project repository in GitHub, assisting software developers in the
license selection process with this recommender-based approach
that does not exist in current work.

3 FINDING COMPATIBLE LICENSES:
APPROACH AND COMPARISON

Our approach targets newly created repositories, where the appro-
priate license to be applied on the repository needs to be determined,
focusing on license compliance and taking into consideration the
licenses of third party libraries used. The steps of the process are
depicted in Figure 1. We are using GitHub to obtain the project
source code and its respective description. We are using the source
code of the software project and extract information regarding li-
censes using different tools: 1) Nomos agent, 2) Ninka, 3) licenses
of the libraries indicated in the project description (README.md
file in GitHub). Specifically, the following steps are followed for
each software repository, after obtaining the project source code as
shown in Figure 1:

• The license scanning is performed on the project source code,
using Nomos, Ninka, and the README.md analysis.

• The existing project license, as indicated by its creators, is
retrieved from the GitHub repository.

• License compatibility analysis is performed for the licenses
detected by each extraction tool independently, and for the
union of the licenses detected by the tools (i.e. where the
licenses detected by each tool are all considered).

• The license recommendation algorithm is executed for the li-
censes scanned by each tool independently and for the union
of the licenses detected by the tools, in order to recommend
appropriate compatible licenses that can be applied on the
project.

• If no compatible licenses are found for recommendation, the
recommendation algorithm is executed again taking into

97

https://www.fossology.org/
https://github.com/nexB/scancode-toolkit


Towards open source software licenses compatibility check PCI 2022, November 25–27, 2022, Athens, Greece

Figure 1: Steps to recommend compatible licenses.

consideration also license pairs marked as “use with cau-
tion". This indication is provided in some cases by the rec-
ommendation process of findOSSLicense, when it is not con-
clusive whether two licenses can be considered compatible
or not [9, 10].

The information obtained via the license extraction tools are
compared against the project license as indicated by the repository
creators (the license is extracted using the GitHub REST API). The
main aim of these steps is the comparison of the results of the
different extraction tools, whereas we are also considering the
case of combining all tool results, by comparing the union of the
licences extracted by the tools against the project license, under
the assumption that this combination might improve the license
compliance process, as it compares the project license against a
larger number of licenses detected by all tools.

For the compatibility information between licenses, we are em-
ploying the compatibility matrix of findOSSLicense, which indicates
compatibility or incompatibility between licenses. There are some
known cases of license incompatibility. For instance, the Apache-
2.0 license is not compatible with the GPL-2.0 license, but it is
compatible with GPL-3.0 and later versions of the license. The li-
cense compatibility matrix of findOSSLicense is based on analysis
performed in previous works of the authors [2, 16]. Since find-
OSSLicense covers 32 licenses, when compatibility information is
not available for some license pairs, the users are advised to use
the license combination “with caution". During the compatibility
analysis these licenses are initially not considered. However, if
no compatible license can be found, these cases are considered as
compatible in order to be able to provide a result to the users.

4 INTEGRATION IN FINDOSSLICENSE
RECOMMENDER SYSTEM

findOSSLicense already provides some support for license compati-
bility by informing the users on compatibility between the recom-
mended licenses and any license(s) the user may have manually
indicated in the recommender system as already used in her project
(in this case the user needs to add the exact license names and
version). Via the integration with GitHub, the findOSSLicense user
can log in with her GitHub account and request an examination

of an existing repository the user is working on for compatibility
purposes.

For the license extraction process in findOSSLicense, we have
decided to use FOSSology at the current stage of implementation
based on a preliminary comparison we performed between the
different tools, and since it offers many capabilities and is widely
adopted by various companies and organizations [14]. For instance,
the importance of using open source tools for license compliance is
presented from the industrial perspective of Siemens AG, including
the use of FOSSology in [1]. The user can thus, connect to FOSSology
in order to trigger the scanning of her repository using the Nomos
agent. Regarding the extraction agents available in FOSSology, we
have not used the Monk agent, as it requires closer matches to
correctly identify license information and cannot identify unknown
licenses. Ninka extracts the first lines (approximately 1,000) from
source code files in order to use them in the recognition process,
and may thus extract a lower number of licenses than Nomos. Using
one main scanner has also the advantage of keeping the process
simple for the user and is useful especially for users that are not
experts on FLOSS or licensing. However, future work will examine
providing the user the possibility to choose among different license
identification tools in findOSSLicense.

In the framework of this work, we have also added the option
for the user to receive a recommendation for license compatibility
based only on the examined GitHub repository, without taking into
consideration the other user requirements provided as input in find-
OSSLicense, e.g. answers to the user on specific questions regarding
software usage. The user has also the option to trigger the parsing
of the project description in order to identify licenses from used li-
braries. For this purpose, the knowledge base of findOSSLicense was
expanded to include information about commonly used libraries
and their licenses. Specifically, a set of 100 libraries for each of the
eight programming languages supported by findOSSLicense based
on the popularity of languages in the TIOBE index, i.e. PHP, Java,
C, C++, C#, Python, Visual Basic, JavaScript, were included in the
data store of findOSSLicense along with their respective license. The
libraries were selected from libraries.io. We used its respective API
to collect the first 100 libraries with the most depended count (as
depicted in Figure 1).

The part of the screenshot, where the user can select one of
her existing GitHub repositories, connect to FOSSology, trigger the
scanning of the project description and view the respective results
with the identified licenses is visible in Figure 2. This information
can be subsequently considered in the recommendation process of
findOSSLicense. findOSSLicense recommends licenses based on other
user requirements, besides compatibility, but as aforementioned the
user has the option of seeing only the licenses that are compatible
with the licenses already used in the project, whereas she can
receive recommendations based only on compatibility (neglecting
thus the other user requirements).

5 EVALUATION
We have evaluated our approach by comparing the license extrac-
tion tools using a dataset of open source projects, which was the
first step in order to better understand how they behave before
their use, whereas we have also performed a small scale user study

98



PCI 2022, November 25–27, 2022, Athens, Greece G. Kapitsaki et al.

Figure 2: License extraction process triggering in findOSSLicense.

Table 1: Dataset summary for license compatibility compari-
son.

Programming License Count Programming License Count
language language

PHP MIT 17 JavaScript MIT 17
BSD-3-Clause 2 Apache-2.0 1
LGPL-2.1 1 BSD-3-Clause 1

Java MIT 4 CC0-1.0 1
Apache-2.0 15 C++ MIT 4

CC-BY-SA-4.0 1 Apache-2.0 9
C MIT 5 BSD-3-Clause 2

Apache-2.0 4 MPL-2.0 1
BSD-2-Clause 1 GPL-2.0 1
BSD-3-Clause 3 GPL-3.0 1
LGPL-2.1 1 Unlicense 1
GPL-2.0 2 BSL-1.0 1
GPL-3.0 4 C# MIT 12

Python MIT 9 Apache-2.0 5
Apache-2.0 5 MS-PL 1
LGPL-3.0 1 GPL-3.0 2
GPL-2.0 1 Visual Basic MIT 13
GPL-3.0 1 GPL-2.0 1
AGPL-3.0 1 GPL-3.0 3
WTFPL 1 CC-BY-4.0 1
Unlicense 1 CC-BY-SA-4.0 1

Artistic-2.0 1

in order to receive feedback from users on the use of the license
compatibility integration in findOSSLicense.

5.1 License extraction tools comparison
In order to discover whether the license added to a project reposi-
tory in GitHub is respecting license compatibility and suggest to
users the appropriate compatible license(s) when it does not, we
have collected a dataset of 160 open source projects from GitHub.
The dataset, collected via the GitHub REST API, consists of the 20
most starred projects on GitHub for each programming language
covered in our work (i.e. PHP, Java, JavaScript, C, C++, C#, Python,
Visual Basic). In order to limit the processing time, we limited the
size of the selected projects to 100 MB or less. The dataset summary
indicating the licenses present in the selected projects for each
programming language is available in Table 1. The projects used
carry 18 different licenses. The MIT license appears more often,
followed by Apache-2.0 and GPL-3.0.

The results that indicate whether the project license on GitHub
is compatible with all licenses used as detected by each scanning
tool are depicted in Figure 3. For the case of Nomos of FOSSology

30
.0
0%

45
.0
0%

40
.0
0%

55
.0
0%

65
.0
0%

55
.0
0%

80
.0
0%

80
.0
0%

56
.2
5%

80
.0
0%

95
.0
0%

85
.0
0%

80
.0
0% 85
.0
0%

85
.0
0% 90
.0
0%

10
0.
00
%

87
.5
0%

50
.0
0%

65
.0
0%

75
.0
0%

95
.0
0%

20
.0
0% 25
.0
0%

55
.0
0%

65
.0
0%

56
.2
5%

15
.0
0%

40
.0
0%

35
.0
0%

55
.0
0%

20
.0
0%

10
.0
0%

55
.0
0% 60
.0
0%

36
.2
5%

C C# C++ JAVA JAVASCRIPT PHP PYTHON VISUAL	
BASIC

AVERAGE

Nomos Ninka README ALL

Figure 3: Percentages of projects without compatibility issues
per scanning tool and programming language.

we disregard cases, where no specific license is detected, i.e. when
the indication UnclassifiedLicense is provided as result. When the
union of all detected licenses (by all tools together) is considered in
the compatibility examination, the percentage of projects with an
appropriate license is low (36.2%), since in this case a larger number
of licenses need to be compatible with each other. When only Ninka
is considered the number of projects with appropriate licenses is
larger, reaching 87.5% on average. Regarding the results based only
on the scanning of the project description, i.e. README file, we
expect them to be less accurate, as this process does not examine
the source code and its content.

Since overall the cases with incompatible licenses are relatively
high, we performed a manual analysis for some cases, in order
to examine if the compatibility checking on scanned licenses was
accurate and whether the license scanning found all licenses in use
by a project. For this manual analysis, we went through all files
where a license was detected, in order to verify the presence of
the license in the file. We are providing details for 4 of these cases
that were further examined in Table 2. The full dataset used in this
part of our work, i.e. GitHub project details, scanning results and
manual analysis results for the projects presented in this section

99



Towards open source software licenses compatibility check PCI 2022, November 25–27, 2022, Athens, Greece

and 4 more projects, have been made available for replication pur-
poses in a Zenodo repository [3]. In Table 2, we use parentheses
to denote cases where both the generic license family (e.g. LGPL)
and the license with version (e.g. GPL-2.0) are detected by the tool.
Regarding compatibility, we denote whether our manual analysis
detected that the license used is actually not appropriate for the
project for incompatibility purposes and explain the reasons that
led to a false result in the following cases:

• composer6: In the case of Nomos, the BSD license is detected
because it is used in the automated tests of the repository
developed via PHPunit and not in the main source code of
the project. AGPL, GPL LGPL licenses are also detected, since
they are present in a text file that mentions license examples.
All these licenses are not compatible with MIT. For instance,
BSD-3-Clause and BSD-2-Clause are not compatible with
the MIT license, because MIT has a right that is missing in
the BSD licenses. Specifically, the MIT license allows for dis-
tribution without contribution credits, whereas BSD licenses
do not. However, the location the above licenses were found
should not affect the project license. Ninka detected the BSD-
2-Clause license in a file that contains a method modified
and adjusted from the project Sslurp that carries the BSD-
2-Clause license. Although Nomos scanning resulted in a
false positive for the BSD-2-Clause license, Ninka accurately
detected the use of a piece of code containing the license
that should correspond to a source of license violation.

• Material-Animations7: incompatibility is indicated due to the
presence of the GPL and Apache-2.0 licenses. GPL is falsely
detected by Nomos in an animated file in the project reposi-
tory (screenshots/scenes_anim.gif ). However, the detection
of Apache-2.0 is accurate by both Nomos and Ninka tools, as
a source code file and an XML file contain on the top of the
files a description pointing to the Apache-2.0 license. This
project is an incompatibility case according to the scanning
that requires further investigation, in order to verify that
these files are used in the source code and when the software
is running (and are not used, for instance, only for testing
purposes).

• the_silver_searcher8: Incompatibility is indicated due to the
presence of the GPL-3.0+ license that is not compatible
with the less restrictive Apache-2.0 license. Both Nomos
and Ninka detected the use of the GPL-3.0+ license in the
source code files. The GPL-3.0+ license text indeed appears
in the file ax_pthread.m4, which contains macros for building
C programs. However, the description of the macro states
the following: “You need not follow the terms of the GNU
General Public License when using or distributing such scripts,
even though portions of the text of the Macro appear in them.
The GNU General Public License (GPL) does govern all other
use of the material that constitutes the Autoconf Macro." Both
Ninka and Nomos fail to detect that this case refers to an
exception in the use of the GPL-3.0+ license, providing a
false negative result, although FOSSology does detect the

6https://github.com/composer/composer
7https://github.com/lgvalle/Material-Animations
8https://github.com/ggreer/the_silver_searcher

Autoconf-exception license (i.e. GNU General Public License
v2.0 w/Autoconf exception) that is close to the references
present in the text. The presence of BSD licenses, identified
both by the Nomos and the README scanning, does not
affect compatibility, as they are compatible with the Apache-
2.0 license.

• hardseed9: This is an example of a false positive for Nomos
that detects the GPL-3.0 license in the ycm_extra _conf.py
file, although the text of this file reads: “This file is NOT
licensed under the GPLv3, which is the license for the rest of
YouCompleteMe." Although GPL-2.0 is compatible with GPL-
3.0, the reverse direction of compatibility is not valid. The
Unlicense correctly detected by Nomos does not cause any
compatibility issues, as it is compatible with GPL licenses10.

A key weakness of the README.md file license scanning is
that it relies on keyword search without considering the context
of the detected keyword. Since a lot of libraries’ names consist of
common words, this results in some inaccuracies in the license
scanning. This problem has appeared in the case of the flysystem11

project with the Apache-2.0 license being falsely detected in the
project description file. Similar false positives are the reason for the
low percentage of compatibility in the PHP, JavaScript and Python
projects, as most of them carry the MIT license, which is one of the
most permissive licenses. For the case of Java, four false positives of
Nomos were identified by manual analysis, raising the percentage
of compatible licenses in Java projects from 55% to 75%. In the cases
where incompatibility actually exists based on our analysis further
investigation is required in order to verify whether that part of the
source code forms part of the main software distribution.

5.2 Small scale user study
For the small scale user study, senior and master students, as well
as software engineers from the local industry were recruited using
email and face-to-face communication. Participants were asked to
interact with the compatibility process of findOSSLicense, using
a deployment of the recommender system on a test server and
they were then asked to complete an online questionnaire12 about
their experience, the licenses that were recommended to them and
the compatibility information. The questionnaire contained also
questions about usability aspects, the former experience of the
participants with open source software and open source software
licenses, and demographic information. In order to participate in the
study, themain requirement was to own a repository onGitHub that
would be given as input to findOSSLicense for the license detection
and recommendation process. The participants were free to use any
type of repository in the supported programming languages. This
way the participants examined our approach, in order to identify
an appropriate license for their own software project.

16 users participated in the study. 56.3% are male and the re-
maining female. 56.3% of the participants are software engineers,
25.1% are research scientists and 18.8% students. Most users use
FLOSS very often (56.3%) and 12.5% use it rarely. 50% are familiar or

9https://github.com/yangyangwithgnu/hardseed
10https://www.gnu.org/licenses/license-list.en.html#Unlicense
11https://github.com/thephpleague/flysystem
12https://forms.gle/2GaH2DgtHZKK9zZMA

100

https://github.com/composer/composer
https://github.com/lgvalle/Material-Animations
https://github.com/ggreer/the_silver_searcher
https://github.com/yangyangwithgnu/hardseed
https://www.gnu.org/licenses/license-list.en.html#Unlicense
https://github.com/thephpleague/flysystem
https://forms.gle/2GaH2DgtHZKK9zZMA


PCI 2022, November 25–27, 2022, Athens, Greece G. Kapitsaki et al.

Table 2: Details of analysis for example projects with incompatibility.

Project Programming Official Nomos Ninka README False Incompatibility
language license licenses licenses licenses positive exists

composer PHP MIT MIT, BSD-3-Clause, AGPL, MIT, MIT Nomos Yes
LGPL(-2.1+), BSD-2-Clause, GPL(-3.0+) BSD-2-Clause

Material-Animations Java MIT MIT, GPL, Apache-2.0 Apache-2, MIT MIT, Unlicense - Yes
the_silver_ C Apache-2.0 Apache-2.0, BSD-1-Clause, Apache-2.0, BSD-3-Clause Nomos, No
searcher Public-domain, GPL-3.0+, Autoconf-exception GPL-3.0+ Ninka
hardseed C++ GPL-2.0 GPL-2.0, Unlicense, GPL(-3.0), MIT GPL-2.0+, MIT MIT, Ruby Nomos No

very familiar with FLOSS licenses, whereas 12.5% are only slightly
familiar. However, 43.8% are not familiar at all or are only slightly
familiar with license compatibility (31.3% of the participants are
very familiar) and 37.6% are not familiar at all or are only slightly
familiar with license categories (again 31.3% of the participants are
very familiar). Regarding the interaction with findOSSLicense, most
participants (81.3%) indicated that using the connection with FOS-
Sology (i.e. Nomos agent) and the README file scanning triggering
was clear or very clear. Most users (81.3%) find this information
about the licenses used in their project useful or very useful, indi-
cating that this is a useful feature of the recommender system (the
remaining 18.8% of the participants gave a score of 3 indicating that
this information is slightly useful). Most users (87.6%) were very
satisfied or satisfied with the recommendations provided to them
based on compatibility, and most (87.5%) indicated that they will
adopt one of the recommended licenses for their project. Among
the participants that did not intend to use one of the recommended
licenses (2 users), one indicated that she is satisfied with the li-
cense the project already has, since it is a forked project, and the
other mentioned that she did not like licenses, which most probably
means that the participant did not prefer to use any license at all
(the same participant indicated that she was very satisfied with the
recommendation results).

5.3 Limitations
The small scale user study base of 16 participants may have affected
the conclusions we reached about the relationships in our data.
Future work will replicate the study with a larger number of users.
Moreover, some project libraries detected by the extraction tools
may be used only for testing purposes without being included in
the final software distribution. At the current state, this case is not
considered, as it requires further analysis of the source code struc-
ture. However, it may have also affected our conclusions, as it may
have lead to some false positives in license violation detection in
the respective software repositories. We have performed a manual
analysis in a small number of projects in order to study the effect of
this risk, and we have marked a number of such cases that can also
be found in our dataset [3]. Finally, the current approach regarding
license extraction from the project description libraries relies only
on the information in the respective README file. This process
fails to identify cases, where a license is indicated, but is not used
in the project source code.

6 CONCLUSIONS
In this paper, we have presented our work towards a compatibility
process for FLOSS licenses accompanied by a tool that has been

integrated in the findOSSLicense open source license recommender
system. We are comparing license extraction tools and provide
to the users the opportunity to use one of them to guide licenses
recommended to them. This process can assist software develop-
ers understand license implications better and help them make
informed license decisions for their software projects. As future
work, we intend to consider more license identification tools for
comparison purposes with the aim of improving the accuracy of
the compatibility check. We also intend to investigate Natural Lan-
guage Processing techniques with static code analysis, in order to
increase the accuracy of the library usage in the application source
code (e.g. neglect cases where a license appears only in test files
that are not distributed with the software project).

REFERENCES
[1] Oliver Fendt and Michael C Jaeger. 2019. Open source for open source license

compliance. In IFIP International Conference on Open Source Systems. Springer,
133–138.

[2] Ioannis E Foukarakis, Georgia M Kapitsaki, and Nikolaos D Tselikas. 2012. Choos-
ing Licenses In Free Open Source Software.. In SEKE. 200–204.

[3] Kapitsaki Georgia, Paphitou Athina, and Achilleos Achilleas. 2022. GitHub project
dataset for license analysis. https://doi.org/10.5281/zenodo.6347648

[4] Daniel German and Massimiliano Di Penta. 2012. A method for open source
license compliance of java applications. IEEE software 29, 3 (2012), 58–63.

[5] Daniel M German, Yuki Manabe, and Katsuro Inoue. 2010. A sentence-matching
method for automatic license identification of source code files. In Proceedings of
the IEEE/ACM international conference on Automated software engineering. ACM,
437–446.

[6] Robert Gobeille. 2008. The fossology project. In Proceedings of the 2008 interna-
tional working conference on Mining software repositories. ACM, 47–50.

[7] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Dolstra. 2011.
Finding software license violations through binary code clone detection. In
Proceedings of the 8th Working Conference on Mining Software Repositories. ACM,
63–72.

[8] Michael C Jaeger, Oliver Fendt, Robert Gobeille, Maximilian Huber, Johannes
Najjar, Kate Stewart, Steffen Weber, and Andreas Wurl. 2017. The FOSSology
Project: 10 Years Of License Scanning. IFOSS L. Rev. 9 (2017), 9.

[9] Georgia Kapitsaki and Georgia Charalambous. 2019. Modeling and recommend-
ing open source licenses with findOSSLicense. IEEE Transactions on Software
Engineering (2019).

[10] Georgia M Kapitsaki and Georgia Charalambous. 2016. Find your Open Source
License Now!. In Software Engineering Conference (APSEC), 2016 23rd Asia-Pacific.
IEEE, 1–8.

[11] AndrewM St Laurent. 2004. Understanding open source and free software licensing:
guide to navigating licensing issues in existing & new software. " O’Reilly Media,
Inc.".

[12] David McGowan. 2001. Legal implications of open-source software. U. Ill. L. Rev.
(2001), 241.

[13] Kevin Schmidt. 2016. License usage analysis and license recommendation in open
source software development. Ph. D. Dissertation. Masterarbeit, Koblenz, Univer-
sität Koblenz-Landau, Campus Koblenz, 2015.

[14] Kate Stewart, Phil Odence, and Esteban Rockett. 2010. Software package data
exchange (SPDX) specification. IFOSS L. Rev. 2 (2010), 191.

[15] Timo Tuunanen, Jussi Koskinen, and Tommi Kärkkäinen. 2009. Automated
software license analysis. Automated Software Engineering 16, 3-4 (2009), 455–
490.

[16] David A Wheeler. 2007. The free-libre/open source software (FLOSS) license
slide. Online http://www. dwheeler. com/essays/floss-license-slide. pdf (2007).

101

https://doi.org/10.5281/zenodo.6347648

	Abstract
	1 Introduction
	2 Background and related work
	3 Finding compatible licenses: approach and comparison
	4 Integration in findOSSLicense recommender system
	5 Evaluation
	5.1 License extraction tools comparison
	5.2 Small scale user study
	5.3 Limitations

	6 Conclusions
	References

